kernel_samsung_a34x-permissive/arch/x86/kernel/cpu/aperfmperf.c

128 lines
2.7 KiB
C
Raw Permalink Normal View History

/*
* x86 APERF/MPERF KHz calculation for
* /sys/.../cpufreq/scaling_cur_freq
*
* Copyright (C) 2017 Intel Corp.
* Author: Len Brown <len.brown@intel.com>
*
* This file is licensed under GPLv2.
*/
#include <linux/delay.h>
#include <linux/ktime.h>
#include <linux/math64.h>
#include <linux/percpu.h>
#include <linux/smp.h>
#include "cpu.h"
struct aperfmperf_sample {
unsigned int khz;
ktime_t time;
u64 aperf;
u64 mperf;
};
static DEFINE_PER_CPU(struct aperfmperf_sample, samples);
#define APERFMPERF_CACHE_THRESHOLD_MS 10
#define APERFMPERF_REFRESH_DELAY_MS 10
#define APERFMPERF_STALE_THRESHOLD_MS 1000
/*
* aperfmperf_snapshot_khz()
* On the current CPU, snapshot APERF, MPERF, and jiffies
* unless we already did it within 10ms
* calculate kHz, save snapshot
*/
static void aperfmperf_snapshot_khz(void *dummy)
{
u64 aperf, aperf_delta;
u64 mperf, mperf_delta;
struct aperfmperf_sample *s = this_cpu_ptr(&samples);
unsigned long flags;
local_irq_save(flags);
rdmsrl(MSR_IA32_APERF, aperf);
rdmsrl(MSR_IA32_MPERF, mperf);
local_irq_restore(flags);
aperf_delta = aperf - s->aperf;
mperf_delta = mperf - s->mperf;
/*
* There is no architectural guarantee that MPERF
* increments faster than we can read it.
*/
if (mperf_delta == 0)
return;
s->time = ktime_get();
s->aperf = aperf;
s->mperf = mperf;
s->khz = div64_u64((cpu_khz * aperf_delta), mperf_delta);
}
static bool aperfmperf_snapshot_cpu(int cpu, ktime_t now, bool wait)
{
s64 time_delta = ktime_ms_delta(now, per_cpu(samples.time, cpu));
/* Don't bother re-computing within the cache threshold time. */
if (time_delta < APERFMPERF_CACHE_THRESHOLD_MS)
return true;
smp_call_function_single(cpu, aperfmperf_snapshot_khz, NULL, wait);
/* Return false if the previous iteration was too long ago. */
return time_delta <= APERFMPERF_STALE_THRESHOLD_MS;
}
unsigned int aperfmperf_get_khz(int cpu)
{
if (!cpu_khz)
return 0;
if (!static_cpu_has(X86_FEATURE_APERFMPERF))
return 0;
aperfmperf_snapshot_cpu(cpu, ktime_get(), true);
return per_cpu(samples.khz, cpu);
}
void arch_freq_prepare_all(void)
{
ktime_t now = ktime_get();
bool wait = false;
int cpu;
if (!cpu_khz)
return;
if (!static_cpu_has(X86_FEATURE_APERFMPERF))
return;
for_each_online_cpu(cpu)
if (!aperfmperf_snapshot_cpu(cpu, now, false))
wait = true;
if (wait)
msleep(APERFMPERF_REFRESH_DELAY_MS);
}
unsigned int arch_freq_get_on_cpu(int cpu)
{
if (!cpu_khz)
return 0;
if (!static_cpu_has(X86_FEATURE_APERFMPERF))
return 0;
if (aperfmperf_snapshot_cpu(cpu, ktime_get(), true))
return per_cpu(samples.khz, cpu);
msleep(APERFMPERF_REFRESH_DELAY_MS);
smp_call_function_single(cpu, aperfmperf_snapshot_khz, NULL, 1);
return per_cpu(samples.khz, cpu);
}