kernel_samsung_a34x-permissive/arch/arm/mm/cache-b15-rac.c

379 lines
10 KiB
C
Raw Permalink Normal View History

/*
* Broadcom Brahma-B15 CPU read-ahead cache management functions
*
* Copyright (C) 2015-2016 Broadcom
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/io.h>
#include <linux/bitops.h>
#include <linux/of_address.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/syscore_ops.h>
#include <linux/reboot.h>
#include <asm/cacheflush.h>
#include <asm/hardware/cache-b15-rac.h>
extern void v7_flush_kern_cache_all(void);
/* RAC register offsets, relative to the HIF_CPU_BIUCTRL register base */
#define RAC_CONFIG0_REG (0x78)
#define RACENPREF_MASK (0x3)
#define RACPREFINST_SHIFT (0)
#define RACENINST_SHIFT (2)
#define RACPREFDATA_SHIFT (4)
#define RACENDATA_SHIFT (6)
#define RAC_CPU_SHIFT (8)
#define RACCFG_MASK (0xff)
#define RAC_CONFIG1_REG (0x7c)
/* Brahma-B15 is a quad-core only design */
#define B15_RAC_FLUSH_REG (0x80)
/* Brahma-B53 is an octo-core design */
#define B53_RAC_FLUSH_REG (0x84)
#define FLUSH_RAC (1 << 0)
/* Bitmask to enable instruction and data prefetching with a 256-bytes stride */
#define RAC_DATA_INST_EN_MASK (1 << RACPREFINST_SHIFT | \
RACENPREF_MASK << RACENINST_SHIFT | \
1 << RACPREFDATA_SHIFT | \
RACENPREF_MASK << RACENDATA_SHIFT)
#define RAC_ENABLED 0
/* Special state where we want to bypass the spinlock and call directly
* into the v7 cache maintenance operations during suspend/resume
*/
#define RAC_SUSPENDED 1
static void __iomem *b15_rac_base;
static DEFINE_SPINLOCK(rac_lock);
static u32 rac_config0_reg;
static u32 rac_flush_offset;
/* Initialization flag to avoid checking for b15_rac_base, and to prevent
* multi-platform kernels from crashing here as well.
*/
static unsigned long b15_rac_flags;
static inline u32 __b15_rac_disable(void)
{
u32 val = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
__raw_writel(0, b15_rac_base + RAC_CONFIG0_REG);
dmb();
return val;
}
static inline void __b15_rac_flush(void)
{
u32 reg;
__raw_writel(FLUSH_RAC, b15_rac_base + rac_flush_offset);
do {
/* This dmb() is required to force the Bus Interface Unit
* to clean oustanding writes, and forces an idle cycle
* to be inserted.
*/
dmb();
reg = __raw_readl(b15_rac_base + rac_flush_offset);
} while (reg & FLUSH_RAC);
}
static inline u32 b15_rac_disable_and_flush(void)
{
u32 reg;
reg = __b15_rac_disable();
__b15_rac_flush();
return reg;
}
static inline void __b15_rac_enable(u32 val)
{
__raw_writel(val, b15_rac_base + RAC_CONFIG0_REG);
/* dsb() is required here to be consistent with __flush_icache_all() */
dsb();
}
#define BUILD_RAC_CACHE_OP(name, bar) \
void b15_flush_##name(void) \
{ \
unsigned int do_flush; \
u32 val = 0; \
\
if (test_bit(RAC_SUSPENDED, &b15_rac_flags)) { \
v7_flush_##name(); \
bar; \
return; \
} \
\
spin_lock(&rac_lock); \
do_flush = test_bit(RAC_ENABLED, &b15_rac_flags); \
if (do_flush) \
val = b15_rac_disable_and_flush(); \
v7_flush_##name(); \
if (!do_flush) \
bar; \
else \
__b15_rac_enable(val); \
spin_unlock(&rac_lock); \
}
#define nobarrier
/* The readahead cache present in the Brahma-B15 CPU is a special piece of
* hardware after the integrated L2 cache of the B15 CPU complex whose purpose
* is to prefetch instruction and/or data with a line size of either 64 bytes
* or 256 bytes. The rationale is that the data-bus of the CPU interface is
* optimized for 256-bytes transactions, and enabling the readahead cache
* provides a significant performance boost we want it enabled (typically
* twice the performance for a memcpy benchmark application).
*
* The readahead cache is transparent for Modified Virtual Addresses
* cache maintenance operations: ICIMVAU, DCIMVAC, DCCMVAC, DCCMVAU and
* DCCIMVAC.
*
* It is however not transparent for the following cache maintenance
* operations: DCISW, DCCSW, DCCISW, ICIALLUIS and ICIALLU which is precisely
* what we are patching here with our BUILD_RAC_CACHE_OP here.
*/
BUILD_RAC_CACHE_OP(kern_cache_all, nobarrier);
static void b15_rac_enable(void)
{
unsigned int cpu;
u32 enable = 0;
for_each_possible_cpu(cpu)
enable |= (RAC_DATA_INST_EN_MASK << (cpu * RAC_CPU_SHIFT));
b15_rac_disable_and_flush();
__b15_rac_enable(enable);
}
static int b15_rac_reboot_notifier(struct notifier_block *nb,
unsigned long action,
void *data)
{
/* During kexec, we are not yet migrated on the boot CPU, so we need to
* make sure we are SMP safe here. Once the RAC is disabled, flag it as
* suspended such that the hotplug notifier returns early.
*/
if (action == SYS_RESTART) {
spin_lock(&rac_lock);
b15_rac_disable_and_flush();
clear_bit(RAC_ENABLED, &b15_rac_flags);
set_bit(RAC_SUSPENDED, &b15_rac_flags);
spin_unlock(&rac_lock);
}
return NOTIFY_DONE;
}
static struct notifier_block b15_rac_reboot_nb = {
.notifier_call = b15_rac_reboot_notifier,
};
/* The CPU hotplug case is the most interesting one, we basically need to make
* sure that the RAC is disabled for the entire system prior to having a CPU
* die, in particular prior to this dying CPU having exited the coherency
* domain.
*
* Once this CPU is marked dead, we can safely re-enable the RAC for the
* remaining CPUs in the system which are still online.
*
* Offlining a CPU is the problematic case, onlining a CPU is not much of an
* issue since the CPU and its cache-level hierarchy will start filling with
* the RAC disabled, so L1 and L2 only.
*
* In this function, we should NOT have to verify any unsafe setting/condition
* b15_rac_base:
*
* It is protected by the RAC_ENABLED flag which is cleared by default, and
* being cleared when initial procedure is done. b15_rac_base had been set at
* that time.
*
* RAC_ENABLED:
* There is a small timing windows, in b15_rac_init(), between
* cpuhp_setup_state_*()
* ...
* set RAC_ENABLED
* However, there is no hotplug activity based on the Linux booting procedure.
*
* Since we have to disable RAC for all cores, we keep RAC on as long as as
* possible (disable it as late as possible) to gain the cache benefit.
*
* Thus, dying/dead states are chosen here
*
* We are choosing not do disable the RAC on a per-CPU basis, here, if we did
* we would want to consider disabling it as early as possible to benefit the
* other active CPUs.
*/
/* Running on the dying CPU */
static int b15_rac_dying_cpu(unsigned int cpu)
{
/* During kexec/reboot, the RAC is disabled via the reboot notifier
* return early here.
*/
if (test_bit(RAC_SUSPENDED, &b15_rac_flags))
return 0;
spin_lock(&rac_lock);
/* Indicate that we are starting a hotplug procedure */
__clear_bit(RAC_ENABLED, &b15_rac_flags);
/* Disable the readahead cache and save its value to a global */
rac_config0_reg = b15_rac_disable_and_flush();
spin_unlock(&rac_lock);
return 0;
}
/* Running on a non-dying CPU */
static int b15_rac_dead_cpu(unsigned int cpu)
{
/* During kexec/reboot, the RAC is disabled via the reboot notifier
* return early here.
*/
if (test_bit(RAC_SUSPENDED, &b15_rac_flags))
return 0;
spin_lock(&rac_lock);
/* And enable it */
__b15_rac_enable(rac_config0_reg);
__set_bit(RAC_ENABLED, &b15_rac_flags);
spin_unlock(&rac_lock);
return 0;
}
static int b15_rac_suspend(void)
{
/* Suspend the read-ahead cache oeprations, forcing our cache
* implementation to fallback to the regular ARMv7 calls.
*
* We are guaranteed to be running on the boot CPU at this point and
* with every other CPU quiesced, so setting RAC_SUSPENDED is not racy
* here.
*/
rac_config0_reg = b15_rac_disable_and_flush();
set_bit(RAC_SUSPENDED, &b15_rac_flags);
return 0;
}
static void b15_rac_resume(void)
{
/* Coming out of a S3 suspend/resume cycle, the read-ahead cache
* register RAC_CONFIG0_REG will be restored to its default value, make
* sure we re-enable it and set the enable flag, we are also guaranteed
* to run on the boot CPU, so not racy again.
*/
__b15_rac_enable(rac_config0_reg);
clear_bit(RAC_SUSPENDED, &b15_rac_flags);
}
static struct syscore_ops b15_rac_syscore_ops = {
.suspend = b15_rac_suspend,
.resume = b15_rac_resume,
};
static int __init b15_rac_init(void)
{
struct device_node *dn, *cpu_dn;
int ret = 0, cpu;
u32 reg, en_mask = 0;
dn = of_find_compatible_node(NULL, NULL, "brcm,brcmstb-cpu-biu-ctrl");
if (!dn)
return -ENODEV;
if (WARN(num_possible_cpus() > 4, "RAC only supports 4 CPUs\n"))
goto out;
b15_rac_base = of_iomap(dn, 0);
if (!b15_rac_base) {
pr_err("failed to remap BIU control base\n");
ret = -ENOMEM;
goto out;
}
cpu_dn = of_get_cpu_node(0, NULL);
if (!cpu_dn) {
ret = -ENODEV;
goto out;
}
if (of_device_is_compatible(cpu_dn, "brcm,brahma-b15"))
rac_flush_offset = B15_RAC_FLUSH_REG;
else if (of_device_is_compatible(cpu_dn, "brcm,brahma-b53"))
rac_flush_offset = B53_RAC_FLUSH_REG;
else {
pr_err("Unsupported CPU\n");
of_node_put(cpu_dn);
ret = -EINVAL;
goto out;
}
of_node_put(cpu_dn);
ret = register_reboot_notifier(&b15_rac_reboot_nb);
if (ret) {
pr_err("failed to register reboot notifier\n");
iounmap(b15_rac_base);
goto out;
}
if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DEAD,
"arm/cache-b15-rac:dead",
NULL, b15_rac_dead_cpu);
if (ret)
goto out_unmap;
ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING,
"arm/cache-b15-rac:dying",
NULL, b15_rac_dying_cpu);
if (ret)
goto out_cpu_dead;
}
if (IS_ENABLED(CONFIG_PM_SLEEP))
register_syscore_ops(&b15_rac_syscore_ops);
spin_lock(&rac_lock);
reg = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
for_each_possible_cpu(cpu)
en_mask |= ((1 << RACPREFDATA_SHIFT) << (cpu * RAC_CPU_SHIFT));
WARN(reg & en_mask, "Read-ahead cache not previously disabled\n");
b15_rac_enable();
set_bit(RAC_ENABLED, &b15_rac_flags);
spin_unlock(&rac_lock);
pr_info("Broadcom Brahma-B15 readahead cache at: 0x%p\n",
b15_rac_base + RAC_CONFIG0_REG);
goto out;
out_cpu_dead:
cpuhp_remove_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING);
out_unmap:
unregister_reboot_notifier(&b15_rac_reboot_nb);
iounmap(b15_rac_base);
out:
of_node_put(dn);
return ret;
}
arch_initcall(b15_rac_init);