492 lines
16 KiB
C
492 lines
16 KiB
C
|
/*
|
||
|
* arch/arm/include/asm/io.h
|
||
|
*
|
||
|
* Copyright (C) 1996-2000 Russell King
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* Modifications:
|
||
|
* 16-Sep-1996 RMK Inlined the inx/outx functions & optimised for both
|
||
|
* constant addresses and variable addresses.
|
||
|
* 04-Dec-1997 RMK Moved a lot of this stuff to the new architecture
|
||
|
* specific IO header files.
|
||
|
* 27-Mar-1999 PJB Second parameter of memcpy_toio is const..
|
||
|
* 04-Apr-1999 PJB Added check_signature.
|
||
|
* 12-Dec-1999 RMK More cleanups
|
||
|
* 18-Jun-2000 RMK Removed virt_to_* and friends definitions
|
||
|
* 05-Oct-2004 BJD Moved memory string functions to use void __iomem
|
||
|
*/
|
||
|
#ifndef __ASM_ARM_IO_H
|
||
|
#define __ASM_ARM_IO_H
|
||
|
|
||
|
#ifdef __KERNEL__
|
||
|
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <asm/byteorder.h>
|
||
|
#include <asm/memory.h>
|
||
|
#include <asm-generic/pci_iomap.h>
|
||
|
#include <xen/xen.h>
|
||
|
|
||
|
/*
|
||
|
* ISA I/O bus memory addresses are 1:1 with the physical address.
|
||
|
*/
|
||
|
#define isa_virt_to_bus virt_to_phys
|
||
|
#define isa_page_to_bus page_to_phys
|
||
|
#define isa_bus_to_virt phys_to_virt
|
||
|
|
||
|
/*
|
||
|
* Atomic MMIO-wide IO modify
|
||
|
*/
|
||
|
extern void atomic_io_modify(void __iomem *reg, u32 mask, u32 set);
|
||
|
extern void atomic_io_modify_relaxed(void __iomem *reg, u32 mask, u32 set);
|
||
|
|
||
|
/*
|
||
|
* Generic IO read/write. These perform native-endian accesses. Note
|
||
|
* that some architectures will want to re-define __raw_{read,write}w.
|
||
|
*/
|
||
|
void __raw_writesb(volatile void __iomem *addr, const void *data, int bytelen);
|
||
|
void __raw_writesw(volatile void __iomem *addr, const void *data, int wordlen);
|
||
|
void __raw_writesl(volatile void __iomem *addr, const void *data, int longlen);
|
||
|
|
||
|
void __raw_readsb(const volatile void __iomem *addr, void *data, int bytelen);
|
||
|
void __raw_readsw(const volatile void __iomem *addr, void *data, int wordlen);
|
||
|
void __raw_readsl(const volatile void __iomem *addr, void *data, int longlen);
|
||
|
|
||
|
#if __LINUX_ARM_ARCH__ < 6
|
||
|
/*
|
||
|
* Half-word accesses are problematic with RiscPC due to limitations of
|
||
|
* the bus. Rather than special-case the machine, just let the compiler
|
||
|
* generate the access for CPUs prior to ARMv6.
|
||
|
*/
|
||
|
#define __raw_readw(a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a))
|
||
|
#define __raw_writew(v,a) ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v)))
|
||
|
#else
|
||
|
/*
|
||
|
* When running under a hypervisor, we want to avoid I/O accesses with
|
||
|
* writeback addressing modes as these incur a significant performance
|
||
|
* overhead (the address generation must be emulated in software).
|
||
|
*/
|
||
|
#define __raw_writew __raw_writew
|
||
|
static inline void __raw_writew(u16 val, volatile void __iomem *addr)
|
||
|
{
|
||
|
asm volatile("strh %1, %0"
|
||
|
: : "Q" (*(volatile u16 __force *)addr), "r" (val));
|
||
|
}
|
||
|
|
||
|
#define __raw_readw __raw_readw
|
||
|
static inline u16 __raw_readw(const volatile void __iomem *addr)
|
||
|
{
|
||
|
u16 val;
|
||
|
asm volatile("ldrh %0, %1"
|
||
|
: "=r" (val)
|
||
|
: "Q" (*(volatile u16 __force *)addr));
|
||
|
return val;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#define __raw_writeb __raw_writeb
|
||
|
static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
|
||
|
{
|
||
|
asm volatile("strb %1, %0"
|
||
|
: : "Qo" (*(volatile u8 __force *)addr), "r" (val));
|
||
|
}
|
||
|
|
||
|
#define __raw_writel __raw_writel
|
||
|
static inline void __raw_writel(u32 val, volatile void __iomem *addr)
|
||
|
{
|
||
|
asm volatile("str %1, %0"
|
||
|
: : "Qo" (*(volatile u32 __force *)addr), "r" (val));
|
||
|
}
|
||
|
|
||
|
#define __raw_readb __raw_readb
|
||
|
static inline u8 __raw_readb(const volatile void __iomem *addr)
|
||
|
{
|
||
|
u8 val;
|
||
|
asm volatile("ldrb %0, %1"
|
||
|
: "=r" (val)
|
||
|
: "Qo" (*(volatile u8 __force *)addr));
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
#define __raw_readl __raw_readl
|
||
|
static inline u32 __raw_readl(const volatile void __iomem *addr)
|
||
|
{
|
||
|
u32 val;
|
||
|
asm volatile("ldr %0, %1"
|
||
|
: "=r" (val)
|
||
|
: "Qo" (*(volatile u32 __force *)addr));
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Architecture ioremap implementation.
|
||
|
*/
|
||
|
#define MT_DEVICE 0
|
||
|
#define MT_DEVICE_NONSHARED 1
|
||
|
#define MT_DEVICE_CACHED 2
|
||
|
#define MT_DEVICE_WC 3
|
||
|
/*
|
||
|
* types 4 onwards can be found in asm/mach/map.h and are undefined
|
||
|
* for ioremap
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* __arm_ioremap takes CPU physical address.
|
||
|
* __arm_ioremap_pfn takes a Page Frame Number and an offset into that page
|
||
|
* The _caller variety takes a __builtin_return_address(0) value for
|
||
|
* /proc/vmalloc to use - and should only be used in non-inline functions.
|
||
|
*/
|
||
|
extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int,
|
||
|
void *);
|
||
|
extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int);
|
||
|
extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached);
|
||
|
extern void __iounmap(volatile void __iomem *addr);
|
||
|
|
||
|
extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
|
||
|
unsigned int, void *);
|
||
|
extern void (*arch_iounmap)(volatile void __iomem *);
|
||
|
|
||
|
/*
|
||
|
* Bad read/write accesses...
|
||
|
*/
|
||
|
extern void __readwrite_bug(const char *fn);
|
||
|
|
||
|
/*
|
||
|
* A typesafe __io() helper
|
||
|
*/
|
||
|
static inline void __iomem *__typesafe_io(unsigned long addr)
|
||
|
{
|
||
|
return (void __iomem *)addr;
|
||
|
}
|
||
|
|
||
|
#define IOMEM(x) ((void __force __iomem *)(x))
|
||
|
|
||
|
/* IO barriers */
|
||
|
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
|
||
|
#include <asm/barrier.h>
|
||
|
#define __iormb() rmb()
|
||
|
#define __iowmb() wmb()
|
||
|
#else
|
||
|
#define __iormb() do { } while (0)
|
||
|
#define __iowmb() do { } while (0)
|
||
|
#endif
|
||
|
|
||
|
/* PCI fixed i/o mapping */
|
||
|
#define PCI_IO_VIRT_BASE 0xfee00000
|
||
|
#define PCI_IOBASE ((void __iomem *)PCI_IO_VIRT_BASE)
|
||
|
|
||
|
#if defined(CONFIG_PCI)
|
||
|
void pci_ioremap_set_mem_type(int mem_type);
|
||
|
#else
|
||
|
static inline void pci_ioremap_set_mem_type(int mem_type) {}
|
||
|
#endif
|
||
|
|
||
|
extern int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr);
|
||
|
|
||
|
/*
|
||
|
* PCI configuration space mapping function.
|
||
|
*
|
||
|
* The PCI specification does not allow configuration write
|
||
|
* transactions to be posted. Add an arch specific
|
||
|
* pci_remap_cfgspace() definition that is implemented
|
||
|
* through strongly ordered memory mappings.
|
||
|
*/
|
||
|
#define pci_remap_cfgspace pci_remap_cfgspace
|
||
|
void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size);
|
||
|
/*
|
||
|
* Now, pick up the machine-defined IO definitions
|
||
|
*/
|
||
|
#ifdef CONFIG_NEED_MACH_IO_H
|
||
|
#include <mach/io.h>
|
||
|
#elif defined(CONFIG_PCI)
|
||
|
#define IO_SPACE_LIMIT ((resource_size_t)0xfffff)
|
||
|
#define __io(a) __typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT))
|
||
|
#else
|
||
|
#define __io(a) __typesafe_io((a) & IO_SPACE_LIMIT)
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* This is the limit of PC card/PCI/ISA IO space, which is by default
|
||
|
* 64K if we have PC card, PCI or ISA support. Otherwise, default to
|
||
|
* zero to prevent ISA/PCI drivers claiming IO space (and potentially
|
||
|
* oopsing.)
|
||
|
*
|
||
|
* Only set this larger if you really need inb() et.al. to operate over
|
||
|
* a larger address space. Note that SOC_COMMON ioremaps each sockets
|
||
|
* IO space area, and so inb() et.al. must be defined to operate as per
|
||
|
* readb() et.al. on such platforms.
|
||
|
*/
|
||
|
#ifndef IO_SPACE_LIMIT
|
||
|
#if defined(CONFIG_PCMCIA_SOC_COMMON) || defined(CONFIG_PCMCIA_SOC_COMMON_MODULE)
|
||
|
#define IO_SPACE_LIMIT ((resource_size_t)0xffffffff)
|
||
|
#elif defined(CONFIG_PCI) || defined(CONFIG_ISA) || defined(CONFIG_PCCARD)
|
||
|
#define IO_SPACE_LIMIT ((resource_size_t)0xffff)
|
||
|
#else
|
||
|
#define IO_SPACE_LIMIT ((resource_size_t)0)
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* IO port access primitives
|
||
|
* -------------------------
|
||
|
*
|
||
|
* The ARM doesn't have special IO access instructions; all IO is memory
|
||
|
* mapped. Note that these are defined to perform little endian accesses
|
||
|
* only. Their primary purpose is to access PCI and ISA peripherals.
|
||
|
*
|
||
|
* Note that for a big endian machine, this implies that the following
|
||
|
* big endian mode connectivity is in place, as described by numerous
|
||
|
* ARM documents:
|
||
|
*
|
||
|
* PCI: D0-D7 D8-D15 D16-D23 D24-D31
|
||
|
* ARM: D24-D31 D16-D23 D8-D15 D0-D7
|
||
|
*
|
||
|
* The machine specific io.h include defines __io to translate an "IO"
|
||
|
* address to a memory address.
|
||
|
*
|
||
|
* Note that we prevent GCC re-ordering or caching values in expressions
|
||
|
* by introducing sequence points into the in*() definitions. Note that
|
||
|
* __raw_* do not guarantee this behaviour.
|
||
|
*
|
||
|
* The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
|
||
|
*/
|
||
|
#ifdef __io
|
||
|
#define outb(v,p) ({ __iowmb(); __raw_writeb(v,__io(p)); })
|
||
|
#define outw(v,p) ({ __iowmb(); __raw_writew((__force __u16) \
|
||
|
cpu_to_le16(v),__io(p)); })
|
||
|
#define outl(v,p) ({ __iowmb(); __raw_writel((__force __u32) \
|
||
|
cpu_to_le32(v),__io(p)); })
|
||
|
|
||
|
#define inb(p) ({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; })
|
||
|
#define inw(p) ({ __u16 __v = le16_to_cpu((__force __le16) \
|
||
|
__raw_readw(__io(p))); __iormb(); __v; })
|
||
|
#define inl(p) ({ __u32 __v = le32_to_cpu((__force __le32) \
|
||
|
__raw_readl(__io(p))); __iormb(); __v; })
|
||
|
|
||
|
#define outsb(p,d,l) __raw_writesb(__io(p),d,l)
|
||
|
#define outsw(p,d,l) __raw_writesw(__io(p),d,l)
|
||
|
#define outsl(p,d,l) __raw_writesl(__io(p),d,l)
|
||
|
|
||
|
#define insb(p,d,l) __raw_readsb(__io(p),d,l)
|
||
|
#define insw(p,d,l) __raw_readsw(__io(p),d,l)
|
||
|
#define insl(p,d,l) __raw_readsl(__io(p),d,l)
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* String version of IO memory access ops:
|
||
|
*/
|
||
|
extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t);
|
||
|
extern void _memcpy_toio(volatile void __iomem *, const void *, size_t);
|
||
|
extern void _memset_io(volatile void __iomem *, int, size_t);
|
||
|
|
||
|
#define mmiowb()
|
||
|
|
||
|
/*
|
||
|
* Memory access primitives
|
||
|
* ------------------------
|
||
|
*
|
||
|
* These perform PCI memory accesses via an ioremap region. They don't
|
||
|
* take an address as such, but a cookie.
|
||
|
*
|
||
|
* Again, these are defined to perform little endian accesses. See the
|
||
|
* IO port primitives for more information.
|
||
|
*/
|
||
|
#ifndef readl
|
||
|
#define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; })
|
||
|
#define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
|
||
|
__raw_readw(c)); __r; })
|
||
|
#define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
|
||
|
__raw_readl(c)); __r; })
|
||
|
|
||
|
#define writeb_relaxed(v,c) __raw_writeb(v,c)
|
||
|
#define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c)
|
||
|
#define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c)
|
||
|
|
||
|
#define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; })
|
||
|
#define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; })
|
||
|
#define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; })
|
||
|
|
||
|
#define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); })
|
||
|
#define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); })
|
||
|
#define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); })
|
||
|
|
||
|
#define readsb(p,d,l) __raw_readsb(p,d,l)
|
||
|
#define readsw(p,d,l) __raw_readsw(p,d,l)
|
||
|
#define readsl(p,d,l) __raw_readsl(p,d,l)
|
||
|
|
||
|
#define writesb(p,d,l) __raw_writesb(p,d,l)
|
||
|
#define writesw(p,d,l) __raw_writesw(p,d,l)
|
||
|
#define writesl(p,d,l) __raw_writesl(p,d,l)
|
||
|
|
||
|
#ifndef __ARMBE__
|
||
|
static inline void memset_io(volatile void __iomem *dst, unsigned c,
|
||
|
size_t count)
|
||
|
{
|
||
|
extern void mmioset(void *, unsigned int, size_t);
|
||
|
mmioset((void __force *)dst, c, count);
|
||
|
}
|
||
|
#define memset_io(dst,c,count) memset_io(dst,c,count)
|
||
|
|
||
|
static inline void memcpy_fromio(void *to, const volatile void __iomem *from,
|
||
|
size_t count)
|
||
|
{
|
||
|
extern void mmiocpy(void *, const void *, size_t);
|
||
|
mmiocpy(to, (const void __force *)from, count);
|
||
|
}
|
||
|
#define memcpy_fromio(to,from,count) memcpy_fromio(to,from,count)
|
||
|
|
||
|
static inline void memcpy_toio(volatile void __iomem *to, const void *from,
|
||
|
size_t count)
|
||
|
{
|
||
|
extern void mmiocpy(void *, const void *, size_t);
|
||
|
mmiocpy((void __force *)to, from, count);
|
||
|
}
|
||
|
#define memcpy_toio(to,from,count) memcpy_toio(to,from,count)
|
||
|
|
||
|
#else
|
||
|
#define memset_io(c,v,l) _memset_io(c,(v),(l))
|
||
|
#define memcpy_fromio(a,c,l) _memcpy_fromio((a),c,(l))
|
||
|
#define memcpy_toio(c,a,l) _memcpy_toio(c,(a),(l))
|
||
|
#endif
|
||
|
|
||
|
#endif /* readl */
|
||
|
|
||
|
/*
|
||
|
* ioremap() and friends.
|
||
|
*
|
||
|
* ioremap() takes a resource address, and size. Due to the ARM memory
|
||
|
* types, it is important to use the correct ioremap() function as each
|
||
|
* mapping has specific properties.
|
||
|
*
|
||
|
* Function Memory type Cacheability Cache hint
|
||
|
* ioremap() Device n/a n/a
|
||
|
* ioremap_nocache() Device n/a n/a
|
||
|
* ioremap_cache() Normal Writeback Read allocate
|
||
|
* ioremap_wc() Normal Non-cacheable n/a
|
||
|
* ioremap_wt() Normal Non-cacheable n/a
|
||
|
*
|
||
|
* All device mappings have the following properties:
|
||
|
* - no access speculation
|
||
|
* - no repetition (eg, on return from an exception)
|
||
|
* - number, order and size of accesses are maintained
|
||
|
* - unaligned accesses are "unpredictable"
|
||
|
* - writes may be delayed before they hit the endpoint device
|
||
|
*
|
||
|
* ioremap_nocache() is the same as ioremap() as there are too many device
|
||
|
* drivers using this for device registers, and documentation which tells
|
||
|
* people to use it for such for this to be any different. This is not a
|
||
|
* safe fallback for memory-like mappings, or memory regions where the
|
||
|
* compiler may generate unaligned accesses - eg, via inlining its own
|
||
|
* memcpy.
|
||
|
*
|
||
|
* All normal memory mappings have the following properties:
|
||
|
* - reads can be repeated with no side effects
|
||
|
* - repeated reads return the last value written
|
||
|
* - reads can fetch additional locations without side effects
|
||
|
* - writes can be repeated (in certain cases) with no side effects
|
||
|
* - writes can be merged before accessing the target
|
||
|
* - unaligned accesses can be supported
|
||
|
* - ordering is not guaranteed without explicit dependencies or barrier
|
||
|
* instructions
|
||
|
* - writes may be delayed before they hit the endpoint memory
|
||
|
*
|
||
|
* The cache hint is only a performance hint: CPUs may alias these hints.
|
||
|
* Eg, a CPU not implementing read allocate but implementing write allocate
|
||
|
* will provide a write allocate mapping instead.
|
||
|
*/
|
||
|
void __iomem *ioremap(resource_size_t res_cookie, size_t size);
|
||
|
#define ioremap ioremap
|
||
|
#define ioremap_nocache ioremap
|
||
|
|
||
|
/*
|
||
|
* Do not use ioremap_cache for mapping memory. Use memremap instead.
|
||
|
*/
|
||
|
void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size);
|
||
|
#define ioremap_cache ioremap_cache
|
||
|
|
||
|
/*
|
||
|
* Do not use ioremap_cached in new code. Provided for the benefit of
|
||
|
* the pxa2xx-flash MTD driver only.
|
||
|
*/
|
||
|
void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size);
|
||
|
|
||
|
void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size);
|
||
|
#define ioremap_wc ioremap_wc
|
||
|
#define ioremap_wt ioremap_wc
|
||
|
|
||
|
void iounmap(volatile void __iomem *iomem_cookie);
|
||
|
#define iounmap iounmap
|
||
|
|
||
|
void *arch_memremap_wb(phys_addr_t phys_addr, size_t size);
|
||
|
#define arch_memremap_wb arch_memremap_wb
|
||
|
|
||
|
/*
|
||
|
* io{read,write}{16,32}be() macros
|
||
|
*/
|
||
|
#define ioread16be(p) ({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; })
|
||
|
#define ioread32be(p) ({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; })
|
||
|
|
||
|
#define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); })
|
||
|
#define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); })
|
||
|
|
||
|
#ifndef ioport_map
|
||
|
#define ioport_map ioport_map
|
||
|
extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
|
||
|
#endif
|
||
|
#ifndef ioport_unmap
|
||
|
#define ioport_unmap ioport_unmap
|
||
|
extern void ioport_unmap(void __iomem *addr);
|
||
|
#endif
|
||
|
|
||
|
struct pci_dev;
|
||
|
|
||
|
#define pci_iounmap pci_iounmap
|
||
|
extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
|
||
|
|
||
|
/*
|
||
|
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
|
||
|
* access
|
||
|
*/
|
||
|
#define xlate_dev_mem_ptr(p) __va(p)
|
||
|
|
||
|
/*
|
||
|
* Convert a virtual cached pointer to an uncached pointer
|
||
|
*/
|
||
|
#define xlate_dev_kmem_ptr(p) p
|
||
|
|
||
|
#include <asm-generic/io.h>
|
||
|
|
||
|
/*
|
||
|
* can the hardware map this into one segment or not, given no other
|
||
|
* constraints.
|
||
|
*/
|
||
|
#define BIOVEC_MERGEABLE(vec1, vec2) \
|
||
|
((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2)))
|
||
|
|
||
|
struct bio_vec;
|
||
|
extern bool xen_biovec_phys_mergeable(const struct bio_vec *vec1,
|
||
|
const struct bio_vec *vec2);
|
||
|
#define BIOVEC_PHYS_MERGEABLE(vec1, vec2) \
|
||
|
(__BIOVEC_PHYS_MERGEABLE(vec1, vec2) && \
|
||
|
(!xen_domain() || xen_biovec_phys_mergeable(vec1, vec2)))
|
||
|
|
||
|
#ifdef CONFIG_MMU
|
||
|
#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
|
||
|
extern int valid_phys_addr_range(phys_addr_t addr, size_t size);
|
||
|
extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
|
||
|
extern int devmem_is_allowed(unsigned long pfn);
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Register ISA memory and port locations for glibc iopl/inb/outb
|
||
|
* emulation.
|
||
|
*/
|
||
|
extern void register_isa_ports(unsigned int mmio, unsigned int io,
|
||
|
unsigned int io_shift);
|
||
|
|
||
|
#endif /* __KERNEL__ */
|
||
|
#endif /* __ASM_ARM_IO_H */
|