kernel_samsung_a34x-permissive/arch/x86/kernel/cpu/intel_rdt.c

914 lines
22 KiB
C
Raw Permalink Normal View History

/*
* Resource Director Technology(RDT)
* - Cache Allocation code.
*
* Copyright (C) 2016 Intel Corporation
*
* Authors:
* Fenghua Yu <fenghua.yu@intel.com>
* Tony Luck <tony.luck@intel.com>
* Vikas Shivappa <vikas.shivappa@intel.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* More information about RDT be found in the Intel (R) x86 Architecture
* Software Developer Manual June 2016, volume 3, section 17.17.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/cacheinfo.h>
#include <linux/cpuhotplug.h>
#include <asm/intel-family.h>
#include <asm/intel_rdt_sched.h>
#include "intel_rdt.h"
#define MBA_IS_LINEAR 0x4
#define MBA_MAX_MBPS U32_MAX
/* Mutex to protect rdtgroup access. */
DEFINE_MUTEX(rdtgroup_mutex);
/*
* The cached intel_pqr_state is strictly per CPU and can never be
* updated from a remote CPU. Functions which modify the state
* are called with interrupts disabled and no preemption, which
* is sufficient for the protection.
*/
DEFINE_PER_CPU(struct intel_pqr_state, pqr_state);
/*
* Used to store the max resource name width and max resource data width
* to display the schemata in a tabular format
*/
int max_name_width, max_data_width;
/*
* Global boolean for rdt_alloc which is true if any
* resource allocation is enabled.
*/
bool rdt_alloc_capable;
static void
mba_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r);
static void
cat_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r);
#define domain_init(id) LIST_HEAD_INIT(rdt_resources_all[id].domains)
struct rdt_resource rdt_resources_all[] = {
[RDT_RESOURCE_L3] =
{
.rid = RDT_RESOURCE_L3,
.name = "L3",
.domains = domain_init(RDT_RESOURCE_L3),
.msr_base = IA32_L3_CBM_BASE,
.msr_update = cat_wrmsr,
.cache_level = 3,
.cache = {
.min_cbm_bits = 1,
.cbm_idx_mult = 1,
.cbm_idx_offset = 0,
},
.parse_ctrlval = parse_cbm,
.format_str = "%d=%0*x",
.fflags = RFTYPE_RES_CACHE,
},
[RDT_RESOURCE_L3DATA] =
{
.rid = RDT_RESOURCE_L3DATA,
.name = "L3DATA",
.domains = domain_init(RDT_RESOURCE_L3DATA),
.msr_base = IA32_L3_CBM_BASE,
.msr_update = cat_wrmsr,
.cache_level = 3,
.cache = {
.min_cbm_bits = 1,
.cbm_idx_mult = 2,
.cbm_idx_offset = 0,
},
.parse_ctrlval = parse_cbm,
.format_str = "%d=%0*x",
.fflags = RFTYPE_RES_CACHE,
},
[RDT_RESOURCE_L3CODE] =
{
.rid = RDT_RESOURCE_L3CODE,
.name = "L3CODE",
.domains = domain_init(RDT_RESOURCE_L3CODE),
.msr_base = IA32_L3_CBM_BASE,
.msr_update = cat_wrmsr,
.cache_level = 3,
.cache = {
.min_cbm_bits = 1,
.cbm_idx_mult = 2,
.cbm_idx_offset = 1,
},
.parse_ctrlval = parse_cbm,
.format_str = "%d=%0*x",
.fflags = RFTYPE_RES_CACHE,
},
[RDT_RESOURCE_L2] =
{
.rid = RDT_RESOURCE_L2,
.name = "L2",
.domains = domain_init(RDT_RESOURCE_L2),
.msr_base = IA32_L2_CBM_BASE,
.msr_update = cat_wrmsr,
.cache_level = 2,
.cache = {
.min_cbm_bits = 1,
.cbm_idx_mult = 1,
.cbm_idx_offset = 0,
},
.parse_ctrlval = parse_cbm,
.format_str = "%d=%0*x",
.fflags = RFTYPE_RES_CACHE,
},
[RDT_RESOURCE_L2DATA] =
{
.rid = RDT_RESOURCE_L2DATA,
.name = "L2DATA",
.domains = domain_init(RDT_RESOURCE_L2DATA),
.msr_base = IA32_L2_CBM_BASE,
.msr_update = cat_wrmsr,
.cache_level = 2,
.cache = {
.min_cbm_bits = 1,
.cbm_idx_mult = 2,
.cbm_idx_offset = 0,
},
.parse_ctrlval = parse_cbm,
.format_str = "%d=%0*x",
.fflags = RFTYPE_RES_CACHE,
},
[RDT_RESOURCE_L2CODE] =
{
.rid = RDT_RESOURCE_L2CODE,
.name = "L2CODE",
.domains = domain_init(RDT_RESOURCE_L2CODE),
.msr_base = IA32_L2_CBM_BASE,
.msr_update = cat_wrmsr,
.cache_level = 2,
.cache = {
.min_cbm_bits = 1,
.cbm_idx_mult = 2,
.cbm_idx_offset = 1,
},
.parse_ctrlval = parse_cbm,
.format_str = "%d=%0*x",
.fflags = RFTYPE_RES_CACHE,
},
[RDT_RESOURCE_MBA] =
{
.rid = RDT_RESOURCE_MBA,
.name = "MB",
.domains = domain_init(RDT_RESOURCE_MBA),
.msr_base = IA32_MBA_THRTL_BASE,
.msr_update = mba_wrmsr,
.cache_level = 3,
.parse_ctrlval = parse_bw,
.format_str = "%d=%*u",
.fflags = RFTYPE_RES_MB,
},
};
static unsigned int cbm_idx(struct rdt_resource *r, unsigned int closid)
{
return closid * r->cache.cbm_idx_mult + r->cache.cbm_idx_offset;
}
/*
* cache_alloc_hsw_probe() - Have to probe for Intel haswell server CPUs
* as they do not have CPUID enumeration support for Cache allocation.
* The check for Vendor/Family/Model is not enough to guarantee that
* the MSRs won't #GP fault because only the following SKUs support
* CAT:
* Intel(R) Xeon(R) CPU E5-2658 v3 @ 2.20GHz
* Intel(R) Xeon(R) CPU E5-2648L v3 @ 1.80GHz
* Intel(R) Xeon(R) CPU E5-2628L v3 @ 2.00GHz
* Intel(R) Xeon(R) CPU E5-2618L v3 @ 2.30GHz
* Intel(R) Xeon(R) CPU E5-2608L v3 @ 2.00GHz
* Intel(R) Xeon(R) CPU E5-2658A v3 @ 2.20GHz
*
* Probe by trying to write the first of the L3 cach mask registers
* and checking that the bits stick. Max CLOSids is always 4 and max cbm length
* is always 20 on hsw server parts. The minimum cache bitmask length
* allowed for HSW server is always 2 bits. Hardcode all of them.
*/
static inline void cache_alloc_hsw_probe(void)
{
struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3];
u32 l, h, max_cbm = BIT_MASK(20) - 1;
if (wrmsr_safe(IA32_L3_CBM_BASE, max_cbm, 0))
return;
rdmsr(IA32_L3_CBM_BASE, l, h);
/* If all the bits were set in MSR, return success */
if (l != max_cbm)
return;
r->num_closid = 4;
r->default_ctrl = max_cbm;
r->cache.cbm_len = 20;
r->cache.shareable_bits = 0xc0000;
r->cache.min_cbm_bits = 2;
r->alloc_capable = true;
r->alloc_enabled = true;
rdt_alloc_capable = true;
}
bool is_mba_sc(struct rdt_resource *r)
{
if (!r)
return rdt_resources_all[RDT_RESOURCE_MBA].membw.mba_sc;
return r->membw.mba_sc;
}
/*
* rdt_get_mb_table() - get a mapping of bandwidth(b/w) percentage values
* exposed to user interface and the h/w understandable delay values.
*
* The non-linear delay values have the granularity of power of two
* and also the h/w does not guarantee a curve for configured delay
* values vs. actual b/w enforced.
* Hence we need a mapping that is pre calibrated so the user can
* express the memory b/w as a percentage value.
*/
static inline bool rdt_get_mb_table(struct rdt_resource *r)
{
/*
* There are no Intel SKUs as of now to support non-linear delay.
*/
pr_info("MBA b/w map not implemented for cpu:%d, model:%d",
boot_cpu_data.x86, boot_cpu_data.x86_model);
return false;
}
static bool rdt_get_mem_config(struct rdt_resource *r)
{
union cpuid_0x10_3_eax eax;
union cpuid_0x10_x_edx edx;
u32 ebx, ecx;
cpuid_count(0x00000010, 3, &eax.full, &ebx, &ecx, &edx.full);
r->num_closid = edx.split.cos_max + 1;
r->membw.max_delay = eax.split.max_delay + 1;
r->default_ctrl = MAX_MBA_BW;
if (ecx & MBA_IS_LINEAR) {
r->membw.delay_linear = true;
r->membw.min_bw = MAX_MBA_BW - r->membw.max_delay;
r->membw.bw_gran = MAX_MBA_BW - r->membw.max_delay;
} else {
if (!rdt_get_mb_table(r))
return false;
}
r->data_width = 3;
r->alloc_capable = true;
r->alloc_enabled = true;
return true;
}
static void rdt_get_cache_alloc_cfg(int idx, struct rdt_resource *r)
{
union cpuid_0x10_1_eax eax;
union cpuid_0x10_x_edx edx;
u32 ebx, ecx;
cpuid_count(0x00000010, idx, &eax.full, &ebx, &ecx, &edx.full);
r->num_closid = edx.split.cos_max + 1;
r->cache.cbm_len = eax.split.cbm_len + 1;
r->default_ctrl = BIT_MASK(eax.split.cbm_len + 1) - 1;
r->cache.shareable_bits = ebx & r->default_ctrl;
r->data_width = (r->cache.cbm_len + 3) / 4;
r->alloc_capable = true;
r->alloc_enabled = true;
}
static void rdt_get_cdp_config(int level, int type)
{
struct rdt_resource *r_l = &rdt_resources_all[level];
struct rdt_resource *r = &rdt_resources_all[type];
r->num_closid = r_l->num_closid / 2;
r->cache.cbm_len = r_l->cache.cbm_len;
r->default_ctrl = r_l->default_ctrl;
r->cache.shareable_bits = r_l->cache.shareable_bits;
r->data_width = (r->cache.cbm_len + 3) / 4;
r->alloc_capable = true;
/*
* By default, CDP is disabled. CDP can be enabled by mount parameter
* "cdp" during resctrl file system mount time.
*/
r->alloc_enabled = false;
}
static void rdt_get_cdp_l3_config(void)
{
rdt_get_cdp_config(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA);
rdt_get_cdp_config(RDT_RESOURCE_L3, RDT_RESOURCE_L3CODE);
}
static void rdt_get_cdp_l2_config(void)
{
rdt_get_cdp_config(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA);
rdt_get_cdp_config(RDT_RESOURCE_L2, RDT_RESOURCE_L2CODE);
}
static int get_cache_id(int cpu, int level)
{
struct cpu_cacheinfo *ci = get_cpu_cacheinfo(cpu);
int i;
for (i = 0; i < ci->num_leaves; i++) {
if (ci->info_list[i].level == level)
return ci->info_list[i].id;
}
return -1;
}
/*
* Map the memory b/w percentage value to delay values
* that can be written to QOS_MSRs.
* There are currently no SKUs which support non linear delay values.
*/
u32 delay_bw_map(unsigned long bw, struct rdt_resource *r)
{
if (r->membw.delay_linear)
return MAX_MBA_BW - bw;
pr_warn_once("Non Linear delay-bw map not supported but queried\n");
return r->default_ctrl;
}
static void
mba_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r)
{
unsigned int i;
/* Write the delay values for mba. */
for (i = m->low; i < m->high; i++)
wrmsrl(r->msr_base + i, delay_bw_map(d->ctrl_val[i], r));
}
static void
cat_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r)
{
unsigned int i;
for (i = m->low; i < m->high; i++)
wrmsrl(r->msr_base + cbm_idx(r, i), d->ctrl_val[i]);
}
struct rdt_domain *get_domain_from_cpu(int cpu, struct rdt_resource *r)
{
struct rdt_domain *d;
list_for_each_entry(d, &r->domains, list) {
/* Find the domain that contains this CPU */
if (cpumask_test_cpu(cpu, &d->cpu_mask))
return d;
}
return NULL;
}
void rdt_ctrl_update(void *arg)
{
struct msr_param *m = arg;
struct rdt_resource *r = m->res;
int cpu = smp_processor_id();
struct rdt_domain *d;
d = get_domain_from_cpu(cpu, r);
if (d) {
r->msr_update(d, m, r);
return;
}
pr_warn_once("cpu %d not found in any domain for resource %s\n",
cpu, r->name);
}
/*
* rdt_find_domain - Find a domain in a resource that matches input resource id
*
* Search resource r's domain list to find the resource id. If the resource
* id is found in a domain, return the domain. Otherwise, if requested by
* caller, return the first domain whose id is bigger than the input id.
* The domain list is sorted by id in ascending order.
*/
struct rdt_domain *rdt_find_domain(struct rdt_resource *r, int id,
struct list_head **pos)
{
struct rdt_domain *d;
struct list_head *l;
if (id < 0)
return ERR_PTR(-ENODEV);
list_for_each(l, &r->domains) {
d = list_entry(l, struct rdt_domain, list);
/* When id is found, return its domain. */
if (id == d->id)
return d;
/* Stop searching when finding id's position in sorted list. */
if (id < d->id)
break;
}
if (pos)
*pos = l;
return NULL;
}
void setup_default_ctrlval(struct rdt_resource *r, u32 *dc, u32 *dm)
{
int i;
/*
* Initialize the Control MSRs to having no control.
* For Cache Allocation: Set all bits in cbm
* For Memory Allocation: Set b/w requested to 100%
* and the bandwidth in MBps to U32_MAX
*/
for (i = 0; i < r->num_closid; i++, dc++, dm++) {
*dc = r->default_ctrl;
*dm = MBA_MAX_MBPS;
}
}
static int domain_setup_ctrlval(struct rdt_resource *r, struct rdt_domain *d)
{
struct msr_param m;
u32 *dc, *dm;
dc = kmalloc_array(r->num_closid, sizeof(*d->ctrl_val), GFP_KERNEL);
if (!dc)
return -ENOMEM;
dm = kmalloc_array(r->num_closid, sizeof(*d->mbps_val), GFP_KERNEL);
if (!dm) {
kfree(dc);
return -ENOMEM;
}
d->ctrl_val = dc;
d->mbps_val = dm;
setup_default_ctrlval(r, dc, dm);
m.low = 0;
m.high = r->num_closid;
r->msr_update(d, &m, r);
return 0;
}
static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_domain *d)
{
size_t tsize;
if (is_llc_occupancy_enabled()) {
d->rmid_busy_llc = kcalloc(BITS_TO_LONGS(r->num_rmid),
sizeof(unsigned long),
GFP_KERNEL);
if (!d->rmid_busy_llc)
return -ENOMEM;
INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
}
if (is_mbm_total_enabled()) {
tsize = sizeof(*d->mbm_total);
d->mbm_total = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
if (!d->mbm_total) {
kfree(d->rmid_busy_llc);
return -ENOMEM;
}
}
if (is_mbm_local_enabled()) {
tsize = sizeof(*d->mbm_local);
d->mbm_local = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
if (!d->mbm_local) {
kfree(d->rmid_busy_llc);
kfree(d->mbm_total);
return -ENOMEM;
}
}
if (is_mbm_enabled()) {
INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL);
}
return 0;
}
/*
* domain_add_cpu - Add a cpu to a resource's domain list.
*
* If an existing domain in the resource r's domain list matches the cpu's
* resource id, add the cpu in the domain.
*
* Otherwise, a new domain is allocated and inserted into the right position
* in the domain list sorted by id in ascending order.
*
* The order in the domain list is visible to users when we print entries
* in the schemata file and schemata input is validated to have the same order
* as this list.
*/
static void domain_add_cpu(int cpu, struct rdt_resource *r)
{
int id = get_cache_id(cpu, r->cache_level);
struct list_head *add_pos = NULL;
struct rdt_domain *d;
d = rdt_find_domain(r, id, &add_pos);
if (IS_ERR(d)) {
pr_warn("Could't find cache id for cpu %d\n", cpu);
return;
}
if (d) {
cpumask_set_cpu(cpu, &d->cpu_mask);
return;
}
d = kzalloc_node(sizeof(*d), GFP_KERNEL, cpu_to_node(cpu));
if (!d)
return;
d->id = id;
cpumask_set_cpu(cpu, &d->cpu_mask);
rdt_domain_reconfigure_cdp(r);
if (r->alloc_capable && domain_setup_ctrlval(r, d)) {
kfree(d);
return;
}
if (r->mon_capable && domain_setup_mon_state(r, d)) {
kfree(d);
return;
}
list_add_tail(&d->list, add_pos);
/*
* If resctrl is mounted, add
* per domain monitor data directories.
*/
if (static_branch_unlikely(&rdt_mon_enable_key))
mkdir_mondata_subdir_allrdtgrp(r, d);
}
static void domain_remove_cpu(int cpu, struct rdt_resource *r)
{
int id = get_cache_id(cpu, r->cache_level);
struct rdt_domain *d;
d = rdt_find_domain(r, id, NULL);
if (IS_ERR_OR_NULL(d)) {
pr_warn("Could't find cache id for cpu %d\n", cpu);
return;
}
cpumask_clear_cpu(cpu, &d->cpu_mask);
if (cpumask_empty(&d->cpu_mask)) {
/*
* If resctrl is mounted, remove all the
* per domain monitor data directories.
*/
if (static_branch_unlikely(&rdt_mon_enable_key))
rmdir_mondata_subdir_allrdtgrp(r, d->id);
list_del(&d->list);
if (r->mon_capable && is_mbm_enabled())
cancel_delayed_work(&d->mbm_over);
if (is_llc_occupancy_enabled() && has_busy_rmid(r, d)) {
/*
* When a package is going down, forcefully
* decrement rmid->ebusy. There is no way to know
* that the L3 was flushed and hence may lead to
* incorrect counts in rare scenarios, but leaving
* the RMID as busy creates RMID leaks if the
* package never comes back.
*/
__check_limbo(d, true);
cancel_delayed_work(&d->cqm_limbo);
}
/*
* rdt_domain "d" is going to be freed below, so clear
* its pointer from pseudo_lock_region struct.
*/
if (d->plr)
d->plr->d = NULL;
kfree(d->ctrl_val);
kfree(d->mbps_val);
kfree(d->rmid_busy_llc);
kfree(d->mbm_total);
kfree(d->mbm_local);
kfree(d);
return;
}
if (r == &rdt_resources_all[RDT_RESOURCE_L3]) {
if (is_mbm_enabled() && cpu == d->mbm_work_cpu) {
cancel_delayed_work(&d->mbm_over);
mbm_setup_overflow_handler(d, 0);
}
if (is_llc_occupancy_enabled() && cpu == d->cqm_work_cpu &&
has_busy_rmid(r, d)) {
cancel_delayed_work(&d->cqm_limbo);
cqm_setup_limbo_handler(d, 0);
}
}
}
static void clear_closid_rmid(int cpu)
{
struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
state->default_closid = 0;
state->default_rmid = 0;
state->cur_closid = 0;
state->cur_rmid = 0;
wrmsr(IA32_PQR_ASSOC, 0, 0);
}
static int intel_rdt_online_cpu(unsigned int cpu)
{
struct rdt_resource *r;
mutex_lock(&rdtgroup_mutex);
for_each_capable_rdt_resource(r)
domain_add_cpu(cpu, r);
/* The cpu is set in default rdtgroup after online. */
cpumask_set_cpu(cpu, &rdtgroup_default.cpu_mask);
clear_closid_rmid(cpu);
mutex_unlock(&rdtgroup_mutex);
return 0;
}
static void clear_childcpus(struct rdtgroup *r, unsigned int cpu)
{
struct rdtgroup *cr;
list_for_each_entry(cr, &r->mon.crdtgrp_list, mon.crdtgrp_list) {
if (cpumask_test_and_clear_cpu(cpu, &cr->cpu_mask)) {
break;
}
}
}
static int intel_rdt_offline_cpu(unsigned int cpu)
{
struct rdtgroup *rdtgrp;
struct rdt_resource *r;
mutex_lock(&rdtgroup_mutex);
for_each_capable_rdt_resource(r)
domain_remove_cpu(cpu, r);
list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
if (cpumask_test_and_clear_cpu(cpu, &rdtgrp->cpu_mask)) {
clear_childcpus(rdtgrp, cpu);
break;
}
}
clear_closid_rmid(cpu);
mutex_unlock(&rdtgroup_mutex);
return 0;
}
/*
* Choose a width for the resource name and resource data based on the
* resource that has widest name and cbm.
*/
static __init void rdt_init_padding(void)
{
struct rdt_resource *r;
int cl;
for_each_alloc_capable_rdt_resource(r) {
cl = strlen(r->name);
if (cl > max_name_width)
max_name_width = cl;
if (r->data_width > max_data_width)
max_data_width = r->data_width;
}
}
enum {
RDT_FLAG_CMT,
RDT_FLAG_MBM_TOTAL,
RDT_FLAG_MBM_LOCAL,
RDT_FLAG_L3_CAT,
RDT_FLAG_L3_CDP,
RDT_FLAG_L2_CAT,
RDT_FLAG_L2_CDP,
RDT_FLAG_MBA,
};
#define RDT_OPT(idx, n, f) \
[idx] = { \
.name = n, \
.flag = f \
}
struct rdt_options {
char *name;
int flag;
bool force_off, force_on;
};
static struct rdt_options rdt_options[] __initdata = {
RDT_OPT(RDT_FLAG_CMT, "cmt", X86_FEATURE_CQM_OCCUP_LLC),
RDT_OPT(RDT_FLAG_MBM_TOTAL, "mbmtotal", X86_FEATURE_CQM_MBM_TOTAL),
RDT_OPT(RDT_FLAG_MBM_LOCAL, "mbmlocal", X86_FEATURE_CQM_MBM_LOCAL),
RDT_OPT(RDT_FLAG_L3_CAT, "l3cat", X86_FEATURE_CAT_L3),
RDT_OPT(RDT_FLAG_L3_CDP, "l3cdp", X86_FEATURE_CDP_L3),
RDT_OPT(RDT_FLAG_L2_CAT, "l2cat", X86_FEATURE_CAT_L2),
RDT_OPT(RDT_FLAG_L2_CDP, "l2cdp", X86_FEATURE_CDP_L2),
RDT_OPT(RDT_FLAG_MBA, "mba", X86_FEATURE_MBA),
};
#define NUM_RDT_OPTIONS ARRAY_SIZE(rdt_options)
static int __init set_rdt_options(char *str)
{
struct rdt_options *o;
bool force_off;
char *tok;
if (*str == '=')
str++;
while ((tok = strsep(&str, ",")) != NULL) {
force_off = *tok == '!';
if (force_off)
tok++;
for (o = rdt_options; o < &rdt_options[NUM_RDT_OPTIONS]; o++) {
if (strcmp(tok, o->name) == 0) {
if (force_off)
o->force_off = true;
else
o->force_on = true;
break;
}
}
}
return 1;
}
__setup("rdt", set_rdt_options);
static bool __init rdt_cpu_has(int flag)
{
bool ret = boot_cpu_has(flag);
struct rdt_options *o;
if (!ret)
return ret;
for (o = rdt_options; o < &rdt_options[NUM_RDT_OPTIONS]; o++) {
if (flag == o->flag) {
if (o->force_off)
ret = false;
if (o->force_on)
ret = true;
break;
}
}
return ret;
}
static __init bool get_rdt_alloc_resources(void)
{
bool ret = false;
if (rdt_alloc_capable)
return true;
if (!boot_cpu_has(X86_FEATURE_RDT_A))
return false;
if (rdt_cpu_has(X86_FEATURE_CAT_L3)) {
rdt_get_cache_alloc_cfg(1, &rdt_resources_all[RDT_RESOURCE_L3]);
if (rdt_cpu_has(X86_FEATURE_CDP_L3))
rdt_get_cdp_l3_config();
ret = true;
}
if (rdt_cpu_has(X86_FEATURE_CAT_L2)) {
/* CPUID 0x10.2 fields are same format at 0x10.1 */
rdt_get_cache_alloc_cfg(2, &rdt_resources_all[RDT_RESOURCE_L2]);
if (rdt_cpu_has(X86_FEATURE_CDP_L2))
rdt_get_cdp_l2_config();
ret = true;
}
if (rdt_cpu_has(X86_FEATURE_MBA)) {
if (rdt_get_mem_config(&rdt_resources_all[RDT_RESOURCE_MBA]))
ret = true;
}
return ret;
}
static __init bool get_rdt_mon_resources(void)
{
if (rdt_cpu_has(X86_FEATURE_CQM_OCCUP_LLC))
rdt_mon_features |= (1 << QOS_L3_OCCUP_EVENT_ID);
if (rdt_cpu_has(X86_FEATURE_CQM_MBM_TOTAL))
rdt_mon_features |= (1 << QOS_L3_MBM_TOTAL_EVENT_ID);
if (rdt_cpu_has(X86_FEATURE_CQM_MBM_LOCAL))
rdt_mon_features |= (1 << QOS_L3_MBM_LOCAL_EVENT_ID);
if (!rdt_mon_features)
return false;
return !rdt_get_mon_l3_config(&rdt_resources_all[RDT_RESOURCE_L3]);
}
static __init void rdt_quirks(void)
{
switch (boot_cpu_data.x86_model) {
case INTEL_FAM6_HASWELL_X:
if (!rdt_options[RDT_FLAG_L3_CAT].force_off)
cache_alloc_hsw_probe();
break;
case INTEL_FAM6_SKYLAKE_X:
if (boot_cpu_data.x86_stepping <= 4)
set_rdt_options("!cmt,!mbmtotal,!mbmlocal,!l3cat");
else
set_rdt_options("!l3cat");
}
}
static __init bool get_rdt_resources(void)
{
rdt_quirks();
rdt_alloc_capable = get_rdt_alloc_resources();
rdt_mon_capable = get_rdt_mon_resources();
return (rdt_mon_capable || rdt_alloc_capable);
}
static enum cpuhp_state rdt_online;
static int __init intel_rdt_late_init(void)
{
struct rdt_resource *r;
int state, ret;
if (!get_rdt_resources())
return -ENODEV;
rdt_init_padding();
state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
"x86/rdt/cat:online:",
intel_rdt_online_cpu, intel_rdt_offline_cpu);
if (state < 0)
return state;
ret = rdtgroup_init();
if (ret) {
cpuhp_remove_state(state);
return ret;
}
rdt_online = state;
for_each_alloc_capable_rdt_resource(r)
pr_info("Intel RDT %s allocation detected\n", r->name);
for_each_mon_capable_rdt_resource(r)
pr_info("Intel RDT %s monitoring detected\n", r->name);
return 0;
}
late_initcall(intel_rdt_late_init);
static void __exit intel_rdt_exit(void)
{
cpuhp_remove_state(rdt_online);
rdtgroup_exit();
}
__exitcall(intel_rdt_exit);