kernel_samsung_a34x-permissive/arch/powerpc/platforms/pseries/lpar.c

1089 lines
27 KiB
C
Raw Permalink Normal View History

/*
* pSeries_lpar.c
* Copyright (C) 2001 Todd Inglett, IBM Corporation
*
* pSeries LPAR support.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Enables debugging of low-level hash table routines - careful! */
#undef DEBUG
#define pr_fmt(fmt) "lpar: " fmt
#include <linux/kernel.h>
#include <linux/dma-mapping.h>
#include <linux/console.h>
#include <linux/export.h>
#include <linux/jump_label.h>
#include <linux/delay.h>
#include <linux/stop_machine.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/machdep.h>
#include <asm/mmu_context.h>
#include <asm/iommu.h>
#include <asm/tlb.h>
#include <asm/prom.h>
#include <asm/cputable.h>
#include <asm/udbg.h>
#include <asm/smp.h>
#include <asm/trace.h>
#include <asm/firmware.h>
#include <asm/plpar_wrappers.h>
#include <asm/kexec.h>
#include <asm/fadump.h>
#include <asm/asm-prototypes.h>
#include <asm/debugfs.h>
#include "pseries.h"
/* Flag bits for H_BULK_REMOVE */
#define HBR_REQUEST 0x4000000000000000UL
#define HBR_RESPONSE 0x8000000000000000UL
#define HBR_END 0xc000000000000000UL
#define HBR_AVPN 0x0200000000000000UL
#define HBR_ANDCOND 0x0100000000000000UL
/* in hvCall.S */
EXPORT_SYMBOL(plpar_hcall);
EXPORT_SYMBOL(plpar_hcall9);
EXPORT_SYMBOL(plpar_hcall_norets);
void vpa_init(int cpu)
{
int hwcpu = get_hard_smp_processor_id(cpu);
unsigned long addr;
long ret;
struct paca_struct *pp;
struct dtl_entry *dtl;
/*
* The spec says it "may be problematic" if CPU x registers the VPA of
* CPU y. We should never do that, but wail if we ever do.
*/
WARN_ON(cpu != smp_processor_id());
if (cpu_has_feature(CPU_FTR_ALTIVEC))
lppaca_of(cpu).vmxregs_in_use = 1;
if (cpu_has_feature(CPU_FTR_ARCH_207S))
lppaca_of(cpu).ebb_regs_in_use = 1;
addr = __pa(&lppaca_of(cpu));
ret = register_vpa(hwcpu, addr);
if (ret) {
pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
"%lx failed with %ld\n", cpu, hwcpu, addr, ret);
return;
}
#ifdef CONFIG_PPC_BOOK3S_64
/*
* PAPR says this feature is SLB-Buffer but firmware never
* reports that. All SPLPAR support SLB shadow buffer.
*/
if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
ret = register_slb_shadow(hwcpu, addr);
if (ret)
pr_err("WARNING: SLB shadow buffer registration for "
"cpu %d (hw %d) of area %lx failed with %ld\n",
cpu, hwcpu, addr, ret);
}
#endif /* CONFIG_PPC_BOOK3S_64 */
/*
* Register dispatch trace log, if one has been allocated.
*/
pp = paca_ptrs[cpu];
dtl = pp->dispatch_log;
if (dtl) {
pp->dtl_ridx = 0;
pp->dtl_curr = dtl;
lppaca_of(cpu).dtl_idx = 0;
/* hypervisor reads buffer length from this field */
dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
ret = register_dtl(hwcpu, __pa(dtl));
if (ret)
pr_err("WARNING: DTL registration of cpu %d (hw %d) "
"failed with %ld\n", smp_processor_id(),
hwcpu, ret);
lppaca_of(cpu).dtl_enable_mask = 2;
}
}
#ifdef CONFIG_PPC_BOOK3S_64
static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
unsigned long vpn, unsigned long pa,
unsigned long rflags, unsigned long vflags,
int psize, int apsize, int ssize)
{
unsigned long lpar_rc;
unsigned long flags;
unsigned long slot;
unsigned long hpte_v, hpte_r;
if (!(vflags & HPTE_V_BOLTED))
pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
"pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
hpte_group, vpn, pa, rflags, vflags, psize);
hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
if (!(vflags & HPTE_V_BOLTED))
pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
/* Now fill in the actual HPTE */
/* Set CEC cookie to 0 */
/* Zero page = 0 */
/* I-cache Invalidate = 0 */
/* I-cache synchronize = 0 */
/* Exact = 0 */
flags = 0;
if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
flags |= H_COALESCE_CAND;
lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
if (unlikely(lpar_rc == H_PTEG_FULL)) {
pr_devel("Hash table group is full\n");
return -1;
}
/*
* Since we try and ioremap PHBs we don't own, the pte insert
* will fail. However we must catch the failure in hash_page
* or we will loop forever, so return -2 in this case.
*/
if (unlikely(lpar_rc != H_SUCCESS)) {
pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
return -2;
}
if (!(vflags & HPTE_V_BOLTED))
pr_devel(" -> slot: %lu\n", slot & 7);
/* Because of iSeries, we have to pass down the secondary
* bucket bit here as well
*/
return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
}
static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
{
unsigned long slot_offset;
unsigned long lpar_rc;
int i;
unsigned long dummy1, dummy2;
/* pick a random slot to start at */
slot_offset = mftb() & 0x7;
for (i = 0; i < HPTES_PER_GROUP; i++) {
/* don't remove a bolted entry */
lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
(0x1UL << 4), &dummy1, &dummy2);
if (lpar_rc == H_SUCCESS)
return i;
/*
* The test for adjunct partition is performed before the
* ANDCOND test. H_RESOURCE may be returned, so we need to
* check for that as well.
*/
BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
slot_offset++;
slot_offset &= 0x7;
}
return -1;
}
static void manual_hpte_clear_all(void)
{
unsigned long size_bytes = 1UL << ppc64_pft_size;
unsigned long hpte_count = size_bytes >> 4;
struct {
unsigned long pteh;
unsigned long ptel;
} ptes[4];
long lpar_rc;
unsigned long i, j;
/* Read in batches of 4,
* invalidate only valid entries not in the VRMA
* hpte_count will be a multiple of 4
*/
for (i = 0; i < hpte_count; i += 4) {
lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
if (lpar_rc != H_SUCCESS) {
pr_info("Failed to read hash page table at %ld err %ld\n",
i, lpar_rc);
continue;
}
for (j = 0; j < 4; j++){
if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
HPTE_V_VRMA_MASK)
continue;
if (ptes[j].pteh & HPTE_V_VALID)
plpar_pte_remove_raw(0, i + j, 0,
&(ptes[j].pteh), &(ptes[j].ptel));
}
}
}
static int hcall_hpte_clear_all(void)
{
int rc;
do {
rc = plpar_hcall_norets(H_CLEAR_HPT);
} while (rc == H_CONTINUE);
return rc;
}
static void pseries_hpte_clear_all(void)
{
int rc;
rc = hcall_hpte_clear_all();
if (rc != H_SUCCESS)
manual_hpte_clear_all();
#ifdef __LITTLE_ENDIAN__
/*
* Reset exceptions to big endian.
*
* FIXME this is a hack for kexec, we need to reset the exception
* endian before starting the new kernel and this is a convenient place
* to do it.
*
* This is also called on boot when a fadump happens. In that case we
* must not change the exception endian mode.
*/
if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
pseries_big_endian_exceptions();
#endif
}
/*
* NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
* the low 3 bits of flags happen to line up. So no transform is needed.
* We can probably optimize here and assume the high bits of newpp are
* already zero. For now I am paranoid.
*/
static long pSeries_lpar_hpte_updatepp(unsigned long slot,
unsigned long newpp,
unsigned long vpn,
int psize, int apsize,
int ssize, unsigned long inv_flags)
{
unsigned long lpar_rc;
unsigned long flags;
unsigned long want_v;
want_v = hpte_encode_avpn(vpn, psize, ssize);
flags = (newpp & 7) | H_AVPN;
if (mmu_has_feature(MMU_FTR_KERNEL_RO))
/* Move pp0 into bit 8 (IBM 55) */
flags |= (newpp & HPTE_R_PP0) >> 55;
pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
want_v, slot, flags, psize);
lpar_rc = plpar_pte_protect(flags, slot, want_v);
if (lpar_rc == H_NOT_FOUND) {
pr_devel("not found !\n");
return -1;
}
pr_devel("ok\n");
BUG_ON(lpar_rc != H_SUCCESS);
return 0;
}
static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
{
long lpar_rc;
unsigned long i, j;
struct {
unsigned long pteh;
unsigned long ptel;
} ptes[4];
for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
if (lpar_rc != H_SUCCESS) {
pr_info("Failed to read hash page table at %ld err %ld\n",
hpte_group, lpar_rc);
continue;
}
for (j = 0; j < 4; j++) {
if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
(ptes[j].pteh & HPTE_V_VALID))
return i + j;
}
}
return -1;
}
static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
{
long slot;
unsigned long hash;
unsigned long want_v;
unsigned long hpte_group;
hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
want_v = hpte_encode_avpn(vpn, psize, ssize);
/* Bolted entries are always in the primary group */
hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
if (slot < 0)
return -1;
return hpte_group + slot;
}
static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
unsigned long ea,
int psize, int ssize)
{
unsigned long vpn;
unsigned long lpar_rc, slot, vsid, flags;
vsid = get_kernel_vsid(ea, ssize);
vpn = hpt_vpn(ea, vsid, ssize);
slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
BUG_ON(slot == -1);
flags = newpp & 7;
if (mmu_has_feature(MMU_FTR_KERNEL_RO))
/* Move pp0 into bit 8 (IBM 55) */
flags |= (newpp & HPTE_R_PP0) >> 55;
lpar_rc = plpar_pte_protect(flags, slot, 0);
BUG_ON(lpar_rc != H_SUCCESS);
}
static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
int psize, int apsize,
int ssize, int local)
{
unsigned long want_v;
unsigned long lpar_rc;
unsigned long dummy1, dummy2;
pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
slot, vpn, psize, local);
want_v = hpte_encode_avpn(vpn, psize, ssize);
lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
if (lpar_rc == H_NOT_FOUND)
return;
BUG_ON(lpar_rc != H_SUCCESS);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
* Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
* to make sure that we avoid bouncing the hypervisor tlbie lock.
*/
#define PPC64_HUGE_HPTE_BATCH 12
static void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
unsigned long *vpn, int count,
int psize, int ssize)
{
unsigned long param[PLPAR_HCALL9_BUFSIZE];
int i = 0, pix = 0, rc;
unsigned long flags = 0;
int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
if (lock_tlbie)
spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
for (i = 0; i < count; i++) {
if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
ssize, 0);
} else {
param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
pix += 2;
if (pix == 8) {
rc = plpar_hcall9(H_BULK_REMOVE, param,
param[0], param[1], param[2],
param[3], param[4], param[5],
param[6], param[7]);
BUG_ON(rc != H_SUCCESS);
pix = 0;
}
}
}
if (pix) {
param[pix] = HBR_END;
rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
param[2], param[3], param[4], param[5],
param[6], param[7]);
BUG_ON(rc != H_SUCCESS);
}
if (lock_tlbie)
spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
}
static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
unsigned long addr,
unsigned char *hpte_slot_array,
int psize, int ssize, int local)
{
int i, index = 0;
unsigned long s_addr = addr;
unsigned int max_hpte_count, valid;
unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
unsigned long shift, hidx, vpn = 0, hash, slot;
shift = mmu_psize_defs[psize].shift;
max_hpte_count = 1U << (PMD_SHIFT - shift);
for (i = 0; i < max_hpte_count; i++) {
valid = hpte_valid(hpte_slot_array, i);
if (!valid)
continue;
hidx = hpte_hash_index(hpte_slot_array, i);
/* get the vpn */
addr = s_addr + (i * (1ul << shift));
vpn = hpt_vpn(addr, vsid, ssize);
hash = hpt_hash(vpn, shift, ssize);
if (hidx & _PTEIDX_SECONDARY)
hash = ~hash;
slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
slot += hidx & _PTEIDX_GROUP_IX;
slot_array[index] = slot;
vpn_array[index] = vpn;
if (index == PPC64_HUGE_HPTE_BATCH - 1) {
/*
* Now do a bluk invalidate
*/
__pSeries_lpar_hugepage_invalidate(slot_array,
vpn_array,
PPC64_HUGE_HPTE_BATCH,
psize, ssize);
index = 0;
} else
index++;
}
if (index)
__pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
index, psize, ssize);
}
#else
static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
unsigned long addr,
unsigned char *hpte_slot_array,
int psize, int ssize, int local)
{
WARN(1, "%s called without THP support\n", __func__);
}
#endif
static int pSeries_lpar_hpte_removebolted(unsigned long ea,
int psize, int ssize)
{
unsigned long vpn;
unsigned long slot, vsid;
vsid = get_kernel_vsid(ea, ssize);
vpn = hpt_vpn(ea, vsid, ssize);
slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
if (slot == -1)
return -ENOENT;
/*
* lpar doesn't use the passed actual page size
*/
pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
return 0;
}
/*
* Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
* lock.
*/
static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
{
unsigned long vpn;
unsigned long i, pix, rc;
unsigned long flags = 0;
struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
unsigned long param[PLPAR_HCALL9_BUFSIZE];
unsigned long hash, index, shift, hidx, slot;
real_pte_t pte;
int psize, ssize;
if (lock_tlbie)
spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
psize = batch->psize;
ssize = batch->ssize;
pix = 0;
for (i = 0; i < number; i++) {
vpn = batch->vpn[i];
pte = batch->pte[i];
pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
hash = hpt_hash(vpn, shift, ssize);
hidx = __rpte_to_hidx(pte, index);
if (hidx & _PTEIDX_SECONDARY)
hash = ~hash;
slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
slot += hidx & _PTEIDX_GROUP_IX;
if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
/*
* lpar doesn't use the passed actual page size
*/
pSeries_lpar_hpte_invalidate(slot, vpn, psize,
0, ssize, local);
} else {
param[pix] = HBR_REQUEST | HBR_AVPN | slot;
param[pix+1] = hpte_encode_avpn(vpn, psize,
ssize);
pix += 2;
if (pix == 8) {
rc = plpar_hcall9(H_BULK_REMOVE, param,
param[0], param[1], param[2],
param[3], param[4], param[5],
param[6], param[7]);
BUG_ON(rc != H_SUCCESS);
pix = 0;
}
}
} pte_iterate_hashed_end();
}
if (pix) {
param[pix] = HBR_END;
rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
param[2], param[3], param[4], param[5],
param[6], param[7]);
BUG_ON(rc != H_SUCCESS);
}
if (lock_tlbie)
spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
}
static int __init disable_bulk_remove(char *str)
{
if (strcmp(str, "off") == 0 &&
firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
pr_info("Disabling BULK_REMOVE firmware feature");
powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
}
return 1;
}
__setup("bulk_remove=", disable_bulk_remove);
#define HPT_RESIZE_TIMEOUT 10000 /* ms */
struct hpt_resize_state {
unsigned long shift;
int commit_rc;
};
static int pseries_lpar_resize_hpt_commit(void *data)
{
struct hpt_resize_state *state = data;
state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
if (state->commit_rc != H_SUCCESS)
return -EIO;
/* Hypervisor has transitioned the HTAB, update our globals */
ppc64_pft_size = state->shift;
htab_size_bytes = 1UL << ppc64_pft_size;
htab_hash_mask = (htab_size_bytes >> 7) - 1;
return 0;
}
/*
* Must be called in process context. The caller must hold the
* cpus_lock.
*/
static int pseries_lpar_resize_hpt(unsigned long shift)
{
struct hpt_resize_state state = {
.shift = shift,
.commit_rc = H_FUNCTION,
};
unsigned int delay, total_delay = 0;
int rc;
ktime_t t0, t1, t2;
might_sleep();
if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
return -ENODEV;
pr_info("Attempting to resize HPT to shift %lu\n", shift);
t0 = ktime_get();
rc = plpar_resize_hpt_prepare(0, shift);
while (H_IS_LONG_BUSY(rc)) {
delay = get_longbusy_msecs(rc);
total_delay += delay;
if (total_delay > HPT_RESIZE_TIMEOUT) {
/* prepare with shift==0 cancels an in-progress resize */
rc = plpar_resize_hpt_prepare(0, 0);
if (rc != H_SUCCESS)
pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
rc);
return -ETIMEDOUT;
}
msleep(delay);
rc = plpar_resize_hpt_prepare(0, shift);
};
switch (rc) {
case H_SUCCESS:
/* Continue on */
break;
case H_PARAMETER:
return -EINVAL;
case H_RESOURCE:
return -EPERM;
default:
pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
return -EIO;
}
t1 = ktime_get();
rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
&state, NULL);
t2 = ktime_get();
if (rc != 0) {
switch (state.commit_rc) {
case H_PTEG_FULL:
pr_warn("Hash collision while resizing HPT\n");
return -ENOSPC;
default:
pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
state.commit_rc);
return -EIO;
};
}
pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
shift, (long long) ktime_ms_delta(t1, t0),
(long long) ktime_ms_delta(t2, t1));
return 0;
}
static int pseries_lpar_register_process_table(unsigned long base,
unsigned long page_size, unsigned long table_size)
{
long rc;
unsigned long flags = 0;
if (table_size)
flags |= PROC_TABLE_NEW;
if (radix_enabled())
flags |= PROC_TABLE_RADIX | PROC_TABLE_GTSE;
else
flags |= PROC_TABLE_HPT_SLB;
for (;;) {
rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
page_size, table_size);
if (!H_IS_LONG_BUSY(rc))
break;
mdelay(get_longbusy_msecs(rc));
}
if (rc != H_SUCCESS) {
pr_err("Failed to register process table (rc=%ld)\n", rc);
BUG();
}
return rc;
}
void __init hpte_init_pseries(void)
{
mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate;
mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp;
mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert;
mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove;
mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted;
mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range;
mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all;
mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
register_process_table = pseries_lpar_register_process_table;
if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
}
void radix_init_pseries(void)
{
pr_info("Using radix MMU under hypervisor\n");
register_process_table = pseries_lpar_register_process_table;
}
#ifdef CONFIG_PPC_SMLPAR
#define CMO_FREE_HINT_DEFAULT 1
static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
static int __init cmo_free_hint(char *str)
{
char *parm;
parm = strstrip(str);
if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
pr_info("%s: CMO free page hinting is not active.\n", __func__);
cmo_free_hint_flag = 0;
return 1;
}
cmo_free_hint_flag = 1;
pr_info("%s: CMO free page hinting is active.\n", __func__);
if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
return 1;
return 0;
}
__setup("cmo_free_hint=", cmo_free_hint);
static void pSeries_set_page_state(struct page *page, int order,
unsigned long state)
{
int i, j;
unsigned long cmo_page_sz, addr;
cmo_page_sz = cmo_get_page_size();
addr = __pa((unsigned long)page_address(page));
for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
}
}
void arch_free_page(struct page *page, int order)
{
if (radix_enabled())
return;
if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
return;
pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
}
EXPORT_SYMBOL(arch_free_page);
#endif /* CONFIG_PPC_SMLPAR */
#endif /* CONFIG_PPC_BOOK3S_64 */
#ifdef CONFIG_TRACEPOINTS
#ifdef CONFIG_JUMP_LABEL
struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
int hcall_tracepoint_regfunc(void)
{
static_key_slow_inc(&hcall_tracepoint_key);
return 0;
}
void hcall_tracepoint_unregfunc(void)
{
static_key_slow_dec(&hcall_tracepoint_key);
}
#else
/*
* We optimise our hcall path by placing hcall_tracepoint_refcount
* directly in the TOC so we can check if the hcall tracepoints are
* enabled via a single load.
*/
/* NB: reg/unreg are called while guarded with the tracepoints_mutex */
extern long hcall_tracepoint_refcount;
int hcall_tracepoint_regfunc(void)
{
hcall_tracepoint_refcount++;
return 0;
}
void hcall_tracepoint_unregfunc(void)
{
hcall_tracepoint_refcount--;
}
#endif
/*
* Since the tracing code might execute hcalls we need to guard against
* recursion. One example of this are spinlocks calling H_YIELD on
* shared processor partitions.
*/
static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
{
unsigned long flags;
unsigned int *depth;
/*
* We cannot call tracepoints inside RCU idle regions which
* means we must not trace H_CEDE.
*/
if (opcode == H_CEDE)
return;
local_irq_save(flags);
depth = this_cpu_ptr(&hcall_trace_depth);
if (*depth)
goto out;
(*depth)++;
preempt_disable();
trace_hcall_entry(opcode, args);
(*depth)--;
out:
local_irq_restore(flags);
}
void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
{
unsigned long flags;
unsigned int *depth;
if (opcode == H_CEDE)
return;
local_irq_save(flags);
depth = this_cpu_ptr(&hcall_trace_depth);
if (*depth)
goto out;
(*depth)++;
trace_hcall_exit(opcode, retval, retbuf);
preempt_enable();
(*depth)--;
out:
local_irq_restore(flags);
}
#endif
/**
* h_get_mpp
* H_GET_MPP hcall returns info in 7 parms
*/
int h_get_mpp(struct hvcall_mpp_data *mpp_data)
{
int rc;
unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
rc = plpar_hcall9(H_GET_MPP, retbuf);
mpp_data->entitled_mem = retbuf[0];
mpp_data->mapped_mem = retbuf[1];
mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
mpp_data->pool_num = retbuf[2] & 0xffff;
mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
mpp_data->pool_size = retbuf[4];
mpp_data->loan_request = retbuf[5];
mpp_data->backing_mem = retbuf[6];
return rc;
}
EXPORT_SYMBOL(h_get_mpp);
int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
{
int rc;
unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
rc = plpar_hcall9(H_GET_MPP_X, retbuf);
mpp_x_data->coalesced_bytes = retbuf[0];
mpp_x_data->pool_coalesced_bytes = retbuf[1];
mpp_x_data->pool_purr_cycles = retbuf[2];
mpp_x_data->pool_spurr_cycles = retbuf[3];
return rc;
}
static unsigned long vsid_unscramble(unsigned long vsid, int ssize)
{
unsigned long protovsid;
unsigned long va_bits = VA_BITS;
unsigned long modinv, vsid_modulus;
unsigned long max_mod_inv, tmp_modinv;
if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
va_bits = 65;
if (ssize == MMU_SEGSIZE_256M) {
modinv = VSID_MULINV_256M;
vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
} else {
modinv = VSID_MULINV_1T;
vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
}
/*
* vsid outside our range.
*/
if (vsid >= vsid_modulus)
return 0;
/*
* If modinv is the modular multiplicate inverse of (x % vsid_modulus)
* and vsid = (protovsid * x) % vsid_modulus, then we say:
* protovsid = (vsid * modinv) % vsid_modulus
*/
/* Check if (vsid * modinv) overflow (63 bits) */
max_mod_inv = 0x7fffffffffffffffull / vsid;
if (modinv < max_mod_inv)
return (vsid * modinv) % vsid_modulus;
tmp_modinv = modinv/max_mod_inv;
modinv %= max_mod_inv;
protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
protovsid = (protovsid + vsid * modinv) % vsid_modulus;
return protovsid;
}
static int __init reserve_vrma_context_id(void)
{
unsigned long protovsid;
/*
* Reserve context ids which map to reserved virtual addresses. For now
* we only reserve the context id which maps to the VRMA VSID. We ignore
* the addresses in "ibm,adjunct-virtual-addresses" because we don't
* enable adjunct support via the "ibm,client-architecture-support"
* interface.
*/
protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
hash__reserve_context_id(protovsid >> ESID_BITS_1T);
return 0;
}
machine_device_initcall(pseries, reserve_vrma_context_id);
#ifdef CONFIG_DEBUG_FS
/* debugfs file interface for vpa data */
static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
loff_t *pos)
{
int cpu = (long)filp->private_data;
struct lppaca *lppaca = &lppaca_of(cpu);
return simple_read_from_buffer(buf, len, pos, lppaca,
sizeof(struct lppaca));
}
static const struct file_operations vpa_fops = {
.open = simple_open,
.read = vpa_file_read,
.llseek = default_llseek,
};
static int __init vpa_debugfs_init(void)
{
char name[16];
long i;
struct dentry *vpa_dir;
if (!firmware_has_feature(FW_FEATURE_SPLPAR))
return 0;
vpa_dir = debugfs_create_dir("vpa", powerpc_debugfs_root);
if (!vpa_dir) {
pr_warn("%s: can't create vpa root dir\n", __func__);
return -ENOMEM;
}
/* set up the per-cpu vpa file*/
for_each_possible_cpu(i) {
struct dentry *d;
sprintf(name, "cpu-%ld", i);
d = debugfs_create_file(name, 0400, vpa_dir, (void *)i,
&vpa_fops);
if (!d) {
pr_warn("%s: can't create per-cpu vpa file\n",
__func__);
return -ENOMEM;
}
}
return 0;
}
machine_arch_initcall(pseries, vpa_debugfs_init);
#endif /* CONFIG_DEBUG_FS */