kernel_samsung_a34x-permissive/drivers/gpu/drm/omapdrm/dss/dsi.c

5566 lines
133 KiB
C
Raw Permalink Normal View History

/*
* Copyright (C) 2009 Nokia Corporation
* Author: Tomi Valkeinen <tomi.valkeinen@ti.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define DSS_SUBSYS_NAME "DSI"
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/module.h>
#include <linux/semaphore.h>
#include <linux/seq_file.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/debugfs.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/of_platform.h>
#include <linux/component.h>
#include <linux/sys_soc.h>
#include <video/mipi_display.h>
#include "omapdss.h"
#include "dss.h"
#define DSI_CATCH_MISSING_TE
struct dsi_reg { u16 module; u16 idx; };
#define DSI_REG(mod, idx) ((const struct dsi_reg) { mod, idx })
/* DSI Protocol Engine */
#define DSI_PROTO 0
#define DSI_PROTO_SZ 0x200
#define DSI_REVISION DSI_REG(DSI_PROTO, 0x0000)
#define DSI_SYSCONFIG DSI_REG(DSI_PROTO, 0x0010)
#define DSI_SYSSTATUS DSI_REG(DSI_PROTO, 0x0014)
#define DSI_IRQSTATUS DSI_REG(DSI_PROTO, 0x0018)
#define DSI_IRQENABLE DSI_REG(DSI_PROTO, 0x001C)
#define DSI_CTRL DSI_REG(DSI_PROTO, 0x0040)
#define DSI_GNQ DSI_REG(DSI_PROTO, 0x0044)
#define DSI_COMPLEXIO_CFG1 DSI_REG(DSI_PROTO, 0x0048)
#define DSI_COMPLEXIO_IRQ_STATUS DSI_REG(DSI_PROTO, 0x004C)
#define DSI_COMPLEXIO_IRQ_ENABLE DSI_REG(DSI_PROTO, 0x0050)
#define DSI_CLK_CTRL DSI_REG(DSI_PROTO, 0x0054)
#define DSI_TIMING1 DSI_REG(DSI_PROTO, 0x0058)
#define DSI_TIMING2 DSI_REG(DSI_PROTO, 0x005C)
#define DSI_VM_TIMING1 DSI_REG(DSI_PROTO, 0x0060)
#define DSI_VM_TIMING2 DSI_REG(DSI_PROTO, 0x0064)
#define DSI_VM_TIMING3 DSI_REG(DSI_PROTO, 0x0068)
#define DSI_CLK_TIMING DSI_REG(DSI_PROTO, 0x006C)
#define DSI_TX_FIFO_VC_SIZE DSI_REG(DSI_PROTO, 0x0070)
#define DSI_RX_FIFO_VC_SIZE DSI_REG(DSI_PROTO, 0x0074)
#define DSI_COMPLEXIO_CFG2 DSI_REG(DSI_PROTO, 0x0078)
#define DSI_RX_FIFO_VC_FULLNESS DSI_REG(DSI_PROTO, 0x007C)
#define DSI_VM_TIMING4 DSI_REG(DSI_PROTO, 0x0080)
#define DSI_TX_FIFO_VC_EMPTINESS DSI_REG(DSI_PROTO, 0x0084)
#define DSI_VM_TIMING5 DSI_REG(DSI_PROTO, 0x0088)
#define DSI_VM_TIMING6 DSI_REG(DSI_PROTO, 0x008C)
#define DSI_VM_TIMING7 DSI_REG(DSI_PROTO, 0x0090)
#define DSI_STOPCLK_TIMING DSI_REG(DSI_PROTO, 0x0094)
#define DSI_VC_CTRL(n) DSI_REG(DSI_PROTO, 0x0100 + (n * 0x20))
#define DSI_VC_TE(n) DSI_REG(DSI_PROTO, 0x0104 + (n * 0x20))
#define DSI_VC_LONG_PACKET_HEADER(n) DSI_REG(DSI_PROTO, 0x0108 + (n * 0x20))
#define DSI_VC_LONG_PACKET_PAYLOAD(n) DSI_REG(DSI_PROTO, 0x010C + (n * 0x20))
#define DSI_VC_SHORT_PACKET_HEADER(n) DSI_REG(DSI_PROTO, 0x0110 + (n * 0x20))
#define DSI_VC_IRQSTATUS(n) DSI_REG(DSI_PROTO, 0x0118 + (n * 0x20))
#define DSI_VC_IRQENABLE(n) DSI_REG(DSI_PROTO, 0x011C + (n * 0x20))
/* DSIPHY_SCP */
#define DSI_PHY 1
#define DSI_PHY_OFFSET 0x200
#define DSI_PHY_SZ 0x40
#define DSI_DSIPHY_CFG0 DSI_REG(DSI_PHY, 0x0000)
#define DSI_DSIPHY_CFG1 DSI_REG(DSI_PHY, 0x0004)
#define DSI_DSIPHY_CFG2 DSI_REG(DSI_PHY, 0x0008)
#define DSI_DSIPHY_CFG5 DSI_REG(DSI_PHY, 0x0014)
#define DSI_DSIPHY_CFG10 DSI_REG(DSI_PHY, 0x0028)
/* DSI_PLL_CTRL_SCP */
#define DSI_PLL 2
#define DSI_PLL_OFFSET 0x300
#define DSI_PLL_SZ 0x20
#define DSI_PLL_CONTROL DSI_REG(DSI_PLL, 0x0000)
#define DSI_PLL_STATUS DSI_REG(DSI_PLL, 0x0004)
#define DSI_PLL_GO DSI_REG(DSI_PLL, 0x0008)
#define DSI_PLL_CONFIGURATION1 DSI_REG(DSI_PLL, 0x000C)
#define DSI_PLL_CONFIGURATION2 DSI_REG(DSI_PLL, 0x0010)
#define REG_GET(dsi, idx, start, end) \
FLD_GET(dsi_read_reg(dsi, idx), start, end)
#define REG_FLD_MOD(dsi, idx, val, start, end) \
dsi_write_reg(dsi, idx, FLD_MOD(dsi_read_reg(dsi, idx), val, start, end))
/* Global interrupts */
#define DSI_IRQ_VC0 (1 << 0)
#define DSI_IRQ_VC1 (1 << 1)
#define DSI_IRQ_VC2 (1 << 2)
#define DSI_IRQ_VC3 (1 << 3)
#define DSI_IRQ_WAKEUP (1 << 4)
#define DSI_IRQ_RESYNC (1 << 5)
#define DSI_IRQ_PLL_LOCK (1 << 7)
#define DSI_IRQ_PLL_UNLOCK (1 << 8)
#define DSI_IRQ_PLL_RECALL (1 << 9)
#define DSI_IRQ_COMPLEXIO_ERR (1 << 10)
#define DSI_IRQ_HS_TX_TIMEOUT (1 << 14)
#define DSI_IRQ_LP_RX_TIMEOUT (1 << 15)
#define DSI_IRQ_TE_TRIGGER (1 << 16)
#define DSI_IRQ_ACK_TRIGGER (1 << 17)
#define DSI_IRQ_SYNC_LOST (1 << 18)
#define DSI_IRQ_LDO_POWER_GOOD (1 << 19)
#define DSI_IRQ_TA_TIMEOUT (1 << 20)
#define DSI_IRQ_ERROR_MASK \
(DSI_IRQ_HS_TX_TIMEOUT | DSI_IRQ_LP_RX_TIMEOUT | DSI_IRQ_SYNC_LOST | \
DSI_IRQ_TA_TIMEOUT)
#define DSI_IRQ_CHANNEL_MASK 0xf
/* Virtual channel interrupts */
#define DSI_VC_IRQ_CS (1 << 0)
#define DSI_VC_IRQ_ECC_CORR (1 << 1)
#define DSI_VC_IRQ_PACKET_SENT (1 << 2)
#define DSI_VC_IRQ_FIFO_TX_OVF (1 << 3)
#define DSI_VC_IRQ_FIFO_RX_OVF (1 << 4)
#define DSI_VC_IRQ_BTA (1 << 5)
#define DSI_VC_IRQ_ECC_NO_CORR (1 << 6)
#define DSI_VC_IRQ_FIFO_TX_UDF (1 << 7)
#define DSI_VC_IRQ_PP_BUSY_CHANGE (1 << 8)
#define DSI_VC_IRQ_ERROR_MASK \
(DSI_VC_IRQ_CS | DSI_VC_IRQ_ECC_CORR | DSI_VC_IRQ_FIFO_TX_OVF | \
DSI_VC_IRQ_FIFO_RX_OVF | DSI_VC_IRQ_ECC_NO_CORR | \
DSI_VC_IRQ_FIFO_TX_UDF)
/* ComplexIO interrupts */
#define DSI_CIO_IRQ_ERRSYNCESC1 (1 << 0)
#define DSI_CIO_IRQ_ERRSYNCESC2 (1 << 1)
#define DSI_CIO_IRQ_ERRSYNCESC3 (1 << 2)
#define DSI_CIO_IRQ_ERRSYNCESC4 (1 << 3)
#define DSI_CIO_IRQ_ERRSYNCESC5 (1 << 4)
#define DSI_CIO_IRQ_ERRESC1 (1 << 5)
#define DSI_CIO_IRQ_ERRESC2 (1 << 6)
#define DSI_CIO_IRQ_ERRESC3 (1 << 7)
#define DSI_CIO_IRQ_ERRESC4 (1 << 8)
#define DSI_CIO_IRQ_ERRESC5 (1 << 9)
#define DSI_CIO_IRQ_ERRCONTROL1 (1 << 10)
#define DSI_CIO_IRQ_ERRCONTROL2 (1 << 11)
#define DSI_CIO_IRQ_ERRCONTROL3 (1 << 12)
#define DSI_CIO_IRQ_ERRCONTROL4 (1 << 13)
#define DSI_CIO_IRQ_ERRCONTROL5 (1 << 14)
#define DSI_CIO_IRQ_STATEULPS1 (1 << 15)
#define DSI_CIO_IRQ_STATEULPS2 (1 << 16)
#define DSI_CIO_IRQ_STATEULPS3 (1 << 17)
#define DSI_CIO_IRQ_STATEULPS4 (1 << 18)
#define DSI_CIO_IRQ_STATEULPS5 (1 << 19)
#define DSI_CIO_IRQ_ERRCONTENTIONLP0_1 (1 << 20)
#define DSI_CIO_IRQ_ERRCONTENTIONLP1_1 (1 << 21)
#define DSI_CIO_IRQ_ERRCONTENTIONLP0_2 (1 << 22)
#define DSI_CIO_IRQ_ERRCONTENTIONLP1_2 (1 << 23)
#define DSI_CIO_IRQ_ERRCONTENTIONLP0_3 (1 << 24)
#define DSI_CIO_IRQ_ERRCONTENTIONLP1_3 (1 << 25)
#define DSI_CIO_IRQ_ERRCONTENTIONLP0_4 (1 << 26)
#define DSI_CIO_IRQ_ERRCONTENTIONLP1_4 (1 << 27)
#define DSI_CIO_IRQ_ERRCONTENTIONLP0_5 (1 << 28)
#define DSI_CIO_IRQ_ERRCONTENTIONLP1_5 (1 << 29)
#define DSI_CIO_IRQ_ULPSACTIVENOT_ALL0 (1 << 30)
#define DSI_CIO_IRQ_ULPSACTIVENOT_ALL1 (1 << 31)
#define DSI_CIO_IRQ_ERROR_MASK \
(DSI_CIO_IRQ_ERRSYNCESC1 | DSI_CIO_IRQ_ERRSYNCESC2 | \
DSI_CIO_IRQ_ERRSYNCESC3 | DSI_CIO_IRQ_ERRSYNCESC4 | \
DSI_CIO_IRQ_ERRSYNCESC5 | \
DSI_CIO_IRQ_ERRESC1 | DSI_CIO_IRQ_ERRESC2 | \
DSI_CIO_IRQ_ERRESC3 | DSI_CIO_IRQ_ERRESC4 | \
DSI_CIO_IRQ_ERRESC5 | \
DSI_CIO_IRQ_ERRCONTROL1 | DSI_CIO_IRQ_ERRCONTROL2 | \
DSI_CIO_IRQ_ERRCONTROL3 | DSI_CIO_IRQ_ERRCONTROL4 | \
DSI_CIO_IRQ_ERRCONTROL5 | \
DSI_CIO_IRQ_ERRCONTENTIONLP0_1 | DSI_CIO_IRQ_ERRCONTENTIONLP1_1 | \
DSI_CIO_IRQ_ERRCONTENTIONLP0_2 | DSI_CIO_IRQ_ERRCONTENTIONLP1_2 | \
DSI_CIO_IRQ_ERRCONTENTIONLP0_3 | DSI_CIO_IRQ_ERRCONTENTIONLP1_3 | \
DSI_CIO_IRQ_ERRCONTENTIONLP0_4 | DSI_CIO_IRQ_ERRCONTENTIONLP1_4 | \
DSI_CIO_IRQ_ERRCONTENTIONLP0_5 | DSI_CIO_IRQ_ERRCONTENTIONLP1_5)
typedef void (*omap_dsi_isr_t) (void *arg, u32 mask);
struct dsi_data;
static int dsi_display_init_dispc(struct dsi_data *dsi);
static void dsi_display_uninit_dispc(struct dsi_data *dsi);
static int dsi_vc_send_null(struct dsi_data *dsi, int channel);
/* DSI PLL HSDIV indices */
#define HSDIV_DISPC 0
#define HSDIV_DSI 1
#define DSI_MAX_NR_ISRS 2
#define DSI_MAX_NR_LANES 5
enum dsi_model {
DSI_MODEL_OMAP3,
DSI_MODEL_OMAP4,
DSI_MODEL_OMAP5,
};
enum dsi_lane_function {
DSI_LANE_UNUSED = 0,
DSI_LANE_CLK,
DSI_LANE_DATA1,
DSI_LANE_DATA2,
DSI_LANE_DATA3,
DSI_LANE_DATA4,
};
struct dsi_lane_config {
enum dsi_lane_function function;
u8 polarity;
};
struct dsi_isr_data {
omap_dsi_isr_t isr;
void *arg;
u32 mask;
};
enum fifo_size {
DSI_FIFO_SIZE_0 = 0,
DSI_FIFO_SIZE_32 = 1,
DSI_FIFO_SIZE_64 = 2,
DSI_FIFO_SIZE_96 = 3,
DSI_FIFO_SIZE_128 = 4,
};
enum dsi_vc_source {
DSI_VC_SOURCE_L4 = 0,
DSI_VC_SOURCE_VP,
};
struct dsi_irq_stats {
unsigned long last_reset;
unsigned int irq_count;
unsigned int dsi_irqs[32];
unsigned int vc_irqs[4][32];
unsigned int cio_irqs[32];
};
struct dsi_isr_tables {
struct dsi_isr_data isr_table[DSI_MAX_NR_ISRS];
struct dsi_isr_data isr_table_vc[4][DSI_MAX_NR_ISRS];
struct dsi_isr_data isr_table_cio[DSI_MAX_NR_ISRS];
};
struct dsi_clk_calc_ctx {
struct dsi_data *dsi;
struct dss_pll *pll;
/* inputs */
const struct omap_dss_dsi_config *config;
unsigned long req_pck_min, req_pck_nom, req_pck_max;
/* outputs */
struct dss_pll_clock_info dsi_cinfo;
struct dispc_clock_info dispc_cinfo;
struct videomode vm;
struct omap_dss_dsi_videomode_timings dsi_vm;
};
struct dsi_lp_clock_info {
unsigned long lp_clk;
u16 lp_clk_div;
};
struct dsi_module_id_data {
u32 address;
int id;
};
enum dsi_quirks {
DSI_QUIRK_PLL_PWR_BUG = (1 << 0), /* DSI-PLL power command 0x3 is not working */
DSI_QUIRK_DCS_CMD_CONFIG_VC = (1 << 1),
DSI_QUIRK_VC_OCP_WIDTH = (1 << 2),
DSI_QUIRK_REVERSE_TXCLKESC = (1 << 3),
DSI_QUIRK_GNQ = (1 << 4),
DSI_QUIRK_PHY_DCC = (1 << 5),
};
struct dsi_of_data {
enum dsi_model model;
const struct dss_pll_hw *pll_hw;
const struct dsi_module_id_data *modules;
unsigned int max_fck_freq;
unsigned int max_pll_lpdiv;
enum dsi_quirks quirks;
};
struct dsi_data {
struct device *dev;
void __iomem *proto_base;
void __iomem *phy_base;
void __iomem *pll_base;
const struct dsi_of_data *data;
int module_id;
int irq;
bool is_enabled;
struct clk *dss_clk;
struct regmap *syscon;
struct dss_device *dss;
struct dispc_clock_info user_dispc_cinfo;
struct dss_pll_clock_info user_dsi_cinfo;
struct dsi_lp_clock_info user_lp_cinfo;
struct dsi_lp_clock_info current_lp_cinfo;
struct dss_pll pll;
bool vdds_dsi_enabled;
struct regulator *vdds_dsi_reg;
struct {
enum dsi_vc_source source;
struct omap_dss_device *dssdev;
enum fifo_size tx_fifo_size;
enum fifo_size rx_fifo_size;
int vc_id;
} vc[4];
struct mutex lock;
struct semaphore bus_lock;
spinlock_t irq_lock;
struct dsi_isr_tables isr_tables;
/* space for a copy used by the interrupt handler */
struct dsi_isr_tables isr_tables_copy;
int update_channel;
#ifdef DSI_PERF_MEASURE
unsigned int update_bytes;
#endif
bool te_enabled;
bool ulps_enabled;
void (*framedone_callback)(int, void *);
void *framedone_data;
struct delayed_work framedone_timeout_work;
#ifdef DSI_CATCH_MISSING_TE
struct timer_list te_timer;
#endif
unsigned long cache_req_pck;
unsigned long cache_clk_freq;
struct dss_pll_clock_info cache_cinfo;
u32 errors;
spinlock_t errors_lock;
#ifdef DSI_PERF_MEASURE
ktime_t perf_setup_time;
ktime_t perf_start_time;
#endif
int debug_read;
int debug_write;
struct {
struct dss_debugfs_entry *irqs;
struct dss_debugfs_entry *regs;
} debugfs;
#ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
spinlock_t irq_stats_lock;
struct dsi_irq_stats irq_stats;
#endif
unsigned int num_lanes_supported;
unsigned int line_buffer_size;
struct dsi_lane_config lanes[DSI_MAX_NR_LANES];
unsigned int num_lanes_used;
unsigned int scp_clk_refcount;
struct dss_lcd_mgr_config mgr_config;
struct videomode vm;
enum omap_dss_dsi_pixel_format pix_fmt;
enum omap_dss_dsi_mode mode;
struct omap_dss_dsi_videomode_timings vm_timings;
struct omap_dss_device output;
};
struct dsi_packet_sent_handler_data {
struct dsi_data *dsi;
struct completion *completion;
};
#ifdef DSI_PERF_MEASURE
static bool dsi_perf;
module_param(dsi_perf, bool, 0644);
#endif
static inline struct dsi_data *to_dsi_data(struct omap_dss_device *dssdev)
{
return dev_get_drvdata(dssdev->dev);
}
static struct dsi_data *dsi_get_dsi_from_id(int module)
{
struct omap_dss_device *out;
enum omap_dss_output_id id;
switch (module) {
case 0:
id = OMAP_DSS_OUTPUT_DSI1;
break;
case 1:
id = OMAP_DSS_OUTPUT_DSI2;
break;
default:
return NULL;
}
out = omap_dss_get_output(id);
return out ? to_dsi_data(out) : NULL;
}
static inline void dsi_write_reg(struct dsi_data *dsi,
const struct dsi_reg idx, u32 val)
{
void __iomem *base;
switch(idx.module) {
case DSI_PROTO: base = dsi->proto_base; break;
case DSI_PHY: base = dsi->phy_base; break;
case DSI_PLL: base = dsi->pll_base; break;
default: return;
}
__raw_writel(val, base + idx.idx);
}
static inline u32 dsi_read_reg(struct dsi_data *dsi, const struct dsi_reg idx)
{
void __iomem *base;
switch(idx.module) {
case DSI_PROTO: base = dsi->proto_base; break;
case DSI_PHY: base = dsi->phy_base; break;
case DSI_PLL: base = dsi->pll_base; break;
default: return 0;
}
return __raw_readl(base + idx.idx);
}
static void dsi_bus_lock(struct omap_dss_device *dssdev)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
down(&dsi->bus_lock);
}
static void dsi_bus_unlock(struct omap_dss_device *dssdev)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
up(&dsi->bus_lock);
}
static bool dsi_bus_is_locked(struct dsi_data *dsi)
{
return dsi->bus_lock.count == 0;
}
static void dsi_completion_handler(void *data, u32 mask)
{
complete((struct completion *)data);
}
static inline bool wait_for_bit_change(struct dsi_data *dsi,
const struct dsi_reg idx,
int bitnum, int value)
{
unsigned long timeout;
ktime_t wait;
int t;
/* first busyloop to see if the bit changes right away */
t = 100;
while (t-- > 0) {
if (REG_GET(dsi, idx, bitnum, bitnum) == value)
return true;
}
/* then loop for 500ms, sleeping for 1ms in between */
timeout = jiffies + msecs_to_jiffies(500);
while (time_before(jiffies, timeout)) {
if (REG_GET(dsi, idx, bitnum, bitnum) == value)
return true;
wait = ns_to_ktime(1000 * 1000);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_hrtimeout(&wait, HRTIMER_MODE_REL);
}
return false;
}
static u8 dsi_get_pixel_size(enum omap_dss_dsi_pixel_format fmt)
{
switch (fmt) {
case OMAP_DSS_DSI_FMT_RGB888:
case OMAP_DSS_DSI_FMT_RGB666:
return 24;
case OMAP_DSS_DSI_FMT_RGB666_PACKED:
return 18;
case OMAP_DSS_DSI_FMT_RGB565:
return 16;
default:
BUG();
return 0;
}
}
#ifdef DSI_PERF_MEASURE
static void dsi_perf_mark_setup(struct dsi_data *dsi)
{
dsi->perf_setup_time = ktime_get();
}
static void dsi_perf_mark_start(struct dsi_data *dsi)
{
dsi->perf_start_time = ktime_get();
}
static void dsi_perf_show(struct dsi_data *dsi, const char *name)
{
ktime_t t, setup_time, trans_time;
u32 total_bytes;
u32 setup_us, trans_us, total_us;
if (!dsi_perf)
return;
t = ktime_get();
setup_time = ktime_sub(dsi->perf_start_time, dsi->perf_setup_time);
setup_us = (u32)ktime_to_us(setup_time);
if (setup_us == 0)
setup_us = 1;
trans_time = ktime_sub(t, dsi->perf_start_time);
trans_us = (u32)ktime_to_us(trans_time);
if (trans_us == 0)
trans_us = 1;
total_us = setup_us + trans_us;
total_bytes = dsi->update_bytes;
pr_info("DSI(%s): %u us + %u us = %u us (%uHz), %u bytes, %u kbytes/sec\n",
name,
setup_us,
trans_us,
total_us,
1000 * 1000 / total_us,
total_bytes,
total_bytes * 1000 / total_us);
}
#else
static inline void dsi_perf_mark_setup(struct dsi_data *dsi)
{
}
static inline void dsi_perf_mark_start(struct dsi_data *dsi)
{
}
static inline void dsi_perf_show(struct dsi_data *dsi, const char *name)
{
}
#endif
static int verbose_irq;
static void print_irq_status(u32 status)
{
if (status == 0)
return;
if (!verbose_irq && (status & ~DSI_IRQ_CHANNEL_MASK) == 0)
return;
#define PIS(x) (status & DSI_IRQ_##x) ? (#x " ") : ""
pr_debug("DSI IRQ: 0x%x: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
status,
verbose_irq ? PIS(VC0) : "",
verbose_irq ? PIS(VC1) : "",
verbose_irq ? PIS(VC2) : "",
verbose_irq ? PIS(VC3) : "",
PIS(WAKEUP),
PIS(RESYNC),
PIS(PLL_LOCK),
PIS(PLL_UNLOCK),
PIS(PLL_RECALL),
PIS(COMPLEXIO_ERR),
PIS(HS_TX_TIMEOUT),
PIS(LP_RX_TIMEOUT),
PIS(TE_TRIGGER),
PIS(ACK_TRIGGER),
PIS(SYNC_LOST),
PIS(LDO_POWER_GOOD),
PIS(TA_TIMEOUT));
#undef PIS
}
static void print_irq_status_vc(int channel, u32 status)
{
if (status == 0)
return;
if (!verbose_irq && (status & ~DSI_VC_IRQ_PACKET_SENT) == 0)
return;
#define PIS(x) (status & DSI_VC_IRQ_##x) ? (#x " ") : ""
pr_debug("DSI VC(%d) IRQ 0x%x: %s%s%s%s%s%s%s%s%s\n",
channel,
status,
PIS(CS),
PIS(ECC_CORR),
PIS(ECC_NO_CORR),
verbose_irq ? PIS(PACKET_SENT) : "",
PIS(BTA),
PIS(FIFO_TX_OVF),
PIS(FIFO_RX_OVF),
PIS(FIFO_TX_UDF),
PIS(PP_BUSY_CHANGE));
#undef PIS
}
static void print_irq_status_cio(u32 status)
{
if (status == 0)
return;
#define PIS(x) (status & DSI_CIO_IRQ_##x) ? (#x " ") : ""
pr_debug("DSI CIO IRQ 0x%x: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
status,
PIS(ERRSYNCESC1),
PIS(ERRSYNCESC2),
PIS(ERRSYNCESC3),
PIS(ERRESC1),
PIS(ERRESC2),
PIS(ERRESC3),
PIS(ERRCONTROL1),
PIS(ERRCONTROL2),
PIS(ERRCONTROL3),
PIS(STATEULPS1),
PIS(STATEULPS2),
PIS(STATEULPS3),
PIS(ERRCONTENTIONLP0_1),
PIS(ERRCONTENTIONLP1_1),
PIS(ERRCONTENTIONLP0_2),
PIS(ERRCONTENTIONLP1_2),
PIS(ERRCONTENTIONLP0_3),
PIS(ERRCONTENTIONLP1_3),
PIS(ULPSACTIVENOT_ALL0),
PIS(ULPSACTIVENOT_ALL1));
#undef PIS
}
#ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
static void dsi_collect_irq_stats(struct dsi_data *dsi, u32 irqstatus,
u32 *vcstatus, u32 ciostatus)
{
int i;
spin_lock(&dsi->irq_stats_lock);
dsi->irq_stats.irq_count++;
dss_collect_irq_stats(irqstatus, dsi->irq_stats.dsi_irqs);
for (i = 0; i < 4; ++i)
dss_collect_irq_stats(vcstatus[i], dsi->irq_stats.vc_irqs[i]);
dss_collect_irq_stats(ciostatus, dsi->irq_stats.cio_irqs);
spin_unlock(&dsi->irq_stats_lock);
}
#else
#define dsi_collect_irq_stats(dsi, irqstatus, vcstatus, ciostatus)
#endif
static int debug_irq;
static void dsi_handle_irq_errors(struct dsi_data *dsi, u32 irqstatus,
u32 *vcstatus, u32 ciostatus)
{
int i;
if (irqstatus & DSI_IRQ_ERROR_MASK) {
DSSERR("DSI error, irqstatus %x\n", irqstatus);
print_irq_status(irqstatus);
spin_lock(&dsi->errors_lock);
dsi->errors |= irqstatus & DSI_IRQ_ERROR_MASK;
spin_unlock(&dsi->errors_lock);
} else if (debug_irq) {
print_irq_status(irqstatus);
}
for (i = 0; i < 4; ++i) {
if (vcstatus[i] & DSI_VC_IRQ_ERROR_MASK) {
DSSERR("DSI VC(%d) error, vc irqstatus %x\n",
i, vcstatus[i]);
print_irq_status_vc(i, vcstatus[i]);
} else if (debug_irq) {
print_irq_status_vc(i, vcstatus[i]);
}
}
if (ciostatus & DSI_CIO_IRQ_ERROR_MASK) {
DSSERR("DSI CIO error, cio irqstatus %x\n", ciostatus);
print_irq_status_cio(ciostatus);
} else if (debug_irq) {
print_irq_status_cio(ciostatus);
}
}
static void dsi_call_isrs(struct dsi_isr_data *isr_array,
unsigned int isr_array_size, u32 irqstatus)
{
struct dsi_isr_data *isr_data;
int i;
for (i = 0; i < isr_array_size; i++) {
isr_data = &isr_array[i];
if (isr_data->isr && isr_data->mask & irqstatus)
isr_data->isr(isr_data->arg, irqstatus);
}
}
static void dsi_handle_isrs(struct dsi_isr_tables *isr_tables,
u32 irqstatus, u32 *vcstatus, u32 ciostatus)
{
int i;
dsi_call_isrs(isr_tables->isr_table,
ARRAY_SIZE(isr_tables->isr_table),
irqstatus);
for (i = 0; i < 4; ++i) {
if (vcstatus[i] == 0)
continue;
dsi_call_isrs(isr_tables->isr_table_vc[i],
ARRAY_SIZE(isr_tables->isr_table_vc[i]),
vcstatus[i]);
}
if (ciostatus != 0)
dsi_call_isrs(isr_tables->isr_table_cio,
ARRAY_SIZE(isr_tables->isr_table_cio),
ciostatus);
}
static irqreturn_t omap_dsi_irq_handler(int irq, void *arg)
{
struct dsi_data *dsi = arg;
u32 irqstatus, vcstatus[4], ciostatus;
int i;
if (!dsi->is_enabled)
return IRQ_NONE;
spin_lock(&dsi->irq_lock);
irqstatus = dsi_read_reg(dsi, DSI_IRQSTATUS);
/* IRQ is not for us */
if (!irqstatus) {
spin_unlock(&dsi->irq_lock);
return IRQ_NONE;
}
dsi_write_reg(dsi, DSI_IRQSTATUS, irqstatus & ~DSI_IRQ_CHANNEL_MASK);
/* flush posted write */
dsi_read_reg(dsi, DSI_IRQSTATUS);
for (i = 0; i < 4; ++i) {
if ((irqstatus & (1 << i)) == 0) {
vcstatus[i] = 0;
continue;
}
vcstatus[i] = dsi_read_reg(dsi, DSI_VC_IRQSTATUS(i));
dsi_write_reg(dsi, DSI_VC_IRQSTATUS(i), vcstatus[i]);
/* flush posted write */
dsi_read_reg(dsi, DSI_VC_IRQSTATUS(i));
}
if (irqstatus & DSI_IRQ_COMPLEXIO_ERR) {
ciostatus = dsi_read_reg(dsi, DSI_COMPLEXIO_IRQ_STATUS);
dsi_write_reg(dsi, DSI_COMPLEXIO_IRQ_STATUS, ciostatus);
/* flush posted write */
dsi_read_reg(dsi, DSI_COMPLEXIO_IRQ_STATUS);
} else {
ciostatus = 0;
}
#ifdef DSI_CATCH_MISSING_TE
if (irqstatus & DSI_IRQ_TE_TRIGGER)
del_timer(&dsi->te_timer);
#endif
/* make a copy and unlock, so that isrs can unregister
* themselves */
memcpy(&dsi->isr_tables_copy, &dsi->isr_tables,
sizeof(dsi->isr_tables));
spin_unlock(&dsi->irq_lock);
dsi_handle_isrs(&dsi->isr_tables_copy, irqstatus, vcstatus, ciostatus);
dsi_handle_irq_errors(dsi, irqstatus, vcstatus, ciostatus);
dsi_collect_irq_stats(dsi, irqstatus, vcstatus, ciostatus);
return IRQ_HANDLED;
}
/* dsi->irq_lock has to be locked by the caller */
static void _omap_dsi_configure_irqs(struct dsi_data *dsi,
struct dsi_isr_data *isr_array,
unsigned int isr_array_size,
u32 default_mask,
const struct dsi_reg enable_reg,
const struct dsi_reg status_reg)
{
struct dsi_isr_data *isr_data;
u32 mask;
u32 old_mask;
int i;
mask = default_mask;
for (i = 0; i < isr_array_size; i++) {
isr_data = &isr_array[i];
if (isr_data->isr == NULL)
continue;
mask |= isr_data->mask;
}
old_mask = dsi_read_reg(dsi, enable_reg);
/* clear the irqstatus for newly enabled irqs */
dsi_write_reg(dsi, status_reg, (mask ^ old_mask) & mask);
dsi_write_reg(dsi, enable_reg, mask);
/* flush posted writes */
dsi_read_reg(dsi, enable_reg);
dsi_read_reg(dsi, status_reg);
}
/* dsi->irq_lock has to be locked by the caller */
static void _omap_dsi_set_irqs(struct dsi_data *dsi)
{
u32 mask = DSI_IRQ_ERROR_MASK;
#ifdef DSI_CATCH_MISSING_TE
mask |= DSI_IRQ_TE_TRIGGER;
#endif
_omap_dsi_configure_irqs(dsi, dsi->isr_tables.isr_table,
ARRAY_SIZE(dsi->isr_tables.isr_table), mask,
DSI_IRQENABLE, DSI_IRQSTATUS);
}
/* dsi->irq_lock has to be locked by the caller */
static void _omap_dsi_set_irqs_vc(struct dsi_data *dsi, int vc)
{
_omap_dsi_configure_irqs(dsi, dsi->isr_tables.isr_table_vc[vc],
ARRAY_SIZE(dsi->isr_tables.isr_table_vc[vc]),
DSI_VC_IRQ_ERROR_MASK,
DSI_VC_IRQENABLE(vc), DSI_VC_IRQSTATUS(vc));
}
/* dsi->irq_lock has to be locked by the caller */
static void _omap_dsi_set_irqs_cio(struct dsi_data *dsi)
{
_omap_dsi_configure_irqs(dsi, dsi->isr_tables.isr_table_cio,
ARRAY_SIZE(dsi->isr_tables.isr_table_cio),
DSI_CIO_IRQ_ERROR_MASK,
DSI_COMPLEXIO_IRQ_ENABLE, DSI_COMPLEXIO_IRQ_STATUS);
}
static void _dsi_initialize_irq(struct dsi_data *dsi)
{
unsigned long flags;
int vc;
spin_lock_irqsave(&dsi->irq_lock, flags);
memset(&dsi->isr_tables, 0, sizeof(dsi->isr_tables));
_omap_dsi_set_irqs(dsi);
for (vc = 0; vc < 4; ++vc)
_omap_dsi_set_irqs_vc(dsi, vc);
_omap_dsi_set_irqs_cio(dsi);
spin_unlock_irqrestore(&dsi->irq_lock, flags);
}
static int _dsi_register_isr(omap_dsi_isr_t isr, void *arg, u32 mask,
struct dsi_isr_data *isr_array, unsigned int isr_array_size)
{
struct dsi_isr_data *isr_data;
int free_idx;
int i;
BUG_ON(isr == NULL);
/* check for duplicate entry and find a free slot */
free_idx = -1;
for (i = 0; i < isr_array_size; i++) {
isr_data = &isr_array[i];
if (isr_data->isr == isr && isr_data->arg == arg &&
isr_data->mask == mask) {
return -EINVAL;
}
if (isr_data->isr == NULL && free_idx == -1)
free_idx = i;
}
if (free_idx == -1)
return -EBUSY;
isr_data = &isr_array[free_idx];
isr_data->isr = isr;
isr_data->arg = arg;
isr_data->mask = mask;
return 0;
}
static int _dsi_unregister_isr(omap_dsi_isr_t isr, void *arg, u32 mask,
struct dsi_isr_data *isr_array, unsigned int isr_array_size)
{
struct dsi_isr_data *isr_data;
int i;
for (i = 0; i < isr_array_size; i++) {
isr_data = &isr_array[i];
if (isr_data->isr != isr || isr_data->arg != arg ||
isr_data->mask != mask)
continue;
isr_data->isr = NULL;
isr_data->arg = NULL;
isr_data->mask = 0;
return 0;
}
return -EINVAL;
}
static int dsi_register_isr(struct dsi_data *dsi, omap_dsi_isr_t isr,
void *arg, u32 mask)
{
unsigned long flags;
int r;
spin_lock_irqsave(&dsi->irq_lock, flags);
r = _dsi_register_isr(isr, arg, mask, dsi->isr_tables.isr_table,
ARRAY_SIZE(dsi->isr_tables.isr_table));
if (r == 0)
_omap_dsi_set_irqs(dsi);
spin_unlock_irqrestore(&dsi->irq_lock, flags);
return r;
}
static int dsi_unregister_isr(struct dsi_data *dsi, omap_dsi_isr_t isr,
void *arg, u32 mask)
{
unsigned long flags;
int r;
spin_lock_irqsave(&dsi->irq_lock, flags);
r = _dsi_unregister_isr(isr, arg, mask, dsi->isr_tables.isr_table,
ARRAY_SIZE(dsi->isr_tables.isr_table));
if (r == 0)
_omap_dsi_set_irqs(dsi);
spin_unlock_irqrestore(&dsi->irq_lock, flags);
return r;
}
static int dsi_register_isr_vc(struct dsi_data *dsi, int channel,
omap_dsi_isr_t isr, void *arg, u32 mask)
{
unsigned long flags;
int r;
spin_lock_irqsave(&dsi->irq_lock, flags);
r = _dsi_register_isr(isr, arg, mask,
dsi->isr_tables.isr_table_vc[channel],
ARRAY_SIZE(dsi->isr_tables.isr_table_vc[channel]));
if (r == 0)
_omap_dsi_set_irqs_vc(dsi, channel);
spin_unlock_irqrestore(&dsi->irq_lock, flags);
return r;
}
static int dsi_unregister_isr_vc(struct dsi_data *dsi, int channel,
omap_dsi_isr_t isr, void *arg, u32 mask)
{
unsigned long flags;
int r;
spin_lock_irqsave(&dsi->irq_lock, flags);
r = _dsi_unregister_isr(isr, arg, mask,
dsi->isr_tables.isr_table_vc[channel],
ARRAY_SIZE(dsi->isr_tables.isr_table_vc[channel]));
if (r == 0)
_omap_dsi_set_irqs_vc(dsi, channel);
spin_unlock_irqrestore(&dsi->irq_lock, flags);
return r;
}
static int dsi_register_isr_cio(struct dsi_data *dsi, omap_dsi_isr_t isr,
void *arg, u32 mask)
{
unsigned long flags;
int r;
spin_lock_irqsave(&dsi->irq_lock, flags);
r = _dsi_register_isr(isr, arg, mask, dsi->isr_tables.isr_table_cio,
ARRAY_SIZE(dsi->isr_tables.isr_table_cio));
if (r == 0)
_omap_dsi_set_irqs_cio(dsi);
spin_unlock_irqrestore(&dsi->irq_lock, flags);
return r;
}
static int dsi_unregister_isr_cio(struct dsi_data *dsi, omap_dsi_isr_t isr,
void *arg, u32 mask)
{
unsigned long flags;
int r;
spin_lock_irqsave(&dsi->irq_lock, flags);
r = _dsi_unregister_isr(isr, arg, mask, dsi->isr_tables.isr_table_cio,
ARRAY_SIZE(dsi->isr_tables.isr_table_cio));
if (r == 0)
_omap_dsi_set_irqs_cio(dsi);
spin_unlock_irqrestore(&dsi->irq_lock, flags);
return r;
}
static u32 dsi_get_errors(struct dsi_data *dsi)
{
unsigned long flags;
u32 e;
spin_lock_irqsave(&dsi->errors_lock, flags);
e = dsi->errors;
dsi->errors = 0;
spin_unlock_irqrestore(&dsi->errors_lock, flags);
return e;
}
static int dsi_runtime_get(struct dsi_data *dsi)
{
int r;
DSSDBG("dsi_runtime_get\n");
r = pm_runtime_get_sync(dsi->dev);
WARN_ON(r < 0);
return r < 0 ? r : 0;
}
static void dsi_runtime_put(struct dsi_data *dsi)
{
int r;
DSSDBG("dsi_runtime_put\n");
r = pm_runtime_put_sync(dsi->dev);
WARN_ON(r < 0 && r != -ENOSYS);
}
static int dsi_regulator_init(struct dsi_data *dsi)
{
struct regulator *vdds_dsi;
if (dsi->vdds_dsi_reg != NULL)
return 0;
vdds_dsi = devm_regulator_get(dsi->dev, "vdd");
if (IS_ERR(vdds_dsi)) {
if (PTR_ERR(vdds_dsi) != -EPROBE_DEFER)
DSSERR("can't get DSI VDD regulator\n");
return PTR_ERR(vdds_dsi);
}
dsi->vdds_dsi_reg = vdds_dsi;
return 0;
}
static void _dsi_print_reset_status(struct dsi_data *dsi)
{
u32 l;
int b0, b1, b2;
/* A dummy read using the SCP interface to any DSIPHY register is
* required after DSIPHY reset to complete the reset of the DSI complex
* I/O. */
l = dsi_read_reg(dsi, DSI_DSIPHY_CFG5);
if (dsi->data->quirks & DSI_QUIRK_REVERSE_TXCLKESC) {
b0 = 28;
b1 = 27;
b2 = 26;
} else {
b0 = 24;
b1 = 25;
b2 = 26;
}
#define DSI_FLD_GET(fld, start, end)\
FLD_GET(dsi_read_reg(dsi, DSI_##fld), start, end)
pr_debug("DSI resets: PLL (%d) CIO (%d) PHY (%x%x%x, %d, %d, %d)\n",
DSI_FLD_GET(PLL_STATUS, 0, 0),
DSI_FLD_GET(COMPLEXIO_CFG1, 29, 29),
DSI_FLD_GET(DSIPHY_CFG5, b0, b0),
DSI_FLD_GET(DSIPHY_CFG5, b1, b1),
DSI_FLD_GET(DSIPHY_CFG5, b2, b2),
DSI_FLD_GET(DSIPHY_CFG5, 29, 29),
DSI_FLD_GET(DSIPHY_CFG5, 30, 30),
DSI_FLD_GET(DSIPHY_CFG5, 31, 31));
#undef DSI_FLD_GET
}
static inline int dsi_if_enable(struct dsi_data *dsi, bool enable)
{
DSSDBG("dsi_if_enable(%d)\n", enable);
enable = enable ? 1 : 0;
REG_FLD_MOD(dsi, DSI_CTRL, enable, 0, 0); /* IF_EN */
if (!wait_for_bit_change(dsi, DSI_CTRL, 0, enable)) {
DSSERR("Failed to set dsi_if_enable to %d\n", enable);
return -EIO;
}
return 0;
}
static unsigned long dsi_get_pll_hsdiv_dispc_rate(struct dsi_data *dsi)
{
return dsi->pll.cinfo.clkout[HSDIV_DISPC];
}
static unsigned long dsi_get_pll_hsdiv_dsi_rate(struct dsi_data *dsi)
{
return dsi->pll.cinfo.clkout[HSDIV_DSI];
}
static unsigned long dsi_get_txbyteclkhs(struct dsi_data *dsi)
{
return dsi->pll.cinfo.clkdco / 16;
}
static unsigned long dsi_fclk_rate(struct dsi_data *dsi)
{
unsigned long r;
enum dss_clk_source source;
source = dss_get_dsi_clk_source(dsi->dss, dsi->module_id);
if (source == DSS_CLK_SRC_FCK) {
/* DSI FCLK source is DSS_CLK_FCK */
r = clk_get_rate(dsi->dss_clk);
} else {
/* DSI FCLK source is dsi_pll_hsdiv_dsi_clk */
r = dsi_get_pll_hsdiv_dsi_rate(dsi);
}
return r;
}
static int dsi_lp_clock_calc(unsigned long dsi_fclk,
unsigned long lp_clk_min, unsigned long lp_clk_max,
struct dsi_lp_clock_info *lp_cinfo)
{
unsigned int lp_clk_div;
unsigned long lp_clk;
lp_clk_div = DIV_ROUND_UP(dsi_fclk, lp_clk_max * 2);
lp_clk = dsi_fclk / 2 / lp_clk_div;
if (lp_clk < lp_clk_min || lp_clk > lp_clk_max)
return -EINVAL;
lp_cinfo->lp_clk_div = lp_clk_div;
lp_cinfo->lp_clk = lp_clk;
return 0;
}
static int dsi_set_lp_clk_divisor(struct dsi_data *dsi)
{
unsigned long dsi_fclk;
unsigned int lp_clk_div;
unsigned long lp_clk;
unsigned int lpdiv_max = dsi->data->max_pll_lpdiv;
lp_clk_div = dsi->user_lp_cinfo.lp_clk_div;
if (lp_clk_div == 0 || lp_clk_div > lpdiv_max)
return -EINVAL;
dsi_fclk = dsi_fclk_rate(dsi);
lp_clk = dsi_fclk / 2 / lp_clk_div;
DSSDBG("LP_CLK_DIV %u, LP_CLK %lu\n", lp_clk_div, lp_clk);
dsi->current_lp_cinfo.lp_clk = lp_clk;
dsi->current_lp_cinfo.lp_clk_div = lp_clk_div;
/* LP_CLK_DIVISOR */
REG_FLD_MOD(dsi, DSI_CLK_CTRL, lp_clk_div, 12, 0);
/* LP_RX_SYNCHRO_ENABLE */
REG_FLD_MOD(dsi, DSI_CLK_CTRL, dsi_fclk > 30000000 ? 1 : 0, 21, 21);
return 0;
}
static void dsi_enable_scp_clk(struct dsi_data *dsi)
{
if (dsi->scp_clk_refcount++ == 0)
REG_FLD_MOD(dsi, DSI_CLK_CTRL, 1, 14, 14); /* CIO_CLK_ICG */
}
static void dsi_disable_scp_clk(struct dsi_data *dsi)
{
WARN_ON(dsi->scp_clk_refcount == 0);
if (--dsi->scp_clk_refcount == 0)
REG_FLD_MOD(dsi, DSI_CLK_CTRL, 0, 14, 14); /* CIO_CLK_ICG */
}
enum dsi_pll_power_state {
DSI_PLL_POWER_OFF = 0x0,
DSI_PLL_POWER_ON_HSCLK = 0x1,
DSI_PLL_POWER_ON_ALL = 0x2,
DSI_PLL_POWER_ON_DIV = 0x3,
};
static int dsi_pll_power(struct dsi_data *dsi, enum dsi_pll_power_state state)
{
int t = 0;
/* DSI-PLL power command 0x3 is not working */
if ((dsi->data->quirks & DSI_QUIRK_PLL_PWR_BUG) &&
state == DSI_PLL_POWER_ON_DIV)
state = DSI_PLL_POWER_ON_ALL;
/* PLL_PWR_CMD */
REG_FLD_MOD(dsi, DSI_CLK_CTRL, state, 31, 30);
/* PLL_PWR_STATUS */
while (FLD_GET(dsi_read_reg(dsi, DSI_CLK_CTRL), 29, 28) != state) {
if (++t > 1000) {
DSSERR("Failed to set DSI PLL power mode to %d\n",
state);
return -ENODEV;
}
udelay(1);
}
return 0;
}
static void dsi_pll_calc_dsi_fck(struct dsi_data *dsi,
struct dss_pll_clock_info *cinfo)
{
unsigned long max_dsi_fck;
max_dsi_fck = dsi->data->max_fck_freq;
cinfo->mX[HSDIV_DSI] = DIV_ROUND_UP(cinfo->clkdco, max_dsi_fck);
cinfo->clkout[HSDIV_DSI] = cinfo->clkdco / cinfo->mX[HSDIV_DSI];
}
static int dsi_pll_enable(struct dss_pll *pll)
{
struct dsi_data *dsi = container_of(pll, struct dsi_data, pll);
int r = 0;
DSSDBG("PLL init\n");
r = dsi_regulator_init(dsi);
if (r)
return r;
r = dsi_runtime_get(dsi);
if (r)
return r;
/*
* Note: SCP CLK is not required on OMAP3, but it is required on OMAP4.
*/
dsi_enable_scp_clk(dsi);
r = regulator_enable(dsi->vdds_dsi_reg);
if (r)
goto err0;
/* XXX PLL does not come out of reset without this... */
dispc_pck_free_enable(dsi->dss->dispc, 1);
if (!wait_for_bit_change(dsi, DSI_PLL_STATUS, 0, 1)) {
DSSERR("PLL not coming out of reset.\n");
r = -ENODEV;
dispc_pck_free_enable(dsi->dss->dispc, 0);
goto err1;
}
/* XXX ... but if left on, we get problems when planes do not
* fill the whole display. No idea about this */
dispc_pck_free_enable(dsi->dss->dispc, 0);
r = dsi_pll_power(dsi, DSI_PLL_POWER_ON_ALL);
if (r)
goto err1;
DSSDBG("PLL init done\n");
return 0;
err1:
regulator_disable(dsi->vdds_dsi_reg);
err0:
dsi_disable_scp_clk(dsi);
dsi_runtime_put(dsi);
return r;
}
static void dsi_pll_disable(struct dss_pll *pll)
{
struct dsi_data *dsi = container_of(pll, struct dsi_data, pll);
dsi_pll_power(dsi, DSI_PLL_POWER_OFF);
regulator_disable(dsi->vdds_dsi_reg);
dsi_disable_scp_clk(dsi);
dsi_runtime_put(dsi);
DSSDBG("PLL disable done\n");
}
static void dsi_dump_dsi_clocks(struct dsi_data *dsi, struct seq_file *s)
{
struct dss_pll_clock_info *cinfo = &dsi->pll.cinfo;
enum dss_clk_source dispc_clk_src, dsi_clk_src;
int dsi_module = dsi->module_id;
struct dss_pll *pll = &dsi->pll;
dispc_clk_src = dss_get_dispc_clk_source(dsi->dss);
dsi_clk_src = dss_get_dsi_clk_source(dsi->dss, dsi_module);
if (dsi_runtime_get(dsi))
return;
seq_printf(s, "- DSI%d PLL -\n", dsi_module + 1);
seq_printf(s, "dsi pll clkin\t%lu\n", clk_get_rate(pll->clkin));
seq_printf(s, "Fint\t\t%-16lun %u\n", cinfo->fint, cinfo->n);
seq_printf(s, "CLKIN4DDR\t%-16lum %u\n",
cinfo->clkdco, cinfo->m);
seq_printf(s, "DSI_PLL_HSDIV_DISPC (%s)\t%-16lum_dispc %u\t(%s)\n",
dss_get_clk_source_name(dsi_module == 0 ?
DSS_CLK_SRC_PLL1_1 :
DSS_CLK_SRC_PLL2_1),
cinfo->clkout[HSDIV_DISPC],
cinfo->mX[HSDIV_DISPC],
dispc_clk_src == DSS_CLK_SRC_FCK ?
"off" : "on");
seq_printf(s, "DSI_PLL_HSDIV_DSI (%s)\t%-16lum_dsi %u\t(%s)\n",
dss_get_clk_source_name(dsi_module == 0 ?
DSS_CLK_SRC_PLL1_2 :
DSS_CLK_SRC_PLL2_2),
cinfo->clkout[HSDIV_DSI],
cinfo->mX[HSDIV_DSI],
dsi_clk_src == DSS_CLK_SRC_FCK ?
"off" : "on");
seq_printf(s, "- DSI%d -\n", dsi_module + 1);
seq_printf(s, "dsi fclk source = %s\n",
dss_get_clk_source_name(dsi_clk_src));
seq_printf(s, "DSI_FCLK\t%lu\n", dsi_fclk_rate(dsi));
seq_printf(s, "DDR_CLK\t\t%lu\n",
cinfo->clkdco / 4);
seq_printf(s, "TxByteClkHS\t%lu\n", dsi_get_txbyteclkhs(dsi));
seq_printf(s, "LP_CLK\t\t%lu\n", dsi->current_lp_cinfo.lp_clk);
dsi_runtime_put(dsi);
}
void dsi_dump_clocks(struct seq_file *s)
{
struct dsi_data *dsi;
int i;
for (i = 0; i < MAX_NUM_DSI; i++) {
dsi = dsi_get_dsi_from_id(i);
if (dsi)
dsi_dump_dsi_clocks(dsi, s);
}
}
#ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
static void dsi_dump_dsi_irqs(struct dsi_data *dsi, struct seq_file *s)
{
unsigned long flags;
struct dsi_irq_stats stats;
spin_lock_irqsave(&dsi->irq_stats_lock, flags);
stats = dsi->irq_stats;
memset(&dsi->irq_stats, 0, sizeof(dsi->irq_stats));
dsi->irq_stats.last_reset = jiffies;
spin_unlock_irqrestore(&dsi->irq_stats_lock, flags);
seq_printf(s, "period %u ms\n",
jiffies_to_msecs(jiffies - stats.last_reset));
seq_printf(s, "irqs %d\n", stats.irq_count);
#define PIS(x) \
seq_printf(s, "%-20s %10d\n", #x, stats.dsi_irqs[ffs(DSI_IRQ_##x)-1]);
seq_printf(s, "-- DSI%d interrupts --\n", dsi->module_id + 1);
PIS(VC0);
PIS(VC1);
PIS(VC2);
PIS(VC3);
PIS(WAKEUP);
PIS(RESYNC);
PIS(PLL_LOCK);
PIS(PLL_UNLOCK);
PIS(PLL_RECALL);
PIS(COMPLEXIO_ERR);
PIS(HS_TX_TIMEOUT);
PIS(LP_RX_TIMEOUT);
PIS(TE_TRIGGER);
PIS(ACK_TRIGGER);
PIS(SYNC_LOST);
PIS(LDO_POWER_GOOD);
PIS(TA_TIMEOUT);
#undef PIS
#define PIS(x) \
seq_printf(s, "%-20s %10d %10d %10d %10d\n", #x, \
stats.vc_irqs[0][ffs(DSI_VC_IRQ_##x)-1], \
stats.vc_irqs[1][ffs(DSI_VC_IRQ_##x)-1], \
stats.vc_irqs[2][ffs(DSI_VC_IRQ_##x)-1], \
stats.vc_irqs[3][ffs(DSI_VC_IRQ_##x)-1]);
seq_printf(s, "-- VC interrupts --\n");
PIS(CS);
PIS(ECC_CORR);
PIS(PACKET_SENT);
PIS(FIFO_TX_OVF);
PIS(FIFO_RX_OVF);
PIS(BTA);
PIS(ECC_NO_CORR);
PIS(FIFO_TX_UDF);
PIS(PP_BUSY_CHANGE);
#undef PIS
#define PIS(x) \
seq_printf(s, "%-20s %10d\n", #x, \
stats.cio_irqs[ffs(DSI_CIO_IRQ_##x)-1]);
seq_printf(s, "-- CIO interrupts --\n");
PIS(ERRSYNCESC1);
PIS(ERRSYNCESC2);
PIS(ERRSYNCESC3);
PIS(ERRESC1);
PIS(ERRESC2);
PIS(ERRESC3);
PIS(ERRCONTROL1);
PIS(ERRCONTROL2);
PIS(ERRCONTROL3);
PIS(STATEULPS1);
PIS(STATEULPS2);
PIS(STATEULPS3);
PIS(ERRCONTENTIONLP0_1);
PIS(ERRCONTENTIONLP1_1);
PIS(ERRCONTENTIONLP0_2);
PIS(ERRCONTENTIONLP1_2);
PIS(ERRCONTENTIONLP0_3);
PIS(ERRCONTENTIONLP1_3);
PIS(ULPSACTIVENOT_ALL0);
PIS(ULPSACTIVENOT_ALL1);
#undef PIS
}
static int dsi1_dump_irqs(struct seq_file *s, void *p)
{
struct dsi_data *dsi = dsi_get_dsi_from_id(0);
dsi_dump_dsi_irqs(dsi, s);
return 0;
}
static int dsi2_dump_irqs(struct seq_file *s, void *p)
{
struct dsi_data *dsi = dsi_get_dsi_from_id(1);
dsi_dump_dsi_irqs(dsi, s);
return 0;
}
#endif
static void dsi_dump_dsi_regs(struct dsi_data *dsi, struct seq_file *s)
{
#define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dsi_read_reg(dsi, r))
if (dsi_runtime_get(dsi))
return;
dsi_enable_scp_clk(dsi);
DUMPREG(DSI_REVISION);
DUMPREG(DSI_SYSCONFIG);
DUMPREG(DSI_SYSSTATUS);
DUMPREG(DSI_IRQSTATUS);
DUMPREG(DSI_IRQENABLE);
DUMPREG(DSI_CTRL);
DUMPREG(DSI_COMPLEXIO_CFG1);
DUMPREG(DSI_COMPLEXIO_IRQ_STATUS);
DUMPREG(DSI_COMPLEXIO_IRQ_ENABLE);
DUMPREG(DSI_CLK_CTRL);
DUMPREG(DSI_TIMING1);
DUMPREG(DSI_TIMING2);
DUMPREG(DSI_VM_TIMING1);
DUMPREG(DSI_VM_TIMING2);
DUMPREG(DSI_VM_TIMING3);
DUMPREG(DSI_CLK_TIMING);
DUMPREG(DSI_TX_FIFO_VC_SIZE);
DUMPREG(DSI_RX_FIFO_VC_SIZE);
DUMPREG(DSI_COMPLEXIO_CFG2);
DUMPREG(DSI_RX_FIFO_VC_FULLNESS);
DUMPREG(DSI_VM_TIMING4);
DUMPREG(DSI_TX_FIFO_VC_EMPTINESS);
DUMPREG(DSI_VM_TIMING5);
DUMPREG(DSI_VM_TIMING6);
DUMPREG(DSI_VM_TIMING7);
DUMPREG(DSI_STOPCLK_TIMING);
DUMPREG(DSI_VC_CTRL(0));
DUMPREG(DSI_VC_TE(0));
DUMPREG(DSI_VC_LONG_PACKET_HEADER(0));
DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(0));
DUMPREG(DSI_VC_SHORT_PACKET_HEADER(0));
DUMPREG(DSI_VC_IRQSTATUS(0));
DUMPREG(DSI_VC_IRQENABLE(0));
DUMPREG(DSI_VC_CTRL(1));
DUMPREG(DSI_VC_TE(1));
DUMPREG(DSI_VC_LONG_PACKET_HEADER(1));
DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(1));
DUMPREG(DSI_VC_SHORT_PACKET_HEADER(1));
DUMPREG(DSI_VC_IRQSTATUS(1));
DUMPREG(DSI_VC_IRQENABLE(1));
DUMPREG(DSI_VC_CTRL(2));
DUMPREG(DSI_VC_TE(2));
DUMPREG(DSI_VC_LONG_PACKET_HEADER(2));
DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(2));
DUMPREG(DSI_VC_SHORT_PACKET_HEADER(2));
DUMPREG(DSI_VC_IRQSTATUS(2));
DUMPREG(DSI_VC_IRQENABLE(2));
DUMPREG(DSI_VC_CTRL(3));
DUMPREG(DSI_VC_TE(3));
DUMPREG(DSI_VC_LONG_PACKET_HEADER(3));
DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(3));
DUMPREG(DSI_VC_SHORT_PACKET_HEADER(3));
DUMPREG(DSI_VC_IRQSTATUS(3));
DUMPREG(DSI_VC_IRQENABLE(3));
DUMPREG(DSI_DSIPHY_CFG0);
DUMPREG(DSI_DSIPHY_CFG1);
DUMPREG(DSI_DSIPHY_CFG2);
DUMPREG(DSI_DSIPHY_CFG5);
DUMPREG(DSI_PLL_CONTROL);
DUMPREG(DSI_PLL_STATUS);
DUMPREG(DSI_PLL_GO);
DUMPREG(DSI_PLL_CONFIGURATION1);
DUMPREG(DSI_PLL_CONFIGURATION2);
dsi_disable_scp_clk(dsi);
dsi_runtime_put(dsi);
#undef DUMPREG
}
static int dsi1_dump_regs(struct seq_file *s, void *p)
{
struct dsi_data *dsi = dsi_get_dsi_from_id(0);
dsi_dump_dsi_regs(dsi, s);
return 0;
}
static int dsi2_dump_regs(struct seq_file *s, void *p)
{
struct dsi_data *dsi = dsi_get_dsi_from_id(1);
dsi_dump_dsi_regs(dsi, s);
return 0;
}
enum dsi_cio_power_state {
DSI_COMPLEXIO_POWER_OFF = 0x0,
DSI_COMPLEXIO_POWER_ON = 0x1,
DSI_COMPLEXIO_POWER_ULPS = 0x2,
};
static int dsi_cio_power(struct dsi_data *dsi, enum dsi_cio_power_state state)
{
int t = 0;
/* PWR_CMD */
REG_FLD_MOD(dsi, DSI_COMPLEXIO_CFG1, state, 28, 27);
/* PWR_STATUS */
while (FLD_GET(dsi_read_reg(dsi, DSI_COMPLEXIO_CFG1),
26, 25) != state) {
if (++t > 1000) {
DSSERR("failed to set complexio power state to "
"%d\n", state);
return -ENODEV;
}
udelay(1);
}
return 0;
}
static unsigned int dsi_get_line_buf_size(struct dsi_data *dsi)
{
int val;
/* line buffer on OMAP3 is 1024 x 24bits */
/* XXX: for some reason using full buffer size causes
* considerable TX slowdown with update sizes that fill the
* whole buffer */
if (!(dsi->data->quirks & DSI_QUIRK_GNQ))
return 1023 * 3;
val = REG_GET(dsi, DSI_GNQ, 14, 12); /* VP1_LINE_BUFFER_SIZE */
switch (val) {
case 1:
return 512 * 3; /* 512x24 bits */
case 2:
return 682 * 3; /* 682x24 bits */
case 3:
return 853 * 3; /* 853x24 bits */
case 4:
return 1024 * 3; /* 1024x24 bits */
case 5:
return 1194 * 3; /* 1194x24 bits */
case 6:
return 1365 * 3; /* 1365x24 bits */
case 7:
return 1920 * 3; /* 1920x24 bits */
default:
BUG();
return 0;
}
}
static int dsi_set_lane_config(struct dsi_data *dsi)
{
static const u8 offsets[] = { 0, 4, 8, 12, 16 };
static const enum dsi_lane_function functions[] = {
DSI_LANE_CLK,
DSI_LANE_DATA1,
DSI_LANE_DATA2,
DSI_LANE_DATA3,
DSI_LANE_DATA4,
};
u32 r;
int i;
r = dsi_read_reg(dsi, DSI_COMPLEXIO_CFG1);
for (i = 0; i < dsi->num_lanes_used; ++i) {
unsigned int offset = offsets[i];
unsigned int polarity, lane_number;
unsigned int t;
for (t = 0; t < dsi->num_lanes_supported; ++t)
if (dsi->lanes[t].function == functions[i])
break;
if (t == dsi->num_lanes_supported)
return -EINVAL;
lane_number = t;
polarity = dsi->lanes[t].polarity;
r = FLD_MOD(r, lane_number + 1, offset + 2, offset);
r = FLD_MOD(r, polarity, offset + 3, offset + 3);
}
/* clear the unused lanes */
for (; i < dsi->num_lanes_supported; ++i) {
unsigned int offset = offsets[i];
r = FLD_MOD(r, 0, offset + 2, offset);
r = FLD_MOD(r, 0, offset + 3, offset + 3);
}
dsi_write_reg(dsi, DSI_COMPLEXIO_CFG1, r);
return 0;
}
static inline unsigned int ns2ddr(struct dsi_data *dsi, unsigned int ns)
{
/* convert time in ns to ddr ticks, rounding up */
unsigned long ddr_clk = dsi->pll.cinfo.clkdco / 4;
return (ns * (ddr_clk / 1000 / 1000) + 999) / 1000;
}
static inline unsigned int ddr2ns(struct dsi_data *dsi, unsigned int ddr)
{
unsigned long ddr_clk = dsi->pll.cinfo.clkdco / 4;
return ddr * 1000 * 1000 / (ddr_clk / 1000);
}
static void dsi_cio_timings(struct dsi_data *dsi)
{
u32 r;
u32 ths_prepare, ths_prepare_ths_zero, ths_trail, ths_exit;
u32 tlpx_half, tclk_trail, tclk_zero;
u32 tclk_prepare;
/* calculate timings */
/* 1 * DDR_CLK = 2 * UI */
/* min 40ns + 4*UI max 85ns + 6*UI */
ths_prepare = ns2ddr(dsi, 70) + 2;
/* min 145ns + 10*UI */
ths_prepare_ths_zero = ns2ddr(dsi, 175) + 2;
/* min max(8*UI, 60ns+4*UI) */
ths_trail = ns2ddr(dsi, 60) + 5;
/* min 100ns */
ths_exit = ns2ddr(dsi, 145);
/* tlpx min 50n */
tlpx_half = ns2ddr(dsi, 25);
/* min 60ns */
tclk_trail = ns2ddr(dsi, 60) + 2;
/* min 38ns, max 95ns */
tclk_prepare = ns2ddr(dsi, 65);
/* min tclk-prepare + tclk-zero = 300ns */
tclk_zero = ns2ddr(dsi, 260);
DSSDBG("ths_prepare %u (%uns), ths_prepare_ths_zero %u (%uns)\n",
ths_prepare, ddr2ns(dsi, ths_prepare),
ths_prepare_ths_zero, ddr2ns(dsi, ths_prepare_ths_zero));
DSSDBG("ths_trail %u (%uns), ths_exit %u (%uns)\n",
ths_trail, ddr2ns(dsi, ths_trail),
ths_exit, ddr2ns(dsi, ths_exit));
DSSDBG("tlpx_half %u (%uns), tclk_trail %u (%uns), "
"tclk_zero %u (%uns)\n",
tlpx_half, ddr2ns(dsi, tlpx_half),
tclk_trail, ddr2ns(dsi, tclk_trail),
tclk_zero, ddr2ns(dsi, tclk_zero));
DSSDBG("tclk_prepare %u (%uns)\n",
tclk_prepare, ddr2ns(dsi, tclk_prepare));
/* program timings */
r = dsi_read_reg(dsi, DSI_DSIPHY_CFG0);
r = FLD_MOD(r, ths_prepare, 31, 24);
r = FLD_MOD(r, ths_prepare_ths_zero, 23, 16);
r = FLD_MOD(r, ths_trail, 15, 8);
r = FLD_MOD(r, ths_exit, 7, 0);
dsi_write_reg(dsi, DSI_DSIPHY_CFG0, r);
r = dsi_read_reg(dsi, DSI_DSIPHY_CFG1);
r = FLD_MOD(r, tlpx_half, 20, 16);
r = FLD_MOD(r, tclk_trail, 15, 8);
r = FLD_MOD(r, tclk_zero, 7, 0);
if (dsi->data->quirks & DSI_QUIRK_PHY_DCC) {
r = FLD_MOD(r, 0, 21, 21); /* DCCEN = disable */
r = FLD_MOD(r, 1, 22, 22); /* CLKINP_DIVBY2EN = enable */
r = FLD_MOD(r, 1, 23, 23); /* CLKINP_SEL = enable */
}
dsi_write_reg(dsi, DSI_DSIPHY_CFG1, r);
r = dsi_read_reg(dsi, DSI_DSIPHY_CFG2);
r = FLD_MOD(r, tclk_prepare, 7, 0);
dsi_write_reg(dsi, DSI_DSIPHY_CFG2, r);
}
/* lane masks have lane 0 at lsb. mask_p for positive lines, n for negative */
static void dsi_cio_enable_lane_override(struct dsi_data *dsi,
unsigned int mask_p,
unsigned int mask_n)
{
int i;
u32 l;
u8 lptxscp_start = dsi->num_lanes_supported == 3 ? 22 : 26;
l = 0;
for (i = 0; i < dsi->num_lanes_supported; ++i) {
unsigned int p = dsi->lanes[i].polarity;
if (mask_p & (1 << i))
l |= 1 << (i * 2 + (p ? 0 : 1));
if (mask_n & (1 << i))
l |= 1 << (i * 2 + (p ? 1 : 0));
}
/*
* Bits in REGLPTXSCPDAT4TO0DXDY:
* 17: DY0 18: DX0
* 19: DY1 20: DX1
* 21: DY2 22: DX2
* 23: DY3 24: DX3
* 25: DY4 26: DX4
*/
/* Set the lane override configuration */
/* REGLPTXSCPDAT4TO0DXDY */
REG_FLD_MOD(dsi, DSI_DSIPHY_CFG10, l, lptxscp_start, 17);
/* Enable lane override */
/* ENLPTXSCPDAT */
REG_FLD_MOD(dsi, DSI_DSIPHY_CFG10, 1, 27, 27);
}
static void dsi_cio_disable_lane_override(struct dsi_data *dsi)
{
/* Disable lane override */
REG_FLD_MOD(dsi, DSI_DSIPHY_CFG10, 0, 27, 27); /* ENLPTXSCPDAT */
/* Reset the lane override configuration */
/* REGLPTXSCPDAT4TO0DXDY */
REG_FLD_MOD(dsi, DSI_DSIPHY_CFG10, 0, 22, 17);
}
static int dsi_cio_wait_tx_clk_esc_reset(struct dsi_data *dsi)
{
int t, i;
bool in_use[DSI_MAX_NR_LANES];
static const u8 offsets_old[] = { 28, 27, 26 };
static const u8 offsets_new[] = { 24, 25, 26, 27, 28 };
const u8 *offsets;
if (dsi->data->quirks & DSI_QUIRK_REVERSE_TXCLKESC)
offsets = offsets_old;
else
offsets = offsets_new;
for (i = 0; i < dsi->num_lanes_supported; ++i)
in_use[i] = dsi->lanes[i].function != DSI_LANE_UNUSED;
t = 100000;
while (true) {
u32 l;
int ok;
l = dsi_read_reg(dsi, DSI_DSIPHY_CFG5);
ok = 0;
for (i = 0; i < dsi->num_lanes_supported; ++i) {
if (!in_use[i] || (l & (1 << offsets[i])))
ok++;
}
if (ok == dsi->num_lanes_supported)
break;
if (--t == 0) {
for (i = 0; i < dsi->num_lanes_supported; ++i) {
if (!in_use[i] || (l & (1 << offsets[i])))
continue;
DSSERR("CIO TXCLKESC%d domain not coming " \
"out of reset\n", i);
}
return -EIO;
}
}
return 0;
}
/* return bitmask of enabled lanes, lane0 being the lsb */
static unsigned int dsi_get_lane_mask(struct dsi_data *dsi)
{
unsigned int mask = 0;
int i;
for (i = 0; i < dsi->num_lanes_supported; ++i) {
if (dsi->lanes[i].function != DSI_LANE_UNUSED)
mask |= 1 << i;
}
return mask;
}
/* OMAP4 CONTROL_DSIPHY */
#define OMAP4_DSIPHY_SYSCON_OFFSET 0x78
#define OMAP4_DSI2_LANEENABLE_SHIFT 29
#define OMAP4_DSI2_LANEENABLE_MASK (0x7 << 29)
#define OMAP4_DSI1_LANEENABLE_SHIFT 24
#define OMAP4_DSI1_LANEENABLE_MASK (0x1f << 24)
#define OMAP4_DSI1_PIPD_SHIFT 19
#define OMAP4_DSI1_PIPD_MASK (0x1f << 19)
#define OMAP4_DSI2_PIPD_SHIFT 14
#define OMAP4_DSI2_PIPD_MASK (0x1f << 14)
static int dsi_omap4_mux_pads(struct dsi_data *dsi, unsigned int lanes)
{
u32 enable_mask, enable_shift;
u32 pipd_mask, pipd_shift;
if (dsi->module_id == 0) {
enable_mask = OMAP4_DSI1_LANEENABLE_MASK;
enable_shift = OMAP4_DSI1_LANEENABLE_SHIFT;
pipd_mask = OMAP4_DSI1_PIPD_MASK;
pipd_shift = OMAP4_DSI1_PIPD_SHIFT;
} else if (dsi->module_id == 1) {
enable_mask = OMAP4_DSI2_LANEENABLE_MASK;
enable_shift = OMAP4_DSI2_LANEENABLE_SHIFT;
pipd_mask = OMAP4_DSI2_PIPD_MASK;
pipd_shift = OMAP4_DSI2_PIPD_SHIFT;
} else {
return -ENODEV;
}
return regmap_update_bits(dsi->syscon, OMAP4_DSIPHY_SYSCON_OFFSET,
enable_mask | pipd_mask,
(lanes << enable_shift) | (lanes << pipd_shift));
}
/* OMAP5 CONTROL_DSIPHY */
#define OMAP5_DSIPHY_SYSCON_OFFSET 0x74
#define OMAP5_DSI1_LANEENABLE_SHIFT 24
#define OMAP5_DSI2_LANEENABLE_SHIFT 19
#define OMAP5_DSI_LANEENABLE_MASK 0x1f
static int dsi_omap5_mux_pads(struct dsi_data *dsi, unsigned int lanes)
{
u32 enable_shift;
if (dsi->module_id == 0)
enable_shift = OMAP5_DSI1_LANEENABLE_SHIFT;
else if (dsi->module_id == 1)
enable_shift = OMAP5_DSI2_LANEENABLE_SHIFT;
else
return -ENODEV;
return regmap_update_bits(dsi->syscon, OMAP5_DSIPHY_SYSCON_OFFSET,
OMAP5_DSI_LANEENABLE_MASK << enable_shift,
lanes << enable_shift);
}
static int dsi_enable_pads(struct dsi_data *dsi, unsigned int lane_mask)
{
if (dsi->data->model == DSI_MODEL_OMAP4)
return dsi_omap4_mux_pads(dsi, lane_mask);
if (dsi->data->model == DSI_MODEL_OMAP5)
return dsi_omap5_mux_pads(dsi, lane_mask);
return 0;
}
static void dsi_disable_pads(struct dsi_data *dsi)
{
if (dsi->data->model == DSI_MODEL_OMAP4)
dsi_omap4_mux_pads(dsi, 0);
else if (dsi->data->model == DSI_MODEL_OMAP5)
dsi_omap5_mux_pads(dsi, 0);
}
static int dsi_cio_init(struct dsi_data *dsi)
{
int r;
u32 l;
DSSDBG("DSI CIO init starts");
r = dsi_enable_pads(dsi, dsi_get_lane_mask(dsi));
if (r)
return r;
dsi_enable_scp_clk(dsi);
/* A dummy read using the SCP interface to any DSIPHY register is
* required after DSIPHY reset to complete the reset of the DSI complex
* I/O. */
dsi_read_reg(dsi, DSI_DSIPHY_CFG5);
if (!wait_for_bit_change(dsi, DSI_DSIPHY_CFG5, 30, 1)) {
DSSERR("CIO SCP Clock domain not coming out of reset.\n");
r = -EIO;
goto err_scp_clk_dom;
}
r = dsi_set_lane_config(dsi);
if (r)
goto err_scp_clk_dom;
/* set TX STOP MODE timer to maximum for this operation */
l = dsi_read_reg(dsi, DSI_TIMING1);
l = FLD_MOD(l, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
l = FLD_MOD(l, 1, 14, 14); /* STOP_STATE_X16_IO */
l = FLD_MOD(l, 1, 13, 13); /* STOP_STATE_X4_IO */
l = FLD_MOD(l, 0x1fff, 12, 0); /* STOP_STATE_COUNTER_IO */
dsi_write_reg(dsi, DSI_TIMING1, l);
if (dsi->ulps_enabled) {
unsigned int mask_p;
int i;
DSSDBG("manual ulps exit\n");
/* ULPS is exited by Mark-1 state for 1ms, followed by
* stop state. DSS HW cannot do this via the normal
* ULPS exit sequence, as after reset the DSS HW thinks
* that we are not in ULPS mode, and refuses to send the
* sequence. So we need to send the ULPS exit sequence
* manually by setting positive lines high and negative lines
* low for 1ms.
*/
mask_p = 0;
for (i = 0; i < dsi->num_lanes_supported; ++i) {
if (dsi->lanes[i].function == DSI_LANE_UNUSED)
continue;
mask_p |= 1 << i;
}
dsi_cio_enable_lane_override(dsi, mask_p, 0);
}
r = dsi_cio_power(dsi, DSI_COMPLEXIO_POWER_ON);
if (r)
goto err_cio_pwr;
if (!wait_for_bit_change(dsi, DSI_COMPLEXIO_CFG1, 29, 1)) {
DSSERR("CIO PWR clock domain not coming out of reset.\n");
r = -ENODEV;
goto err_cio_pwr_dom;
}
dsi_if_enable(dsi, true);
dsi_if_enable(dsi, false);
REG_FLD_MOD(dsi, DSI_CLK_CTRL, 1, 20, 20); /* LP_CLK_ENABLE */
r = dsi_cio_wait_tx_clk_esc_reset(dsi);
if (r)
goto err_tx_clk_esc_rst;
if (dsi->ulps_enabled) {
/* Keep Mark-1 state for 1ms (as per DSI spec) */
ktime_t wait = ns_to_ktime(1000 * 1000);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_hrtimeout(&wait, HRTIMER_MODE_REL);
/* Disable the override. The lanes should be set to Mark-11
* state by the HW */
dsi_cio_disable_lane_override(dsi);
}
/* FORCE_TX_STOP_MODE_IO */
REG_FLD_MOD(dsi, DSI_TIMING1, 0, 15, 15);
dsi_cio_timings(dsi);
if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
/* DDR_CLK_ALWAYS_ON */
REG_FLD_MOD(dsi, DSI_CLK_CTRL,
dsi->vm_timings.ddr_clk_always_on, 13, 13);
}
dsi->ulps_enabled = false;
DSSDBG("CIO init done\n");
return 0;
err_tx_clk_esc_rst:
REG_FLD_MOD(dsi, DSI_CLK_CTRL, 0, 20, 20); /* LP_CLK_ENABLE */
err_cio_pwr_dom:
dsi_cio_power(dsi, DSI_COMPLEXIO_POWER_OFF);
err_cio_pwr:
if (dsi->ulps_enabled)
dsi_cio_disable_lane_override(dsi);
err_scp_clk_dom:
dsi_disable_scp_clk(dsi);
dsi_disable_pads(dsi);
return r;
}
static void dsi_cio_uninit(struct dsi_data *dsi)
{
/* DDR_CLK_ALWAYS_ON */
REG_FLD_MOD(dsi, DSI_CLK_CTRL, 0, 13, 13);
dsi_cio_power(dsi, DSI_COMPLEXIO_POWER_OFF);
dsi_disable_scp_clk(dsi);
dsi_disable_pads(dsi);
}
static void dsi_config_tx_fifo(struct dsi_data *dsi,
enum fifo_size size1, enum fifo_size size2,
enum fifo_size size3, enum fifo_size size4)
{
u32 r = 0;
int add = 0;
int i;
dsi->vc[0].tx_fifo_size = size1;
dsi->vc[1].tx_fifo_size = size2;
dsi->vc[2].tx_fifo_size = size3;
dsi->vc[3].tx_fifo_size = size4;
for (i = 0; i < 4; i++) {
u8 v;
int size = dsi->vc[i].tx_fifo_size;
if (add + size > 4) {
DSSERR("Illegal FIFO configuration\n");
BUG();
return;
}
v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4);
r |= v << (8 * i);
/*DSSDBG("TX FIFO vc %d: size %d, add %d\n", i, size, add); */
add += size;
}
dsi_write_reg(dsi, DSI_TX_FIFO_VC_SIZE, r);
}
static void dsi_config_rx_fifo(struct dsi_data *dsi,
enum fifo_size size1, enum fifo_size size2,
enum fifo_size size3, enum fifo_size size4)
{
u32 r = 0;
int add = 0;
int i;
dsi->vc[0].rx_fifo_size = size1;
dsi->vc[1].rx_fifo_size = size2;
dsi->vc[2].rx_fifo_size = size3;
dsi->vc[3].rx_fifo_size = size4;
for (i = 0; i < 4; i++) {
u8 v;
int size = dsi->vc[i].rx_fifo_size;
if (add + size > 4) {
DSSERR("Illegal FIFO configuration\n");
BUG();
return;
}
v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4);
r |= v << (8 * i);
/*DSSDBG("RX FIFO vc %d: size %d, add %d\n", i, size, add); */
add += size;
}
dsi_write_reg(dsi, DSI_RX_FIFO_VC_SIZE, r);
}
static int dsi_force_tx_stop_mode_io(struct dsi_data *dsi)
{
u32 r;
r = dsi_read_reg(dsi, DSI_TIMING1);
r = FLD_MOD(r, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
dsi_write_reg(dsi, DSI_TIMING1, r);
if (!wait_for_bit_change(dsi, DSI_TIMING1, 15, 0)) {
DSSERR("TX_STOP bit not going down\n");
return -EIO;
}
return 0;
}
static bool dsi_vc_is_enabled(struct dsi_data *dsi, int channel)
{
return REG_GET(dsi, DSI_VC_CTRL(channel), 0, 0);
}
static void dsi_packet_sent_handler_vp(void *data, u32 mask)
{
struct dsi_packet_sent_handler_data *vp_data =
(struct dsi_packet_sent_handler_data *) data;
struct dsi_data *dsi = vp_data->dsi;
const int channel = dsi->update_channel;
u8 bit = dsi->te_enabled ? 30 : 31;
if (REG_GET(dsi, DSI_VC_TE(channel), bit, bit) == 0)
complete(vp_data->completion);
}
static int dsi_sync_vc_vp(struct dsi_data *dsi, int channel)
{
DECLARE_COMPLETION_ONSTACK(completion);
struct dsi_packet_sent_handler_data vp_data = {
.dsi = dsi,
.completion = &completion
};
int r = 0;
u8 bit;
bit = dsi->te_enabled ? 30 : 31;
r = dsi_register_isr_vc(dsi, channel, dsi_packet_sent_handler_vp,
&vp_data, DSI_VC_IRQ_PACKET_SENT);
if (r)
goto err0;
/* Wait for completion only if TE_EN/TE_START is still set */
if (REG_GET(dsi, DSI_VC_TE(channel), bit, bit)) {
if (wait_for_completion_timeout(&completion,
msecs_to_jiffies(10)) == 0) {
DSSERR("Failed to complete previous frame transfer\n");
r = -EIO;
goto err1;
}
}
dsi_unregister_isr_vc(dsi, channel, dsi_packet_sent_handler_vp,
&vp_data, DSI_VC_IRQ_PACKET_SENT);
return 0;
err1:
dsi_unregister_isr_vc(dsi, channel, dsi_packet_sent_handler_vp,
&vp_data, DSI_VC_IRQ_PACKET_SENT);
err0:
return r;
}
static void dsi_packet_sent_handler_l4(void *data, u32 mask)
{
struct dsi_packet_sent_handler_data *l4_data =
(struct dsi_packet_sent_handler_data *) data;
struct dsi_data *dsi = l4_data->dsi;
const int channel = dsi->update_channel;
if (REG_GET(dsi, DSI_VC_CTRL(channel), 5, 5) == 0)
complete(l4_data->completion);
}
static int dsi_sync_vc_l4(struct dsi_data *dsi, int channel)
{
DECLARE_COMPLETION_ONSTACK(completion);
struct dsi_packet_sent_handler_data l4_data = {
.dsi = dsi,
.completion = &completion
};
int r = 0;
r = dsi_register_isr_vc(dsi, channel, dsi_packet_sent_handler_l4,
&l4_data, DSI_VC_IRQ_PACKET_SENT);
if (r)
goto err0;
/* Wait for completion only if TX_FIFO_NOT_EMPTY is still set */
if (REG_GET(dsi, DSI_VC_CTRL(channel), 5, 5)) {
if (wait_for_completion_timeout(&completion,
msecs_to_jiffies(10)) == 0) {
DSSERR("Failed to complete previous l4 transfer\n");
r = -EIO;
goto err1;
}
}
dsi_unregister_isr_vc(dsi, channel, dsi_packet_sent_handler_l4,
&l4_data, DSI_VC_IRQ_PACKET_SENT);
return 0;
err1:
dsi_unregister_isr_vc(dsi, channel, dsi_packet_sent_handler_l4,
&l4_data, DSI_VC_IRQ_PACKET_SENT);
err0:
return r;
}
static int dsi_sync_vc(struct dsi_data *dsi, int channel)
{
WARN_ON(!dsi_bus_is_locked(dsi));
WARN_ON(in_interrupt());
if (!dsi_vc_is_enabled(dsi, channel))
return 0;
switch (dsi->vc[channel].source) {
case DSI_VC_SOURCE_VP:
return dsi_sync_vc_vp(dsi, channel);
case DSI_VC_SOURCE_L4:
return dsi_sync_vc_l4(dsi, channel);
default:
BUG();
return -EINVAL;
}
}
static int dsi_vc_enable(struct dsi_data *dsi, int channel, bool enable)
{
DSSDBG("dsi_vc_enable channel %d, enable %d\n",
channel, enable);
enable = enable ? 1 : 0;
REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), enable, 0, 0);
if (!wait_for_bit_change(dsi, DSI_VC_CTRL(channel), 0, enable)) {
DSSERR("Failed to set dsi_vc_enable to %d\n", enable);
return -EIO;
}
return 0;
}
static void dsi_vc_initial_config(struct dsi_data *dsi, int channel)
{
u32 r;
DSSDBG("Initial config of virtual channel %d", channel);
r = dsi_read_reg(dsi, DSI_VC_CTRL(channel));
if (FLD_GET(r, 15, 15)) /* VC_BUSY */
DSSERR("VC(%d) busy when trying to configure it!\n",
channel);
r = FLD_MOD(r, 0, 1, 1); /* SOURCE, 0 = L4 */
r = FLD_MOD(r, 0, 2, 2); /* BTA_SHORT_EN */
r = FLD_MOD(r, 0, 3, 3); /* BTA_LONG_EN */
r = FLD_MOD(r, 0, 4, 4); /* MODE, 0 = command */
r = FLD_MOD(r, 1, 7, 7); /* CS_TX_EN */
r = FLD_MOD(r, 1, 8, 8); /* ECC_TX_EN */
r = FLD_MOD(r, 0, 9, 9); /* MODE_SPEED, high speed on/off */
if (dsi->data->quirks & DSI_QUIRK_VC_OCP_WIDTH)
r = FLD_MOD(r, 3, 11, 10); /* OCP_WIDTH = 32 bit */
r = FLD_MOD(r, 4, 29, 27); /* DMA_RX_REQ_NB = no dma */
r = FLD_MOD(r, 4, 23, 21); /* DMA_TX_REQ_NB = no dma */
dsi_write_reg(dsi, DSI_VC_CTRL(channel), r);
dsi->vc[channel].source = DSI_VC_SOURCE_L4;
}
static int dsi_vc_config_source(struct dsi_data *dsi, int channel,
enum dsi_vc_source source)
{
if (dsi->vc[channel].source == source)
return 0;
DSSDBG("Source config of virtual channel %d", channel);
dsi_sync_vc(dsi, channel);
dsi_vc_enable(dsi, channel, 0);
/* VC_BUSY */
if (!wait_for_bit_change(dsi, DSI_VC_CTRL(channel), 15, 0)) {
DSSERR("vc(%d) busy when trying to config for VP\n", channel);
return -EIO;
}
/* SOURCE, 0 = L4, 1 = video port */
REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), source, 1, 1);
/* DCS_CMD_ENABLE */
if (dsi->data->quirks & DSI_QUIRK_DCS_CMD_CONFIG_VC) {
bool enable = source == DSI_VC_SOURCE_VP;
REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), enable, 30, 30);
}
dsi_vc_enable(dsi, channel, 1);
dsi->vc[channel].source = source;
return 0;
}
static void dsi_vc_enable_hs(struct omap_dss_device *dssdev, int channel,
bool enable)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
DSSDBG("dsi_vc_enable_hs(%d, %d)\n", channel, enable);
WARN_ON(!dsi_bus_is_locked(dsi));
dsi_vc_enable(dsi, channel, 0);
dsi_if_enable(dsi, 0);
REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), enable, 9, 9);
dsi_vc_enable(dsi, channel, 1);
dsi_if_enable(dsi, 1);
dsi_force_tx_stop_mode_io(dsi);
/* start the DDR clock by sending a NULL packet */
if (dsi->vm_timings.ddr_clk_always_on && enable)
dsi_vc_send_null(dsi, channel);
}
static void dsi_vc_flush_long_data(struct dsi_data *dsi, int channel)
{
while (REG_GET(dsi, DSI_VC_CTRL(channel), 20, 20)) {
u32 val;
val = dsi_read_reg(dsi, DSI_VC_SHORT_PACKET_HEADER(channel));
DSSDBG("\t\tb1 %#02x b2 %#02x b3 %#02x b4 %#02x\n",
(val >> 0) & 0xff,
(val >> 8) & 0xff,
(val >> 16) & 0xff,
(val >> 24) & 0xff);
}
}
static void dsi_show_rx_ack_with_err(u16 err)
{
DSSERR("\tACK with ERROR (%#x):\n", err);
if (err & (1 << 0))
DSSERR("\t\tSoT Error\n");
if (err & (1 << 1))
DSSERR("\t\tSoT Sync Error\n");
if (err & (1 << 2))
DSSERR("\t\tEoT Sync Error\n");
if (err & (1 << 3))
DSSERR("\t\tEscape Mode Entry Command Error\n");
if (err & (1 << 4))
DSSERR("\t\tLP Transmit Sync Error\n");
if (err & (1 << 5))
DSSERR("\t\tHS Receive Timeout Error\n");
if (err & (1 << 6))
DSSERR("\t\tFalse Control Error\n");
if (err & (1 << 7))
DSSERR("\t\t(reserved7)\n");
if (err & (1 << 8))
DSSERR("\t\tECC Error, single-bit (corrected)\n");
if (err & (1 << 9))
DSSERR("\t\tECC Error, multi-bit (not corrected)\n");
if (err & (1 << 10))
DSSERR("\t\tChecksum Error\n");
if (err & (1 << 11))
DSSERR("\t\tData type not recognized\n");
if (err & (1 << 12))
DSSERR("\t\tInvalid VC ID\n");
if (err & (1 << 13))
DSSERR("\t\tInvalid Transmission Length\n");
if (err & (1 << 14))
DSSERR("\t\t(reserved14)\n");
if (err & (1 << 15))
DSSERR("\t\tDSI Protocol Violation\n");
}
static u16 dsi_vc_flush_receive_data(struct dsi_data *dsi, int channel)
{
/* RX_FIFO_NOT_EMPTY */
while (REG_GET(dsi, DSI_VC_CTRL(channel), 20, 20)) {
u32 val;
u8 dt;
val = dsi_read_reg(dsi, DSI_VC_SHORT_PACKET_HEADER(channel));
DSSERR("\trawval %#08x\n", val);
dt = FLD_GET(val, 5, 0);
if (dt == MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT) {
u16 err = FLD_GET(val, 23, 8);
dsi_show_rx_ack_with_err(err);
} else if (dt == MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE) {
DSSERR("\tDCS short response, 1 byte: %#x\n",
FLD_GET(val, 23, 8));
} else if (dt == MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE) {
DSSERR("\tDCS short response, 2 byte: %#x\n",
FLD_GET(val, 23, 8));
} else if (dt == MIPI_DSI_RX_DCS_LONG_READ_RESPONSE) {
DSSERR("\tDCS long response, len %d\n",
FLD_GET(val, 23, 8));
dsi_vc_flush_long_data(dsi, channel);
} else {
DSSERR("\tunknown datatype 0x%02x\n", dt);
}
}
return 0;
}
static int dsi_vc_send_bta(struct dsi_data *dsi, int channel)
{
if (dsi->debug_write || dsi->debug_read)
DSSDBG("dsi_vc_send_bta %d\n", channel);
WARN_ON(!dsi_bus_is_locked(dsi));
/* RX_FIFO_NOT_EMPTY */
if (REG_GET(dsi, DSI_VC_CTRL(channel), 20, 20)) {
DSSERR("rx fifo not empty when sending BTA, dumping data:\n");
dsi_vc_flush_receive_data(dsi, channel);
}
REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), 1, 6, 6); /* BTA_EN */
/* flush posted write */
dsi_read_reg(dsi, DSI_VC_CTRL(channel));
return 0;
}
static int dsi_vc_send_bta_sync(struct omap_dss_device *dssdev, int channel)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
DECLARE_COMPLETION_ONSTACK(completion);
int r = 0;
u32 err;
r = dsi_register_isr_vc(dsi, channel, dsi_completion_handler,
&completion, DSI_VC_IRQ_BTA);
if (r)
goto err0;
r = dsi_register_isr(dsi, dsi_completion_handler, &completion,
DSI_IRQ_ERROR_MASK);
if (r)
goto err1;
r = dsi_vc_send_bta(dsi, channel);
if (r)
goto err2;
if (wait_for_completion_timeout(&completion,
msecs_to_jiffies(500)) == 0) {
DSSERR("Failed to receive BTA\n");
r = -EIO;
goto err2;
}
err = dsi_get_errors(dsi);
if (err) {
DSSERR("Error while sending BTA: %x\n", err);
r = -EIO;
goto err2;
}
err2:
dsi_unregister_isr(dsi, dsi_completion_handler, &completion,
DSI_IRQ_ERROR_MASK);
err1:
dsi_unregister_isr_vc(dsi, channel, dsi_completion_handler,
&completion, DSI_VC_IRQ_BTA);
err0:
return r;
}
static inline void dsi_vc_write_long_header(struct dsi_data *dsi, int channel,
u8 data_type, u16 len, u8 ecc)
{
u32 val;
u8 data_id;
WARN_ON(!dsi_bus_is_locked(dsi));
data_id = data_type | dsi->vc[channel].vc_id << 6;
val = FLD_VAL(data_id, 7, 0) | FLD_VAL(len, 23, 8) |
FLD_VAL(ecc, 31, 24);
dsi_write_reg(dsi, DSI_VC_LONG_PACKET_HEADER(channel), val);
}
static inline void dsi_vc_write_long_payload(struct dsi_data *dsi, int channel,
u8 b1, u8 b2, u8 b3, u8 b4)
{
u32 val;
val = b4 << 24 | b3 << 16 | b2 << 8 | b1 << 0;
/* DSSDBG("\twriting %02x, %02x, %02x, %02x (%#010x)\n",
b1, b2, b3, b4, val); */
dsi_write_reg(dsi, DSI_VC_LONG_PACKET_PAYLOAD(channel), val);
}
static int dsi_vc_send_long(struct dsi_data *dsi, int channel, u8 data_type,
u8 *data, u16 len, u8 ecc)
{
/*u32 val; */
int i;
u8 *p;
int r = 0;
u8 b1, b2, b3, b4;
if (dsi->debug_write)
DSSDBG("dsi_vc_send_long, %d bytes\n", len);
/* len + header */
if (dsi->vc[channel].tx_fifo_size * 32 * 4 < len + 4) {
DSSERR("unable to send long packet: packet too long.\n");
return -EINVAL;
}
dsi_vc_config_source(dsi, channel, DSI_VC_SOURCE_L4);
dsi_vc_write_long_header(dsi, channel, data_type, len, ecc);
p = data;
for (i = 0; i < len >> 2; i++) {
if (dsi->debug_write)
DSSDBG("\tsending full packet %d\n", i);
b1 = *p++;
b2 = *p++;
b3 = *p++;
b4 = *p++;
dsi_vc_write_long_payload(dsi, channel, b1, b2, b3, b4);
}
i = len % 4;
if (i) {
b1 = 0; b2 = 0; b3 = 0;
if (dsi->debug_write)
DSSDBG("\tsending remainder bytes %d\n", i);
switch (i) {
case 3:
b1 = *p++;
b2 = *p++;
b3 = *p++;
break;
case 2:
b1 = *p++;
b2 = *p++;
break;
case 1:
b1 = *p++;
break;
}
dsi_vc_write_long_payload(dsi, channel, b1, b2, b3, 0);
}
return r;
}
static int dsi_vc_send_short(struct dsi_data *dsi, int channel, u8 data_type,
u16 data, u8 ecc)
{
u32 r;
u8 data_id;
WARN_ON(!dsi_bus_is_locked(dsi));
if (dsi->debug_write)
DSSDBG("dsi_vc_send_short(ch%d, dt %#x, b1 %#x, b2 %#x)\n",
channel,
data_type, data & 0xff, (data >> 8) & 0xff);
dsi_vc_config_source(dsi, channel, DSI_VC_SOURCE_L4);
if (FLD_GET(dsi_read_reg(dsi, DSI_VC_CTRL(channel)), 16, 16)) {
DSSERR("ERROR FIFO FULL, aborting transfer\n");
return -EINVAL;
}
data_id = data_type | dsi->vc[channel].vc_id << 6;
r = (data_id << 0) | (data << 8) | (ecc << 24);
dsi_write_reg(dsi, DSI_VC_SHORT_PACKET_HEADER(channel), r);
return 0;
}
static int dsi_vc_send_null(struct dsi_data *dsi, int channel)
{
return dsi_vc_send_long(dsi, channel, MIPI_DSI_NULL_PACKET, NULL, 0, 0);
}
static int dsi_vc_write_nosync_common(struct dsi_data *dsi, int channel,
u8 *data, int len,
enum dss_dsi_content_type type)
{
int r;
if (len == 0) {
BUG_ON(type == DSS_DSI_CONTENT_DCS);
r = dsi_vc_send_short(dsi, channel,
MIPI_DSI_GENERIC_SHORT_WRITE_0_PARAM, 0, 0);
} else if (len == 1) {
r = dsi_vc_send_short(dsi, channel,
type == DSS_DSI_CONTENT_GENERIC ?
MIPI_DSI_GENERIC_SHORT_WRITE_1_PARAM :
MIPI_DSI_DCS_SHORT_WRITE, data[0], 0);
} else if (len == 2) {
r = dsi_vc_send_short(dsi, channel,
type == DSS_DSI_CONTENT_GENERIC ?
MIPI_DSI_GENERIC_SHORT_WRITE_2_PARAM :
MIPI_DSI_DCS_SHORT_WRITE_PARAM,
data[0] | (data[1] << 8), 0);
} else {
r = dsi_vc_send_long(dsi, channel,
type == DSS_DSI_CONTENT_GENERIC ?
MIPI_DSI_GENERIC_LONG_WRITE :
MIPI_DSI_DCS_LONG_WRITE, data, len, 0);
}
return r;
}
static int dsi_vc_dcs_write_nosync(struct omap_dss_device *dssdev, int channel,
u8 *data, int len)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
return dsi_vc_write_nosync_common(dsi, channel, data, len,
DSS_DSI_CONTENT_DCS);
}
static int dsi_vc_generic_write_nosync(struct omap_dss_device *dssdev, int channel,
u8 *data, int len)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
return dsi_vc_write_nosync_common(dsi, channel, data, len,
DSS_DSI_CONTENT_GENERIC);
}
static int dsi_vc_write_common(struct omap_dss_device *dssdev,
int channel, u8 *data, int len,
enum dss_dsi_content_type type)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
int r;
r = dsi_vc_write_nosync_common(dsi, channel, data, len, type);
if (r)
goto err;
r = dsi_vc_send_bta_sync(dssdev, channel);
if (r)
goto err;
/* RX_FIFO_NOT_EMPTY */
if (REG_GET(dsi, DSI_VC_CTRL(channel), 20, 20)) {
DSSERR("rx fifo not empty after write, dumping data:\n");
dsi_vc_flush_receive_data(dsi, channel);
r = -EIO;
goto err;
}
return 0;
err:
DSSERR("dsi_vc_write_common(ch %d, cmd 0x%02x, len %d) failed\n",
channel, data[0], len);
return r;
}
static int dsi_vc_dcs_write(struct omap_dss_device *dssdev, int channel, u8 *data,
int len)
{
return dsi_vc_write_common(dssdev, channel, data, len,
DSS_DSI_CONTENT_DCS);
}
static int dsi_vc_generic_write(struct omap_dss_device *dssdev, int channel, u8 *data,
int len)
{
return dsi_vc_write_common(dssdev, channel, data, len,
DSS_DSI_CONTENT_GENERIC);
}
static int dsi_vc_dcs_send_read_request(struct dsi_data *dsi, int channel,
u8 dcs_cmd)
{
int r;
if (dsi->debug_read)
DSSDBG("dsi_vc_dcs_send_read_request(ch%d, dcs_cmd %x)\n",
channel, dcs_cmd);
r = dsi_vc_send_short(dsi, channel, MIPI_DSI_DCS_READ, dcs_cmd, 0);
if (r) {
DSSERR("dsi_vc_dcs_send_read_request(ch %d, cmd 0x%02x)"
" failed\n", channel, dcs_cmd);
return r;
}
return 0;
}
static int dsi_vc_generic_send_read_request(struct dsi_data *dsi, int channel,
u8 *reqdata, int reqlen)
{
u16 data;
u8 data_type;
int r;
if (dsi->debug_read)
DSSDBG("dsi_vc_generic_send_read_request(ch %d, reqlen %d)\n",
channel, reqlen);
if (reqlen == 0) {
data_type = MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM;
data = 0;
} else if (reqlen == 1) {
data_type = MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM;
data = reqdata[0];
} else if (reqlen == 2) {
data_type = MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM;
data = reqdata[0] | (reqdata[1] << 8);
} else {
BUG();
return -EINVAL;
}
r = dsi_vc_send_short(dsi, channel, data_type, data, 0);
if (r) {
DSSERR("dsi_vc_generic_send_read_request(ch %d, reqlen %d)"
" failed\n", channel, reqlen);
return r;
}
return 0;
}
static int dsi_vc_read_rx_fifo(struct dsi_data *dsi, int channel, u8 *buf,
int buflen, enum dss_dsi_content_type type)
{
u32 val;
u8 dt;
int r;
/* RX_FIFO_NOT_EMPTY */
if (REG_GET(dsi, DSI_VC_CTRL(channel), 20, 20) == 0) {
DSSERR("RX fifo empty when trying to read.\n");
r = -EIO;
goto err;
}
val = dsi_read_reg(dsi, DSI_VC_SHORT_PACKET_HEADER(channel));
if (dsi->debug_read)
DSSDBG("\theader: %08x\n", val);
dt = FLD_GET(val, 5, 0);
if (dt == MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT) {
u16 err = FLD_GET(val, 23, 8);
dsi_show_rx_ack_with_err(err);
r = -EIO;
goto err;
} else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE :
MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE)) {
u8 data = FLD_GET(val, 15, 8);
if (dsi->debug_read)
DSSDBG("\t%s short response, 1 byte: %02x\n",
type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
"DCS", data);
if (buflen < 1) {
r = -EIO;
goto err;
}
buf[0] = data;
return 1;
} else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE :
MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE)) {
u16 data = FLD_GET(val, 23, 8);
if (dsi->debug_read)
DSSDBG("\t%s short response, 2 byte: %04x\n",
type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
"DCS", data);
if (buflen < 2) {
r = -EIO;
goto err;
}
buf[0] = data & 0xff;
buf[1] = (data >> 8) & 0xff;
return 2;
} else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE :
MIPI_DSI_RX_DCS_LONG_READ_RESPONSE)) {
int w;
int len = FLD_GET(val, 23, 8);
if (dsi->debug_read)
DSSDBG("\t%s long response, len %d\n",
type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
"DCS", len);
if (len > buflen) {
r = -EIO;
goto err;
}
/* two byte checksum ends the packet, not included in len */
for (w = 0; w < len + 2;) {
int b;
val = dsi_read_reg(dsi,
DSI_VC_SHORT_PACKET_HEADER(channel));
if (dsi->debug_read)
DSSDBG("\t\t%02x %02x %02x %02x\n",
(val >> 0) & 0xff,
(val >> 8) & 0xff,
(val >> 16) & 0xff,
(val >> 24) & 0xff);
for (b = 0; b < 4; ++b) {
if (w < len)
buf[w] = (val >> (b * 8)) & 0xff;
/* we discard the 2 byte checksum */
++w;
}
}
return len;
} else {
DSSERR("\tunknown datatype 0x%02x\n", dt);
r = -EIO;
goto err;
}
err:
DSSERR("dsi_vc_read_rx_fifo(ch %d type %s) failed\n", channel,
type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" : "DCS");
return r;
}
static int dsi_vc_dcs_read(struct omap_dss_device *dssdev, int channel, u8 dcs_cmd,
u8 *buf, int buflen)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
int r;
r = dsi_vc_dcs_send_read_request(dsi, channel, dcs_cmd);
if (r)
goto err;
r = dsi_vc_send_bta_sync(dssdev, channel);
if (r)
goto err;
r = dsi_vc_read_rx_fifo(dsi, channel, buf, buflen,
DSS_DSI_CONTENT_DCS);
if (r < 0)
goto err;
if (r != buflen) {
r = -EIO;
goto err;
}
return 0;
err:
DSSERR("dsi_vc_dcs_read(ch %d, cmd 0x%02x) failed\n", channel, dcs_cmd);
return r;
}
static int dsi_vc_generic_read(struct omap_dss_device *dssdev, int channel,
u8 *reqdata, int reqlen, u8 *buf, int buflen)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
int r;
r = dsi_vc_generic_send_read_request(dsi, channel, reqdata, reqlen);
if (r)
return r;
r = dsi_vc_send_bta_sync(dssdev, channel);
if (r)
return r;
r = dsi_vc_read_rx_fifo(dsi, channel, buf, buflen,
DSS_DSI_CONTENT_GENERIC);
if (r < 0)
return r;
if (r != buflen) {
r = -EIO;
return r;
}
return 0;
}
static int dsi_vc_set_max_rx_packet_size(struct omap_dss_device *dssdev, int channel,
u16 len)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
return dsi_vc_send_short(dsi, channel,
MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, len, 0);
}
static int dsi_enter_ulps(struct dsi_data *dsi)
{
DECLARE_COMPLETION_ONSTACK(completion);
int r, i;
unsigned int mask;
DSSDBG("Entering ULPS");
WARN_ON(!dsi_bus_is_locked(dsi));
WARN_ON(dsi->ulps_enabled);
if (dsi->ulps_enabled)
return 0;
/* DDR_CLK_ALWAYS_ON */
if (REG_GET(dsi, DSI_CLK_CTRL, 13, 13)) {
dsi_if_enable(dsi, 0);
REG_FLD_MOD(dsi, DSI_CLK_CTRL, 0, 13, 13);
dsi_if_enable(dsi, 1);
}
dsi_sync_vc(dsi, 0);
dsi_sync_vc(dsi, 1);
dsi_sync_vc(dsi, 2);
dsi_sync_vc(dsi, 3);
dsi_force_tx_stop_mode_io(dsi);
dsi_vc_enable(dsi, 0, false);
dsi_vc_enable(dsi, 1, false);
dsi_vc_enable(dsi, 2, false);
dsi_vc_enable(dsi, 3, false);
if (REG_GET(dsi, DSI_COMPLEXIO_CFG2, 16, 16)) { /* HS_BUSY */
DSSERR("HS busy when enabling ULPS\n");
return -EIO;
}
if (REG_GET(dsi, DSI_COMPLEXIO_CFG2, 17, 17)) { /* LP_BUSY */
DSSERR("LP busy when enabling ULPS\n");
return -EIO;
}
r = dsi_register_isr_cio(dsi, dsi_completion_handler, &completion,
DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
if (r)
return r;
mask = 0;
for (i = 0; i < dsi->num_lanes_supported; ++i) {
if (dsi->lanes[i].function == DSI_LANE_UNUSED)
continue;
mask |= 1 << i;
}
/* Assert TxRequestEsc for data lanes and TxUlpsClk for clk lane */
/* LANEx_ULPS_SIG2 */
REG_FLD_MOD(dsi, DSI_COMPLEXIO_CFG2, mask, 9, 5);
/* flush posted write and wait for SCP interface to finish the write */
dsi_read_reg(dsi, DSI_COMPLEXIO_CFG2);
if (wait_for_completion_timeout(&completion,
msecs_to_jiffies(1000)) == 0) {
DSSERR("ULPS enable timeout\n");
r = -EIO;
goto err;
}
dsi_unregister_isr_cio(dsi, dsi_completion_handler, &completion,
DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
/* Reset LANEx_ULPS_SIG2 */
REG_FLD_MOD(dsi, DSI_COMPLEXIO_CFG2, 0, 9, 5);
/* flush posted write and wait for SCP interface to finish the write */
dsi_read_reg(dsi, DSI_COMPLEXIO_CFG2);
dsi_cio_power(dsi, DSI_COMPLEXIO_POWER_ULPS);
dsi_if_enable(dsi, false);
dsi->ulps_enabled = true;
return 0;
err:
dsi_unregister_isr_cio(dsi, dsi_completion_handler, &completion,
DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
return r;
}
static void dsi_set_lp_rx_timeout(struct dsi_data *dsi, unsigned int ticks,
bool x4, bool x16)
{
unsigned long fck;
unsigned long total_ticks;
u32 r;
BUG_ON(ticks > 0x1fff);
/* ticks in DSI_FCK */
fck = dsi_fclk_rate(dsi);
r = dsi_read_reg(dsi, DSI_TIMING2);
r = FLD_MOD(r, 1, 15, 15); /* LP_RX_TO */
r = FLD_MOD(r, x16 ? 1 : 0, 14, 14); /* LP_RX_TO_X16 */
r = FLD_MOD(r, x4 ? 1 : 0, 13, 13); /* LP_RX_TO_X4 */
r = FLD_MOD(r, ticks, 12, 0); /* LP_RX_COUNTER */
dsi_write_reg(dsi, DSI_TIMING2, r);
total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
DSSDBG("LP_RX_TO %lu ticks (%#x%s%s) = %lu ns\n",
total_ticks,
ticks, x4 ? " x4" : "", x16 ? " x16" : "",
(total_ticks * 1000) / (fck / 1000 / 1000));
}
static void dsi_set_ta_timeout(struct dsi_data *dsi, unsigned int ticks,
bool x8, bool x16)
{
unsigned long fck;
unsigned long total_ticks;
u32 r;
BUG_ON(ticks > 0x1fff);
/* ticks in DSI_FCK */
fck = dsi_fclk_rate(dsi);
r = dsi_read_reg(dsi, DSI_TIMING1);
r = FLD_MOD(r, 1, 31, 31); /* TA_TO */
r = FLD_MOD(r, x16 ? 1 : 0, 30, 30); /* TA_TO_X16 */
r = FLD_MOD(r, x8 ? 1 : 0, 29, 29); /* TA_TO_X8 */
r = FLD_MOD(r, ticks, 28, 16); /* TA_TO_COUNTER */
dsi_write_reg(dsi, DSI_TIMING1, r);
total_ticks = ticks * (x16 ? 16 : 1) * (x8 ? 8 : 1);
DSSDBG("TA_TO %lu ticks (%#x%s%s) = %lu ns\n",
total_ticks,
ticks, x8 ? " x8" : "", x16 ? " x16" : "",
(total_ticks * 1000) / (fck / 1000 / 1000));
}
static void dsi_set_stop_state_counter(struct dsi_data *dsi, unsigned int ticks,
bool x4, bool x16)
{
unsigned long fck;
unsigned long total_ticks;
u32 r;
BUG_ON(ticks > 0x1fff);
/* ticks in DSI_FCK */
fck = dsi_fclk_rate(dsi);
r = dsi_read_reg(dsi, DSI_TIMING1);
r = FLD_MOD(r, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
r = FLD_MOD(r, x16 ? 1 : 0, 14, 14); /* STOP_STATE_X16_IO */
r = FLD_MOD(r, x4 ? 1 : 0, 13, 13); /* STOP_STATE_X4_IO */
r = FLD_MOD(r, ticks, 12, 0); /* STOP_STATE_COUNTER_IO */
dsi_write_reg(dsi, DSI_TIMING1, r);
total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
DSSDBG("STOP_STATE_COUNTER %lu ticks (%#x%s%s) = %lu ns\n",
total_ticks,
ticks, x4 ? " x4" : "", x16 ? " x16" : "",
(total_ticks * 1000) / (fck / 1000 / 1000));
}
static void dsi_set_hs_tx_timeout(struct dsi_data *dsi, unsigned int ticks,
bool x4, bool x16)
{
unsigned long fck;
unsigned long total_ticks;
u32 r;
BUG_ON(ticks > 0x1fff);
/* ticks in TxByteClkHS */
fck = dsi_get_txbyteclkhs(dsi);
r = dsi_read_reg(dsi, DSI_TIMING2);
r = FLD_MOD(r, 1, 31, 31); /* HS_TX_TO */
r = FLD_MOD(r, x16 ? 1 : 0, 30, 30); /* HS_TX_TO_X16 */
r = FLD_MOD(r, x4 ? 1 : 0, 29, 29); /* HS_TX_TO_X8 (4 really) */
r = FLD_MOD(r, ticks, 28, 16); /* HS_TX_TO_COUNTER */
dsi_write_reg(dsi, DSI_TIMING2, r);
total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
DSSDBG("HS_TX_TO %lu ticks (%#x%s%s) = %lu ns\n",
total_ticks,
ticks, x4 ? " x4" : "", x16 ? " x16" : "",
(total_ticks * 1000) / (fck / 1000 / 1000));
}
static void dsi_config_vp_num_line_buffers(struct dsi_data *dsi)
{
int num_line_buffers;
if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
int bpp = dsi_get_pixel_size(dsi->pix_fmt);
struct videomode *vm = &dsi->vm;
/*
* Don't use line buffers if width is greater than the video
* port's line buffer size
*/
if (dsi->line_buffer_size <= vm->hactive * bpp / 8)
num_line_buffers = 0;
else
num_line_buffers = 2;
} else {
/* Use maximum number of line buffers in command mode */
num_line_buffers = 2;
}
/* LINE_BUFFER */
REG_FLD_MOD(dsi, DSI_CTRL, num_line_buffers, 13, 12);
}
static void dsi_config_vp_sync_events(struct dsi_data *dsi)
{
bool sync_end;
u32 r;
if (dsi->vm_timings.trans_mode == OMAP_DSS_DSI_PULSE_MODE)
sync_end = true;
else
sync_end = false;
r = dsi_read_reg(dsi, DSI_CTRL);
r = FLD_MOD(r, 1, 9, 9); /* VP_DE_POL */
r = FLD_MOD(r, 1, 10, 10); /* VP_HSYNC_POL */
r = FLD_MOD(r, 1, 11, 11); /* VP_VSYNC_POL */
r = FLD_MOD(r, 1, 15, 15); /* VP_VSYNC_START */
r = FLD_MOD(r, sync_end, 16, 16); /* VP_VSYNC_END */
r = FLD_MOD(r, 1, 17, 17); /* VP_HSYNC_START */
r = FLD_MOD(r, sync_end, 18, 18); /* VP_HSYNC_END */
dsi_write_reg(dsi, DSI_CTRL, r);
}
static void dsi_config_blanking_modes(struct dsi_data *dsi)
{
int blanking_mode = dsi->vm_timings.blanking_mode;
int hfp_blanking_mode = dsi->vm_timings.hfp_blanking_mode;
int hbp_blanking_mode = dsi->vm_timings.hbp_blanking_mode;
int hsa_blanking_mode = dsi->vm_timings.hsa_blanking_mode;
u32 r;
/*
* 0 = TX FIFO packets sent or LPS in corresponding blanking periods
* 1 = Long blanking packets are sent in corresponding blanking periods
*/
r = dsi_read_reg(dsi, DSI_CTRL);
r = FLD_MOD(r, blanking_mode, 20, 20); /* BLANKING_MODE */
r = FLD_MOD(r, hfp_blanking_mode, 21, 21); /* HFP_BLANKING */
r = FLD_MOD(r, hbp_blanking_mode, 22, 22); /* HBP_BLANKING */
r = FLD_MOD(r, hsa_blanking_mode, 23, 23); /* HSA_BLANKING */
dsi_write_reg(dsi, DSI_CTRL, r);
}
/*
* According to section 'HS Command Mode Interleaving' in OMAP TRM, Scenario 3
* results in maximum transition time for data and clock lanes to enter and
* exit HS mode. Hence, this is the scenario where the least amount of command
* mode data can be interleaved. We program the minimum amount of TXBYTECLKHS
* clock cycles that can be used to interleave command mode data in HS so that
* all scenarios are satisfied.
*/
static int dsi_compute_interleave_hs(int blank, bool ddr_alwon, int enter_hs,
int exit_hs, int exiths_clk, int ddr_pre, int ddr_post)
{
int transition;
/*
* If DDR_CLK_ALWAYS_ON is set, we need to consider HS mode transition
* time of data lanes only, if it isn't set, we need to consider HS
* transition time of both data and clock lanes. HS transition time
* of Scenario 3 is considered.
*/
if (ddr_alwon) {
transition = enter_hs + exit_hs + max(enter_hs, 2) + 1;
} else {
int trans1, trans2;
trans1 = ddr_pre + enter_hs + exit_hs + max(enter_hs, 2) + 1;
trans2 = ddr_pre + enter_hs + exiths_clk + ddr_post + ddr_pre +
enter_hs + 1;
transition = max(trans1, trans2);
}
return blank > transition ? blank - transition : 0;
}
/*
* According to section 'LP Command Mode Interleaving' in OMAP TRM, Scenario 1
* results in maximum transition time for data lanes to enter and exit LP mode.
* Hence, this is the scenario where the least amount of command mode data can
* be interleaved. We program the minimum amount of bytes that can be
* interleaved in LP so that all scenarios are satisfied.
*/
static int dsi_compute_interleave_lp(int blank, int enter_hs, int exit_hs,
int lp_clk_div, int tdsi_fclk)
{
int trans_lp; /* time required for a LP transition, in TXBYTECLKHS */
int tlp_avail; /* time left for interleaving commands, in CLKIN4DDR */
int ttxclkesc; /* period of LP transmit escape clock, in CLKIN4DDR */
int thsbyte_clk = 16; /* Period of TXBYTECLKHS clock, in CLKIN4DDR */
int lp_inter; /* cmd mode data that can be interleaved, in bytes */
/* maximum LP transition time according to Scenario 1 */
trans_lp = exit_hs + max(enter_hs, 2) + 1;
/* CLKIN4DDR = 16 * TXBYTECLKHS */
tlp_avail = thsbyte_clk * (blank - trans_lp);
ttxclkesc = tdsi_fclk * lp_clk_div;
lp_inter = ((tlp_avail - 8 * thsbyte_clk - 5 * tdsi_fclk) / ttxclkesc -
26) / 16;
return max(lp_inter, 0);
}
static void dsi_config_cmd_mode_interleaving(struct dsi_data *dsi)
{
int blanking_mode;
int hfp_blanking_mode, hbp_blanking_mode, hsa_blanking_mode;
int hsa, hfp, hbp, width_bytes, bllp, lp_clk_div;
int ddr_clk_pre, ddr_clk_post, enter_hs_mode_lat, exit_hs_mode_lat;
int tclk_trail, ths_exit, exiths_clk;
bool ddr_alwon;
struct videomode *vm = &dsi->vm;
int bpp = dsi_get_pixel_size(dsi->pix_fmt);
int ndl = dsi->num_lanes_used - 1;
int dsi_fclk_hsdiv = dsi->user_dsi_cinfo.mX[HSDIV_DSI] + 1;
int hsa_interleave_hs = 0, hsa_interleave_lp = 0;
int hfp_interleave_hs = 0, hfp_interleave_lp = 0;
int hbp_interleave_hs = 0, hbp_interleave_lp = 0;
int bl_interleave_hs = 0, bl_interleave_lp = 0;
u32 r;
r = dsi_read_reg(dsi, DSI_CTRL);
blanking_mode = FLD_GET(r, 20, 20);
hfp_blanking_mode = FLD_GET(r, 21, 21);
hbp_blanking_mode = FLD_GET(r, 22, 22);
hsa_blanking_mode = FLD_GET(r, 23, 23);
r = dsi_read_reg(dsi, DSI_VM_TIMING1);
hbp = FLD_GET(r, 11, 0);
hfp = FLD_GET(r, 23, 12);
hsa = FLD_GET(r, 31, 24);
r = dsi_read_reg(dsi, DSI_CLK_TIMING);
ddr_clk_post = FLD_GET(r, 7, 0);
ddr_clk_pre = FLD_GET(r, 15, 8);
r = dsi_read_reg(dsi, DSI_VM_TIMING7);
exit_hs_mode_lat = FLD_GET(r, 15, 0);
enter_hs_mode_lat = FLD_GET(r, 31, 16);
r = dsi_read_reg(dsi, DSI_CLK_CTRL);
lp_clk_div = FLD_GET(r, 12, 0);
ddr_alwon = FLD_GET(r, 13, 13);
r = dsi_read_reg(dsi, DSI_DSIPHY_CFG0);
ths_exit = FLD_GET(r, 7, 0);
r = dsi_read_reg(dsi, DSI_DSIPHY_CFG1);
tclk_trail = FLD_GET(r, 15, 8);
exiths_clk = ths_exit + tclk_trail;
width_bytes = DIV_ROUND_UP(vm->hactive * bpp, 8);
bllp = hbp + hfp + hsa + DIV_ROUND_UP(width_bytes + 6, ndl);
if (!hsa_blanking_mode) {
hsa_interleave_hs = dsi_compute_interleave_hs(hsa, ddr_alwon,
enter_hs_mode_lat, exit_hs_mode_lat,
exiths_clk, ddr_clk_pre, ddr_clk_post);
hsa_interleave_lp = dsi_compute_interleave_lp(hsa,
enter_hs_mode_lat, exit_hs_mode_lat,
lp_clk_div, dsi_fclk_hsdiv);
}
if (!hfp_blanking_mode) {
hfp_interleave_hs = dsi_compute_interleave_hs(hfp, ddr_alwon,
enter_hs_mode_lat, exit_hs_mode_lat,
exiths_clk, ddr_clk_pre, ddr_clk_post);
hfp_interleave_lp = dsi_compute_interleave_lp(hfp,
enter_hs_mode_lat, exit_hs_mode_lat,
lp_clk_div, dsi_fclk_hsdiv);
}
if (!hbp_blanking_mode) {
hbp_interleave_hs = dsi_compute_interleave_hs(hbp, ddr_alwon,
enter_hs_mode_lat, exit_hs_mode_lat,
exiths_clk, ddr_clk_pre, ddr_clk_post);
hbp_interleave_lp = dsi_compute_interleave_lp(hbp,
enter_hs_mode_lat, exit_hs_mode_lat,
lp_clk_div, dsi_fclk_hsdiv);
}
if (!blanking_mode) {
bl_interleave_hs = dsi_compute_interleave_hs(bllp, ddr_alwon,
enter_hs_mode_lat, exit_hs_mode_lat,
exiths_clk, ddr_clk_pre, ddr_clk_post);
bl_interleave_lp = dsi_compute_interleave_lp(bllp,
enter_hs_mode_lat, exit_hs_mode_lat,
lp_clk_div, dsi_fclk_hsdiv);
}
DSSDBG("DSI HS interleaving(TXBYTECLKHS) HSA %d, HFP %d, HBP %d, BLLP %d\n",
hsa_interleave_hs, hfp_interleave_hs, hbp_interleave_hs,
bl_interleave_hs);
DSSDBG("DSI LP interleaving(bytes) HSA %d, HFP %d, HBP %d, BLLP %d\n",
hsa_interleave_lp, hfp_interleave_lp, hbp_interleave_lp,
bl_interleave_lp);
r = dsi_read_reg(dsi, DSI_VM_TIMING4);
r = FLD_MOD(r, hsa_interleave_hs, 23, 16);
r = FLD_MOD(r, hfp_interleave_hs, 15, 8);
r = FLD_MOD(r, hbp_interleave_hs, 7, 0);
dsi_write_reg(dsi, DSI_VM_TIMING4, r);
r = dsi_read_reg(dsi, DSI_VM_TIMING5);
r = FLD_MOD(r, hsa_interleave_lp, 23, 16);
r = FLD_MOD(r, hfp_interleave_lp, 15, 8);
r = FLD_MOD(r, hbp_interleave_lp, 7, 0);
dsi_write_reg(dsi, DSI_VM_TIMING5, r);
r = dsi_read_reg(dsi, DSI_VM_TIMING6);
r = FLD_MOD(r, bl_interleave_hs, 31, 15);
r = FLD_MOD(r, bl_interleave_lp, 16, 0);
dsi_write_reg(dsi, DSI_VM_TIMING6, r);
}
static int dsi_proto_config(struct dsi_data *dsi)
{
u32 r;
int buswidth = 0;
dsi_config_tx_fifo(dsi, DSI_FIFO_SIZE_32,
DSI_FIFO_SIZE_32,
DSI_FIFO_SIZE_32,
DSI_FIFO_SIZE_32);
dsi_config_rx_fifo(dsi, DSI_FIFO_SIZE_32,
DSI_FIFO_SIZE_32,
DSI_FIFO_SIZE_32,
DSI_FIFO_SIZE_32);
/* XXX what values for the timeouts? */
dsi_set_stop_state_counter(dsi, 0x1000, false, false);
dsi_set_ta_timeout(dsi, 0x1fff, true, true);
dsi_set_lp_rx_timeout(dsi, 0x1fff, true, true);
dsi_set_hs_tx_timeout(dsi, 0x1fff, true, true);
switch (dsi_get_pixel_size(dsi->pix_fmt)) {
case 16:
buswidth = 0;
break;
case 18:
buswidth = 1;
break;
case 24:
buswidth = 2;
break;
default:
BUG();
return -EINVAL;
}
r = dsi_read_reg(dsi, DSI_CTRL);
r = FLD_MOD(r, 1, 1, 1); /* CS_RX_EN */
r = FLD_MOD(r, 1, 2, 2); /* ECC_RX_EN */
r = FLD_MOD(r, 1, 3, 3); /* TX_FIFO_ARBITRATION */
r = FLD_MOD(r, 1, 4, 4); /* VP_CLK_RATIO, always 1, see errata*/
r = FLD_MOD(r, buswidth, 7, 6); /* VP_DATA_BUS_WIDTH */
r = FLD_MOD(r, 0, 8, 8); /* VP_CLK_POL */
r = FLD_MOD(r, 1, 14, 14); /* TRIGGER_RESET_MODE */
r = FLD_MOD(r, 1, 19, 19); /* EOT_ENABLE */
if (!(dsi->data->quirks & DSI_QUIRK_DCS_CMD_CONFIG_VC)) {
r = FLD_MOD(r, 1, 24, 24); /* DCS_CMD_ENABLE */
/* DCS_CMD_CODE, 1=start, 0=continue */
r = FLD_MOD(r, 0, 25, 25);
}
dsi_write_reg(dsi, DSI_CTRL, r);
dsi_config_vp_num_line_buffers(dsi);
if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
dsi_config_vp_sync_events(dsi);
dsi_config_blanking_modes(dsi);
dsi_config_cmd_mode_interleaving(dsi);
}
dsi_vc_initial_config(dsi, 0);
dsi_vc_initial_config(dsi, 1);
dsi_vc_initial_config(dsi, 2);
dsi_vc_initial_config(dsi, 3);
return 0;
}
static void dsi_proto_timings(struct dsi_data *dsi)
{
unsigned int tlpx, tclk_zero, tclk_prepare, tclk_trail;
unsigned int tclk_pre, tclk_post;
unsigned int ths_prepare, ths_prepare_ths_zero, ths_zero;
unsigned int ths_trail, ths_exit;
unsigned int ddr_clk_pre, ddr_clk_post;
unsigned int enter_hs_mode_lat, exit_hs_mode_lat;
unsigned int ths_eot;
int ndl = dsi->num_lanes_used - 1;
u32 r;
r = dsi_read_reg(dsi, DSI_DSIPHY_CFG0);
ths_prepare = FLD_GET(r, 31, 24);
ths_prepare_ths_zero = FLD_GET(r, 23, 16);
ths_zero = ths_prepare_ths_zero - ths_prepare;
ths_trail = FLD_GET(r, 15, 8);
ths_exit = FLD_GET(r, 7, 0);
r = dsi_read_reg(dsi, DSI_DSIPHY_CFG1);
tlpx = FLD_GET(r, 20, 16) * 2;
tclk_trail = FLD_GET(r, 15, 8);
tclk_zero = FLD_GET(r, 7, 0);
r = dsi_read_reg(dsi, DSI_DSIPHY_CFG2);
tclk_prepare = FLD_GET(r, 7, 0);
/* min 8*UI */
tclk_pre = 20;
/* min 60ns + 52*UI */
tclk_post = ns2ddr(dsi, 60) + 26;
ths_eot = DIV_ROUND_UP(4, ndl);
ddr_clk_pre = DIV_ROUND_UP(tclk_pre + tlpx + tclk_zero + tclk_prepare,
4);
ddr_clk_post = DIV_ROUND_UP(tclk_post + ths_trail, 4) + ths_eot;
BUG_ON(ddr_clk_pre == 0 || ddr_clk_pre > 255);
BUG_ON(ddr_clk_post == 0 || ddr_clk_post > 255);
r = dsi_read_reg(dsi, DSI_CLK_TIMING);
r = FLD_MOD(r, ddr_clk_pre, 15, 8);
r = FLD_MOD(r, ddr_clk_post, 7, 0);
dsi_write_reg(dsi, DSI_CLK_TIMING, r);
DSSDBG("ddr_clk_pre %u, ddr_clk_post %u\n",
ddr_clk_pre,
ddr_clk_post);
enter_hs_mode_lat = 1 + DIV_ROUND_UP(tlpx, 4) +
DIV_ROUND_UP(ths_prepare, 4) +
DIV_ROUND_UP(ths_zero + 3, 4);
exit_hs_mode_lat = DIV_ROUND_UP(ths_trail + ths_exit, 4) + 1 + ths_eot;
r = FLD_VAL(enter_hs_mode_lat, 31, 16) |
FLD_VAL(exit_hs_mode_lat, 15, 0);
dsi_write_reg(dsi, DSI_VM_TIMING7, r);
DSSDBG("enter_hs_mode_lat %u, exit_hs_mode_lat %u\n",
enter_hs_mode_lat, exit_hs_mode_lat);
if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
/* TODO: Implement a video mode check_timings function */
int hsa = dsi->vm_timings.hsa;
int hfp = dsi->vm_timings.hfp;
int hbp = dsi->vm_timings.hbp;
int vsa = dsi->vm_timings.vsa;
int vfp = dsi->vm_timings.vfp;
int vbp = dsi->vm_timings.vbp;
int window_sync = dsi->vm_timings.window_sync;
bool hsync_end;
struct videomode *vm = &dsi->vm;
int bpp = dsi_get_pixel_size(dsi->pix_fmt);
int tl, t_he, width_bytes;
hsync_end = dsi->vm_timings.trans_mode == OMAP_DSS_DSI_PULSE_MODE;
t_he = hsync_end ?
((hsa == 0 && ndl == 3) ? 1 : DIV_ROUND_UP(4, ndl)) : 0;
width_bytes = DIV_ROUND_UP(vm->hactive * bpp, 8);
/* TL = t_HS + HSA + t_HE + HFP + ceil((WC + 6) / NDL) + HBP */
tl = DIV_ROUND_UP(4, ndl) + (hsync_end ? hsa : 0) + t_he + hfp +
DIV_ROUND_UP(width_bytes + 6, ndl) + hbp;
DSSDBG("HBP: %d, HFP: %d, HSA: %d, TL: %d TXBYTECLKHS\n", hbp,
hfp, hsync_end ? hsa : 0, tl);
DSSDBG("VBP: %d, VFP: %d, VSA: %d, VACT: %d lines\n", vbp, vfp,
vsa, vm->vactive);
r = dsi_read_reg(dsi, DSI_VM_TIMING1);
r = FLD_MOD(r, hbp, 11, 0); /* HBP */
r = FLD_MOD(r, hfp, 23, 12); /* HFP */
r = FLD_MOD(r, hsync_end ? hsa : 0, 31, 24); /* HSA */
dsi_write_reg(dsi, DSI_VM_TIMING1, r);
r = dsi_read_reg(dsi, DSI_VM_TIMING2);
r = FLD_MOD(r, vbp, 7, 0); /* VBP */
r = FLD_MOD(r, vfp, 15, 8); /* VFP */
r = FLD_MOD(r, vsa, 23, 16); /* VSA */
r = FLD_MOD(r, window_sync, 27, 24); /* WINDOW_SYNC */
dsi_write_reg(dsi, DSI_VM_TIMING2, r);
r = dsi_read_reg(dsi, DSI_VM_TIMING3);
r = FLD_MOD(r, vm->vactive, 14, 0); /* VACT */
r = FLD_MOD(r, tl, 31, 16); /* TL */
dsi_write_reg(dsi, DSI_VM_TIMING3, r);
}
}
static int dsi_configure_pins(struct omap_dss_device *dssdev,
const struct omap_dsi_pin_config *pin_cfg)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
int num_pins;
const int *pins;
struct dsi_lane_config lanes[DSI_MAX_NR_LANES];
int num_lanes;
int i;
static const enum dsi_lane_function functions[] = {
DSI_LANE_CLK,
DSI_LANE_DATA1,
DSI_LANE_DATA2,
DSI_LANE_DATA3,
DSI_LANE_DATA4,
};
num_pins = pin_cfg->num_pins;
pins = pin_cfg->pins;
if (num_pins < 4 || num_pins > dsi->num_lanes_supported * 2
|| num_pins % 2 != 0)
return -EINVAL;
for (i = 0; i < DSI_MAX_NR_LANES; ++i)
lanes[i].function = DSI_LANE_UNUSED;
num_lanes = 0;
for (i = 0; i < num_pins; i += 2) {
u8 lane, pol;
int dx, dy;
dx = pins[i];
dy = pins[i + 1];
if (dx < 0 || dx >= dsi->num_lanes_supported * 2)
return -EINVAL;
if (dy < 0 || dy >= dsi->num_lanes_supported * 2)
return -EINVAL;
if (dx & 1) {
if (dy != dx - 1)
return -EINVAL;
pol = 1;
} else {
if (dy != dx + 1)
return -EINVAL;
pol = 0;
}
lane = dx / 2;
lanes[lane].function = functions[i / 2];
lanes[lane].polarity = pol;
num_lanes++;
}
memcpy(dsi->lanes, lanes, sizeof(dsi->lanes));
dsi->num_lanes_used = num_lanes;
return 0;
}
static int dsi_enable_video_output(struct omap_dss_device *dssdev, int channel)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
int bpp = dsi_get_pixel_size(dsi->pix_fmt);
struct omap_dss_device *out = &dsi->output;
u8 data_type;
u16 word_count;
int r;
if (!out->dispc_channel_connected) {
DSSERR("failed to enable display: no output/manager\n");
return -ENODEV;
}
r = dsi_display_init_dispc(dsi);
if (r)
goto err_init_dispc;
if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
switch (dsi->pix_fmt) {
case OMAP_DSS_DSI_FMT_RGB888:
data_type = MIPI_DSI_PACKED_PIXEL_STREAM_24;
break;
case OMAP_DSS_DSI_FMT_RGB666:
data_type = MIPI_DSI_PIXEL_STREAM_3BYTE_18;
break;
case OMAP_DSS_DSI_FMT_RGB666_PACKED:
data_type = MIPI_DSI_PACKED_PIXEL_STREAM_18;
break;
case OMAP_DSS_DSI_FMT_RGB565:
data_type = MIPI_DSI_PACKED_PIXEL_STREAM_16;
break;
default:
r = -EINVAL;
goto err_pix_fmt;
}
dsi_if_enable(dsi, false);
dsi_vc_enable(dsi, channel, false);
/* MODE, 1 = video mode */
REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), 1, 4, 4);
word_count = DIV_ROUND_UP(dsi->vm.hactive * bpp, 8);
dsi_vc_write_long_header(dsi, channel, data_type,
word_count, 0);
dsi_vc_enable(dsi, channel, true);
dsi_if_enable(dsi, true);
}
r = dss_mgr_enable(&dsi->output);
if (r)
goto err_mgr_enable;
return 0;
err_mgr_enable:
if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
dsi_if_enable(dsi, false);
dsi_vc_enable(dsi, channel, false);
}
err_pix_fmt:
dsi_display_uninit_dispc(dsi);
err_init_dispc:
return r;
}
static void dsi_disable_video_output(struct omap_dss_device *dssdev, int channel)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
dsi_if_enable(dsi, false);
dsi_vc_enable(dsi, channel, false);
/* MODE, 0 = command mode */
REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), 0, 4, 4);
dsi_vc_enable(dsi, channel, true);
dsi_if_enable(dsi, true);
}
dss_mgr_disable(&dsi->output);
dsi_display_uninit_dispc(dsi);
}
static void dsi_update_screen_dispc(struct dsi_data *dsi)
{
unsigned int bytespp;
unsigned int bytespl;
unsigned int bytespf;
unsigned int total_len;
unsigned int packet_payload;
unsigned int packet_len;
u32 l;
int r;
const unsigned channel = dsi->update_channel;
const unsigned int line_buf_size = dsi->line_buffer_size;
u16 w = dsi->vm.hactive;
u16 h = dsi->vm.vactive;
DSSDBG("dsi_update_screen_dispc(%dx%d)\n", w, h);
dsi_vc_config_source(dsi, channel, DSI_VC_SOURCE_VP);
bytespp = dsi_get_pixel_size(dsi->pix_fmt) / 8;
bytespl = w * bytespp;
bytespf = bytespl * h;
/* NOTE: packet_payload has to be equal to N * bytespl, where N is
* number of lines in a packet. See errata about VP_CLK_RATIO */
if (bytespf < line_buf_size)
packet_payload = bytespf;
else
packet_payload = (line_buf_size) / bytespl * bytespl;
packet_len = packet_payload + 1; /* 1 byte for DCS cmd */
total_len = (bytespf / packet_payload) * packet_len;
if (bytespf % packet_payload)
total_len += (bytespf % packet_payload) + 1;
l = FLD_VAL(total_len, 23, 0); /* TE_SIZE */
dsi_write_reg(dsi, DSI_VC_TE(channel), l);
dsi_vc_write_long_header(dsi, channel, MIPI_DSI_DCS_LONG_WRITE,
packet_len, 0);
if (dsi->te_enabled)
l = FLD_MOD(l, 1, 30, 30); /* TE_EN */
else
l = FLD_MOD(l, 1, 31, 31); /* TE_START */
dsi_write_reg(dsi, DSI_VC_TE(channel), l);
/* We put SIDLEMODE to no-idle for the duration of the transfer,
* because DSS interrupts are not capable of waking up the CPU and the
* framedone interrupt could be delayed for quite a long time. I think
* the same goes for any DSS interrupts, but for some reason I have not
* seen the problem anywhere else than here.
*/
dispc_disable_sidle(dsi->dss->dispc);
dsi_perf_mark_start(dsi);
r = schedule_delayed_work(&dsi->framedone_timeout_work,
msecs_to_jiffies(250));
BUG_ON(r == 0);
dss_mgr_set_timings(&dsi->output, &dsi->vm);
dss_mgr_start_update(&dsi->output);
if (dsi->te_enabled) {
/* disable LP_RX_TO, so that we can receive TE. Time to wait
* for TE is longer than the timer allows */
REG_FLD_MOD(dsi, DSI_TIMING2, 0, 15, 15); /* LP_RX_TO */
dsi_vc_send_bta(dsi, channel);
#ifdef DSI_CATCH_MISSING_TE
mod_timer(&dsi->te_timer, jiffies + msecs_to_jiffies(250));
#endif
}
}
#ifdef DSI_CATCH_MISSING_TE
static void dsi_te_timeout(struct timer_list *unused)
{
DSSERR("TE not received for 250ms!\n");
}
#endif
static void dsi_handle_framedone(struct dsi_data *dsi, int error)
{
/* SIDLEMODE back to smart-idle */
dispc_enable_sidle(dsi->dss->dispc);
if (dsi->te_enabled) {
/* enable LP_RX_TO again after the TE */
REG_FLD_MOD(dsi, DSI_TIMING2, 1, 15, 15); /* LP_RX_TO */
}
dsi->framedone_callback(error, dsi->framedone_data);
if (!error)
dsi_perf_show(dsi, "DISPC");
}
static void dsi_framedone_timeout_work_callback(struct work_struct *work)
{
struct dsi_data *dsi = container_of(work, struct dsi_data,
framedone_timeout_work.work);
/* XXX While extremely unlikely, we could get FRAMEDONE interrupt after
* 250ms which would conflict with this timeout work. What should be
* done is first cancel the transfer on the HW, and then cancel the
* possibly scheduled framedone work. However, cancelling the transfer
* on the HW is buggy, and would probably require resetting the whole
* DSI */
DSSERR("Framedone not received for 250ms!\n");
dsi_handle_framedone(dsi, -ETIMEDOUT);
}
static void dsi_framedone_irq_callback(void *data)
{
struct dsi_data *dsi = data;
/* Note: We get FRAMEDONE when DISPC has finished sending pixels and
* turns itself off. However, DSI still has the pixels in its buffers,
* and is sending the data.
*/
cancel_delayed_work(&dsi->framedone_timeout_work);
dsi_handle_framedone(dsi, 0);
}
static int dsi_update(struct omap_dss_device *dssdev, int channel,
void (*callback)(int, void *), void *data)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
u16 dw, dh;
dsi_perf_mark_setup(dsi);
dsi->update_channel = channel;
dsi->framedone_callback = callback;
dsi->framedone_data = data;
dw = dsi->vm.hactive;
dh = dsi->vm.vactive;
#ifdef DSI_PERF_MEASURE
dsi->update_bytes = dw * dh *
dsi_get_pixel_size(dsi->pix_fmt) / 8;
#endif
dsi_update_screen_dispc(dsi);
return 0;
}
/* Display funcs */
static int dsi_configure_dispc_clocks(struct dsi_data *dsi)
{
struct dispc_clock_info dispc_cinfo;
int r;
unsigned long fck;
fck = dsi_get_pll_hsdiv_dispc_rate(dsi);
dispc_cinfo.lck_div = dsi->user_dispc_cinfo.lck_div;
dispc_cinfo.pck_div = dsi->user_dispc_cinfo.pck_div;
r = dispc_calc_clock_rates(dsi->dss->dispc, fck, &dispc_cinfo);
if (r) {
DSSERR("Failed to calc dispc clocks\n");
return r;
}
dsi->mgr_config.clock_info = dispc_cinfo;
return 0;
}
static int dsi_display_init_dispc(struct dsi_data *dsi)
{
enum omap_channel channel = dsi->output.dispc_channel;
int r;
dss_select_lcd_clk_source(dsi->dss, channel, dsi->module_id == 0 ?
DSS_CLK_SRC_PLL1_1 :
DSS_CLK_SRC_PLL2_1);
if (dsi->mode == OMAP_DSS_DSI_CMD_MODE) {
r = dss_mgr_register_framedone_handler(&dsi->output,
dsi_framedone_irq_callback, dsi);
if (r) {
DSSERR("can't register FRAMEDONE handler\n");
goto err;
}
dsi->mgr_config.stallmode = true;
dsi->mgr_config.fifohandcheck = true;
} else {
dsi->mgr_config.stallmode = false;
dsi->mgr_config.fifohandcheck = false;
}
/*
* override interlace, logic level and edge related parameters in
* videomode with default values
*/
dsi->vm.flags &= ~DISPLAY_FLAGS_INTERLACED;
dsi->vm.flags &= ~DISPLAY_FLAGS_HSYNC_LOW;
dsi->vm.flags |= DISPLAY_FLAGS_HSYNC_HIGH;
dsi->vm.flags &= ~DISPLAY_FLAGS_VSYNC_LOW;
dsi->vm.flags |= DISPLAY_FLAGS_VSYNC_HIGH;
dsi->vm.flags &= ~DISPLAY_FLAGS_PIXDATA_NEGEDGE;
dsi->vm.flags |= DISPLAY_FLAGS_PIXDATA_POSEDGE;
dsi->vm.flags &= ~DISPLAY_FLAGS_DE_LOW;
dsi->vm.flags |= DISPLAY_FLAGS_DE_HIGH;
dsi->vm.flags &= ~DISPLAY_FLAGS_SYNC_POSEDGE;
dsi->vm.flags |= DISPLAY_FLAGS_SYNC_NEGEDGE;
dss_mgr_set_timings(&dsi->output, &dsi->vm);
r = dsi_configure_dispc_clocks(dsi);
if (r)
goto err1;
dsi->mgr_config.io_pad_mode = DSS_IO_PAD_MODE_BYPASS;
dsi->mgr_config.video_port_width =
dsi_get_pixel_size(dsi->pix_fmt);
dsi->mgr_config.lcden_sig_polarity = 0;
dss_mgr_set_lcd_config(&dsi->output, &dsi->mgr_config);
return 0;
err1:
if (dsi->mode == OMAP_DSS_DSI_CMD_MODE)
dss_mgr_unregister_framedone_handler(&dsi->output,
dsi_framedone_irq_callback, dsi);
err:
dss_select_lcd_clk_source(dsi->dss, channel, DSS_CLK_SRC_FCK);
return r;
}
static void dsi_display_uninit_dispc(struct dsi_data *dsi)
{
enum omap_channel channel = dsi->output.dispc_channel;
if (dsi->mode == OMAP_DSS_DSI_CMD_MODE)
dss_mgr_unregister_framedone_handler(&dsi->output,
dsi_framedone_irq_callback, dsi);
dss_select_lcd_clk_source(dsi->dss, channel, DSS_CLK_SRC_FCK);
}
static int dsi_configure_dsi_clocks(struct dsi_data *dsi)
{
struct dss_pll_clock_info cinfo;
int r;
cinfo = dsi->user_dsi_cinfo;
r = dss_pll_set_config(&dsi->pll, &cinfo);
if (r) {
DSSERR("Failed to set dsi clocks\n");
return r;
}
return 0;
}
static int dsi_display_init_dsi(struct dsi_data *dsi)
{
int r;
r = dss_pll_enable(&dsi->pll);
if (r)
return r;
r = dsi_configure_dsi_clocks(dsi);
if (r)
goto err0;
dss_select_dsi_clk_source(dsi->dss, dsi->module_id,
dsi->module_id == 0 ?
DSS_CLK_SRC_PLL1_2 : DSS_CLK_SRC_PLL2_2);
DSSDBG("PLL OK\n");
if (!dsi->vdds_dsi_enabled) {
r = regulator_enable(dsi->vdds_dsi_reg);
if (r)
goto err1;
dsi->vdds_dsi_enabled = true;
}
r = dsi_cio_init(dsi);
if (r)
goto err2;
_dsi_print_reset_status(dsi);
dsi_proto_timings(dsi);
dsi_set_lp_clk_divisor(dsi);
if (1)
_dsi_print_reset_status(dsi);
r = dsi_proto_config(dsi);
if (r)
goto err3;
/* enable interface */
dsi_vc_enable(dsi, 0, 1);
dsi_vc_enable(dsi, 1, 1);
dsi_vc_enable(dsi, 2, 1);
dsi_vc_enable(dsi, 3, 1);
dsi_if_enable(dsi, 1);
dsi_force_tx_stop_mode_io(dsi);
return 0;
err3:
dsi_cio_uninit(dsi);
err2:
regulator_disable(dsi->vdds_dsi_reg);
dsi->vdds_dsi_enabled = false;
err1:
dss_select_dsi_clk_source(dsi->dss, dsi->module_id, DSS_CLK_SRC_FCK);
err0:
dss_pll_disable(&dsi->pll);
return r;
}
static void dsi_display_uninit_dsi(struct dsi_data *dsi, bool disconnect_lanes,
bool enter_ulps)
{
if (enter_ulps && !dsi->ulps_enabled)
dsi_enter_ulps(dsi);
/* disable interface */
dsi_if_enable(dsi, 0);
dsi_vc_enable(dsi, 0, 0);
dsi_vc_enable(dsi, 1, 0);
dsi_vc_enable(dsi, 2, 0);
dsi_vc_enable(dsi, 3, 0);
dss_select_dsi_clk_source(dsi->dss, dsi->module_id, DSS_CLK_SRC_FCK);
dsi_cio_uninit(dsi);
dss_pll_disable(&dsi->pll);
if (disconnect_lanes) {
regulator_disable(dsi->vdds_dsi_reg);
dsi->vdds_dsi_enabled = false;
}
}
static int dsi_display_enable(struct omap_dss_device *dssdev)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
int r = 0;
DSSDBG("dsi_display_enable\n");
WARN_ON(!dsi_bus_is_locked(dsi));
mutex_lock(&dsi->lock);
r = dsi_runtime_get(dsi);
if (r)
goto err_get_dsi;
_dsi_initialize_irq(dsi);
r = dsi_display_init_dsi(dsi);
if (r)
goto err_init_dsi;
mutex_unlock(&dsi->lock);
return 0;
err_init_dsi:
dsi_runtime_put(dsi);
err_get_dsi:
mutex_unlock(&dsi->lock);
DSSDBG("dsi_display_enable FAILED\n");
return r;
}
static void dsi_display_disable(struct omap_dss_device *dssdev,
bool disconnect_lanes, bool enter_ulps)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
DSSDBG("dsi_display_disable\n");
WARN_ON(!dsi_bus_is_locked(dsi));
mutex_lock(&dsi->lock);
dsi_sync_vc(dsi, 0);
dsi_sync_vc(dsi, 1);
dsi_sync_vc(dsi, 2);
dsi_sync_vc(dsi, 3);
dsi_display_uninit_dsi(dsi, disconnect_lanes, enter_ulps);
dsi_runtime_put(dsi);
mutex_unlock(&dsi->lock);
}
static int dsi_enable_te(struct omap_dss_device *dssdev, bool enable)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
dsi->te_enabled = enable;
return 0;
}
#ifdef PRINT_VERBOSE_VM_TIMINGS
static void print_dsi_vm(const char *str,
const struct omap_dss_dsi_videomode_timings *t)
{
unsigned long byteclk = t->hsclk / 4;
int bl, wc, pps, tot;
wc = DIV_ROUND_UP(t->hact * t->bitspp, 8);
pps = DIV_ROUND_UP(wc + 6, t->ndl); /* pixel packet size */
bl = t->hss + t->hsa + t->hse + t->hbp + t->hfp;
tot = bl + pps;
#define TO_DSI_T(x) ((u32)div64_u64((u64)x * 1000000000llu, byteclk))
pr_debug("%s bck %lu, %u/%u/%u/%u/%u/%u = %u+%u = %u, "
"%u/%u/%u/%u/%u/%u = %u + %u = %u\n",
str,
byteclk,
t->hss, t->hsa, t->hse, t->hbp, pps, t->hfp,
bl, pps, tot,
TO_DSI_T(t->hss),
TO_DSI_T(t->hsa),
TO_DSI_T(t->hse),
TO_DSI_T(t->hbp),
TO_DSI_T(pps),
TO_DSI_T(t->hfp),
TO_DSI_T(bl),
TO_DSI_T(pps),
TO_DSI_T(tot));
#undef TO_DSI_T
}
static void print_dispc_vm(const char *str, const struct videomode *vm)
{
unsigned long pck = vm->pixelclock;
int hact, bl, tot;
hact = vm->hactive;
bl = vm->hsync_len + vm->hback_porch + vm->hfront_porch;
tot = hact + bl;
#define TO_DISPC_T(x) ((u32)div64_u64((u64)x * 1000000000llu, pck))
pr_debug("%s pck %lu, %u/%u/%u/%u = %u+%u = %u, "
"%u/%u/%u/%u = %u + %u = %u\n",
str,
pck,
vm->hsync_len, vm->hback_porch, hact, vm->hfront_porch,
bl, hact, tot,
TO_DISPC_T(vm->hsync_len),
TO_DISPC_T(vm->hback_porch),
TO_DISPC_T(hact),
TO_DISPC_T(vm->hfront_porch),
TO_DISPC_T(bl),
TO_DISPC_T(hact),
TO_DISPC_T(tot));
#undef TO_DISPC_T
}
/* note: this is not quite accurate */
static void print_dsi_dispc_vm(const char *str,
const struct omap_dss_dsi_videomode_timings *t)
{
struct videomode vm = { 0 };
unsigned long byteclk = t->hsclk / 4;
unsigned long pck;
u64 dsi_tput;
int dsi_hact, dsi_htot;
dsi_tput = (u64)byteclk * t->ndl * 8;
pck = (u32)div64_u64(dsi_tput, t->bitspp);
dsi_hact = DIV_ROUND_UP(DIV_ROUND_UP(t->hact * t->bitspp, 8) + 6, t->ndl);
dsi_htot = t->hss + t->hsa + t->hse + t->hbp + dsi_hact + t->hfp;
vm.pixelclock = pck;
vm.hsync_len = div64_u64((u64)(t->hsa + t->hse) * pck, byteclk);
vm.hback_porch = div64_u64((u64)t->hbp * pck, byteclk);
vm.hfront_porch = div64_u64((u64)t->hfp * pck, byteclk);
vm.hactive = t->hact;
print_dispc_vm(str, &vm);
}
#endif /* PRINT_VERBOSE_VM_TIMINGS */
static bool dsi_cm_calc_dispc_cb(int lckd, int pckd, unsigned long lck,
unsigned long pck, void *data)
{
struct dsi_clk_calc_ctx *ctx = data;
struct videomode *vm = &ctx->vm;
ctx->dispc_cinfo.lck_div = lckd;
ctx->dispc_cinfo.pck_div = pckd;
ctx->dispc_cinfo.lck = lck;
ctx->dispc_cinfo.pck = pck;
*vm = *ctx->config->vm;
vm->pixelclock = pck;
vm->hactive = ctx->config->vm->hactive;
vm->vactive = ctx->config->vm->vactive;
vm->hsync_len = vm->hfront_porch = vm->hback_porch = vm->vsync_len = 1;
vm->vfront_porch = vm->vback_porch = 0;
return true;
}
static bool dsi_cm_calc_hsdiv_cb(int m_dispc, unsigned long dispc,
void *data)
{
struct dsi_clk_calc_ctx *ctx = data;
ctx->dsi_cinfo.mX[HSDIV_DISPC] = m_dispc;
ctx->dsi_cinfo.clkout[HSDIV_DISPC] = dispc;
return dispc_div_calc(ctx->dsi->dss->dispc, dispc,
ctx->req_pck_min, ctx->req_pck_max,
dsi_cm_calc_dispc_cb, ctx);
}
static bool dsi_cm_calc_pll_cb(int n, int m, unsigned long fint,
unsigned long clkdco, void *data)
{
struct dsi_clk_calc_ctx *ctx = data;
struct dsi_data *dsi = ctx->dsi;
ctx->dsi_cinfo.n = n;
ctx->dsi_cinfo.m = m;
ctx->dsi_cinfo.fint = fint;
ctx->dsi_cinfo.clkdco = clkdco;
return dss_pll_hsdiv_calc_a(ctx->pll, clkdco, ctx->req_pck_min,
dsi->data->max_fck_freq,
dsi_cm_calc_hsdiv_cb, ctx);
}
static bool dsi_cm_calc(struct dsi_data *dsi,
const struct omap_dss_dsi_config *cfg,
struct dsi_clk_calc_ctx *ctx)
{
unsigned long clkin;
int bitspp, ndl;
unsigned long pll_min, pll_max;
unsigned long pck, txbyteclk;
clkin = clk_get_rate(dsi->pll.clkin);
bitspp = dsi_get_pixel_size(cfg->pixel_format);
ndl = dsi->num_lanes_used - 1;
/*
* Here we should calculate minimum txbyteclk to be able to send the
* frame in time, and also to handle TE. That's not very simple, though,
* especially as we go to LP between each pixel packet due to HW
* "feature". So let's just estimate very roughly and multiply by 1.5.
*/
pck = cfg->vm->pixelclock;
pck = pck * 3 / 2;
txbyteclk = pck * bitspp / 8 / ndl;
memset(ctx, 0, sizeof(*ctx));
ctx->dsi = dsi;
ctx->pll = &dsi->pll;
ctx->config = cfg;
ctx->req_pck_min = pck;
ctx->req_pck_nom = pck;
ctx->req_pck_max = pck * 3 / 2;
pll_min = max(cfg->hs_clk_min * 4, txbyteclk * 4 * 4);
pll_max = cfg->hs_clk_max * 4;
return dss_pll_calc_a(ctx->pll, clkin,
pll_min, pll_max,
dsi_cm_calc_pll_cb, ctx);
}
static bool dsi_vm_calc_blanking(struct dsi_clk_calc_ctx *ctx)
{
struct dsi_data *dsi = ctx->dsi;
const struct omap_dss_dsi_config *cfg = ctx->config;
int bitspp = dsi_get_pixel_size(cfg->pixel_format);
int ndl = dsi->num_lanes_used - 1;
unsigned long hsclk = ctx->dsi_cinfo.clkdco / 4;
unsigned long byteclk = hsclk / 4;
unsigned long dispc_pck, req_pck_min, req_pck_nom, req_pck_max;
int xres;
int panel_htot, panel_hbl; /* pixels */
int dispc_htot, dispc_hbl; /* pixels */
int dsi_htot, dsi_hact, dsi_hbl, hss, hse; /* byteclks */
int hfp, hsa, hbp;
const struct videomode *req_vm;
struct videomode *dispc_vm;
struct omap_dss_dsi_videomode_timings *dsi_vm;
u64 dsi_tput, dispc_tput;
dsi_tput = (u64)byteclk * ndl * 8;
req_vm = cfg->vm;
req_pck_min = ctx->req_pck_min;
req_pck_max = ctx->req_pck_max;
req_pck_nom = ctx->req_pck_nom;
dispc_pck = ctx->dispc_cinfo.pck;
dispc_tput = (u64)dispc_pck * bitspp;
xres = req_vm->hactive;
panel_hbl = req_vm->hfront_porch + req_vm->hback_porch +
req_vm->hsync_len;
panel_htot = xres + panel_hbl;
dsi_hact = DIV_ROUND_UP(DIV_ROUND_UP(xres * bitspp, 8) + 6, ndl);
/*
* When there are no line buffers, DISPC and DSI must have the
* same tput. Otherwise DISPC tput needs to be higher than DSI's.
*/
if (dsi->line_buffer_size < xres * bitspp / 8) {
if (dispc_tput != dsi_tput)
return false;
} else {
if (dispc_tput < dsi_tput)
return false;
}
/* DSI tput must be over the min requirement */
if (dsi_tput < (u64)bitspp * req_pck_min)
return false;
/* When non-burst mode, DSI tput must be below max requirement. */
if (cfg->trans_mode != OMAP_DSS_DSI_BURST_MODE) {
if (dsi_tput > (u64)bitspp * req_pck_max)
return false;
}
hss = DIV_ROUND_UP(4, ndl);
if (cfg->trans_mode == OMAP_DSS_DSI_PULSE_MODE) {
if (ndl == 3 && req_vm->hsync_len == 0)
hse = 1;
else
hse = DIV_ROUND_UP(4, ndl);
} else {
hse = 0;
}
/* DSI htot to match the panel's nominal pck */
dsi_htot = div64_u64((u64)panel_htot * byteclk, req_pck_nom);
/* fail if there would be no time for blanking */
if (dsi_htot < hss + hse + dsi_hact)
return false;
/* total DSI blanking needed to achieve panel's TL */
dsi_hbl = dsi_htot - dsi_hact;
/* DISPC htot to match the DSI TL */
dispc_htot = div64_u64((u64)dsi_htot * dispc_pck, byteclk);
/* verify that the DSI and DISPC TLs are the same */
if ((u64)dsi_htot * dispc_pck != (u64)dispc_htot * byteclk)
return false;
dispc_hbl = dispc_htot - xres;
/* setup DSI videomode */
dsi_vm = &ctx->dsi_vm;
memset(dsi_vm, 0, sizeof(*dsi_vm));
dsi_vm->hsclk = hsclk;
dsi_vm->ndl = ndl;
dsi_vm->bitspp = bitspp;
if (cfg->trans_mode != OMAP_DSS_DSI_PULSE_MODE) {
hsa = 0;
} else if (ndl == 3 && req_vm->hsync_len == 0) {
hsa = 0;
} else {
hsa = div64_u64((u64)req_vm->hsync_len * byteclk, req_pck_nom);
hsa = max(hsa - hse, 1);
}
hbp = div64_u64((u64)req_vm->hback_porch * byteclk, req_pck_nom);
hbp = max(hbp, 1);
hfp = dsi_hbl - (hss + hsa + hse + hbp);
if (hfp < 1) {
int t;
/* we need to take cycles from hbp */
t = 1 - hfp;
hbp = max(hbp - t, 1);
hfp = dsi_hbl - (hss + hsa + hse + hbp);
if (hfp < 1 && hsa > 0) {
/* we need to take cycles from hsa */
t = 1 - hfp;
hsa = max(hsa - t, 1);
hfp = dsi_hbl - (hss + hsa + hse + hbp);
}
}
if (hfp < 1)
return false;
dsi_vm->hss = hss;
dsi_vm->hsa = hsa;
dsi_vm->hse = hse;
dsi_vm->hbp = hbp;
dsi_vm->hact = xres;
dsi_vm->hfp = hfp;
dsi_vm->vsa = req_vm->vsync_len;
dsi_vm->vbp = req_vm->vback_porch;
dsi_vm->vact = req_vm->vactive;
dsi_vm->vfp = req_vm->vfront_porch;
dsi_vm->trans_mode = cfg->trans_mode;
dsi_vm->blanking_mode = 0;
dsi_vm->hsa_blanking_mode = 1;
dsi_vm->hfp_blanking_mode = 1;
dsi_vm->hbp_blanking_mode = 1;
dsi_vm->ddr_clk_always_on = cfg->ddr_clk_always_on;
dsi_vm->window_sync = 4;
/* setup DISPC videomode */
dispc_vm = &ctx->vm;
*dispc_vm = *req_vm;
dispc_vm->pixelclock = dispc_pck;
if (cfg->trans_mode == OMAP_DSS_DSI_PULSE_MODE) {
hsa = div64_u64((u64)req_vm->hsync_len * dispc_pck,
req_pck_nom);
hsa = max(hsa, 1);
} else {
hsa = 1;
}
hbp = div64_u64((u64)req_vm->hback_porch * dispc_pck, req_pck_nom);
hbp = max(hbp, 1);
hfp = dispc_hbl - hsa - hbp;
if (hfp < 1) {
int t;
/* we need to take cycles from hbp */
t = 1 - hfp;
hbp = max(hbp - t, 1);
hfp = dispc_hbl - hsa - hbp;
if (hfp < 1) {
/* we need to take cycles from hsa */
t = 1 - hfp;
hsa = max(hsa - t, 1);
hfp = dispc_hbl - hsa - hbp;
}
}
if (hfp < 1)
return false;
dispc_vm->hfront_porch = hfp;
dispc_vm->hsync_len = hsa;
dispc_vm->hback_porch = hbp;
return true;
}
static bool dsi_vm_calc_dispc_cb(int lckd, int pckd, unsigned long lck,
unsigned long pck, void *data)
{
struct dsi_clk_calc_ctx *ctx = data;
ctx->dispc_cinfo.lck_div = lckd;
ctx->dispc_cinfo.pck_div = pckd;
ctx->dispc_cinfo.lck = lck;
ctx->dispc_cinfo.pck = pck;
if (dsi_vm_calc_blanking(ctx) == false)
return false;
#ifdef PRINT_VERBOSE_VM_TIMINGS
print_dispc_vm("dispc", &ctx->vm);
print_dsi_vm("dsi ", &ctx->dsi_vm);
print_dispc_vm("req ", ctx->config->vm);
print_dsi_dispc_vm("act ", &ctx->dsi_vm);
#endif
return true;
}
static bool dsi_vm_calc_hsdiv_cb(int m_dispc, unsigned long dispc,
void *data)
{
struct dsi_clk_calc_ctx *ctx = data;
unsigned long pck_max;
ctx->dsi_cinfo.mX[HSDIV_DISPC] = m_dispc;
ctx->dsi_cinfo.clkout[HSDIV_DISPC] = dispc;
/*
* In burst mode we can let the dispc pck be arbitrarily high, but it
* limits our scaling abilities. So for now, don't aim too high.
*/
if (ctx->config->trans_mode == OMAP_DSS_DSI_BURST_MODE)
pck_max = ctx->req_pck_max + 10000000;
else
pck_max = ctx->req_pck_max;
return dispc_div_calc(ctx->dsi->dss->dispc, dispc,
ctx->req_pck_min, pck_max,
dsi_vm_calc_dispc_cb, ctx);
}
static bool dsi_vm_calc_pll_cb(int n, int m, unsigned long fint,
unsigned long clkdco, void *data)
{
struct dsi_clk_calc_ctx *ctx = data;
struct dsi_data *dsi = ctx->dsi;
ctx->dsi_cinfo.n = n;
ctx->dsi_cinfo.m = m;
ctx->dsi_cinfo.fint = fint;
ctx->dsi_cinfo.clkdco = clkdco;
return dss_pll_hsdiv_calc_a(ctx->pll, clkdco, ctx->req_pck_min,
dsi->data->max_fck_freq,
dsi_vm_calc_hsdiv_cb, ctx);
}
static bool dsi_vm_calc(struct dsi_data *dsi,
const struct omap_dss_dsi_config *cfg,
struct dsi_clk_calc_ctx *ctx)
{
const struct videomode *vm = cfg->vm;
unsigned long clkin;
unsigned long pll_min;
unsigned long pll_max;
int ndl = dsi->num_lanes_used - 1;
int bitspp = dsi_get_pixel_size(cfg->pixel_format);
unsigned long byteclk_min;
clkin = clk_get_rate(dsi->pll.clkin);
memset(ctx, 0, sizeof(*ctx));
ctx->dsi = dsi;
ctx->pll = &dsi->pll;
ctx->config = cfg;
/* these limits should come from the panel driver */
ctx->req_pck_min = vm->pixelclock - 1000;
ctx->req_pck_nom = vm->pixelclock;
ctx->req_pck_max = vm->pixelclock + 1000;
byteclk_min = div64_u64((u64)ctx->req_pck_min * bitspp, ndl * 8);
pll_min = max(cfg->hs_clk_min * 4, byteclk_min * 4 * 4);
if (cfg->trans_mode == OMAP_DSS_DSI_BURST_MODE) {
pll_max = cfg->hs_clk_max * 4;
} else {
unsigned long byteclk_max;
byteclk_max = div64_u64((u64)ctx->req_pck_max * bitspp,
ndl * 8);
pll_max = byteclk_max * 4 * 4;
}
return dss_pll_calc_a(ctx->pll, clkin,
pll_min, pll_max,
dsi_vm_calc_pll_cb, ctx);
}
static int dsi_set_config(struct omap_dss_device *dssdev,
const struct omap_dss_dsi_config *config)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
struct dsi_clk_calc_ctx ctx;
bool ok;
int r;
mutex_lock(&dsi->lock);
dsi->pix_fmt = config->pixel_format;
dsi->mode = config->mode;
if (config->mode == OMAP_DSS_DSI_VIDEO_MODE)
ok = dsi_vm_calc(dsi, config, &ctx);
else
ok = dsi_cm_calc(dsi, config, &ctx);
if (!ok) {
DSSERR("failed to find suitable DSI clock settings\n");
r = -EINVAL;
goto err;
}
dsi_pll_calc_dsi_fck(dsi, &ctx.dsi_cinfo);
r = dsi_lp_clock_calc(ctx.dsi_cinfo.clkout[HSDIV_DSI],
config->lp_clk_min, config->lp_clk_max, &dsi->user_lp_cinfo);
if (r) {
DSSERR("failed to find suitable DSI LP clock settings\n");
goto err;
}
dsi->user_dsi_cinfo = ctx.dsi_cinfo;
dsi->user_dispc_cinfo = ctx.dispc_cinfo;
dsi->vm = ctx.vm;
dsi->vm_timings = ctx.dsi_vm;
mutex_unlock(&dsi->lock);
return 0;
err:
mutex_unlock(&dsi->lock);
return r;
}
/*
* Return a hardcoded channel for the DSI output. This should work for
* current use cases, but this can be later expanded to either resolve
* the channel in some more dynamic manner, or get the channel as a user
* parameter.
*/
static enum omap_channel dsi_get_channel(struct dsi_data *dsi)
{
switch (dsi->data->model) {
case DSI_MODEL_OMAP3:
return OMAP_DSS_CHANNEL_LCD;
case DSI_MODEL_OMAP4:
switch (dsi->module_id) {
case 0:
return OMAP_DSS_CHANNEL_LCD;
case 1:
return OMAP_DSS_CHANNEL_LCD2;
default:
DSSWARN("unsupported module id\n");
return OMAP_DSS_CHANNEL_LCD;
}
case DSI_MODEL_OMAP5:
switch (dsi->module_id) {
case 0:
return OMAP_DSS_CHANNEL_LCD;
case 1:
return OMAP_DSS_CHANNEL_LCD3;
default:
DSSWARN("unsupported module id\n");
return OMAP_DSS_CHANNEL_LCD;
}
default:
DSSWARN("unsupported DSS version\n");
return OMAP_DSS_CHANNEL_LCD;
}
}
static int dsi_request_vc(struct omap_dss_device *dssdev, int *channel)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
int i;
for (i = 0; i < ARRAY_SIZE(dsi->vc); i++) {
if (!dsi->vc[i].dssdev) {
dsi->vc[i].dssdev = dssdev;
*channel = i;
return 0;
}
}
DSSERR("cannot get VC for display %s", dssdev->name);
return -ENOSPC;
}
static int dsi_set_vc_id(struct omap_dss_device *dssdev, int channel, int vc_id)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
if (vc_id < 0 || vc_id > 3) {
DSSERR("VC ID out of range\n");
return -EINVAL;
}
if (channel < 0 || channel > 3) {
DSSERR("Virtual Channel out of range\n");
return -EINVAL;
}
if (dsi->vc[channel].dssdev != dssdev) {
DSSERR("Virtual Channel not allocated to display %s\n",
dssdev->name);
return -EINVAL;
}
dsi->vc[channel].vc_id = vc_id;
return 0;
}
static void dsi_release_vc(struct omap_dss_device *dssdev, int channel)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
if ((channel >= 0 && channel <= 3) &&
dsi->vc[channel].dssdev == dssdev) {
dsi->vc[channel].dssdev = NULL;
dsi->vc[channel].vc_id = 0;
}
}
static int dsi_get_clocks(struct dsi_data *dsi)
{
struct clk *clk;
clk = devm_clk_get(dsi->dev, "fck");
if (IS_ERR(clk)) {
DSSERR("can't get fck\n");
return PTR_ERR(clk);
}
dsi->dss_clk = clk;
return 0;
}
static int dsi_connect(struct omap_dss_device *dssdev,
struct omap_dss_device *dst)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
int r;
r = dsi_regulator_init(dsi);
if (r)
return r;
r = dss_mgr_connect(&dsi->output, dssdev);
if (r)
return r;
r = omapdss_output_set_device(dssdev, dst);
if (r) {
DSSERR("failed to connect output to new device: %s\n",
dssdev->name);
dss_mgr_disconnect(&dsi->output, dssdev);
return r;
}
return 0;
}
static void dsi_disconnect(struct omap_dss_device *dssdev,
struct omap_dss_device *dst)
{
struct dsi_data *dsi = to_dsi_data(dssdev);
WARN_ON(dst != dssdev->dst);
if (dst != dssdev->dst)
return;
omapdss_output_unset_device(dssdev);
dss_mgr_disconnect(&dsi->output, dssdev);
}
static const struct omapdss_dsi_ops dsi_ops = {
.connect = dsi_connect,
.disconnect = dsi_disconnect,
.bus_lock = dsi_bus_lock,
.bus_unlock = dsi_bus_unlock,
.enable = dsi_display_enable,
.disable = dsi_display_disable,
.enable_hs = dsi_vc_enable_hs,
.configure_pins = dsi_configure_pins,
.set_config = dsi_set_config,
.enable_video_output = dsi_enable_video_output,
.disable_video_output = dsi_disable_video_output,
.update = dsi_update,
.enable_te = dsi_enable_te,
.request_vc = dsi_request_vc,
.set_vc_id = dsi_set_vc_id,
.release_vc = dsi_release_vc,
.dcs_write = dsi_vc_dcs_write,
.dcs_write_nosync = dsi_vc_dcs_write_nosync,
.dcs_read = dsi_vc_dcs_read,
.gen_write = dsi_vc_generic_write,
.gen_write_nosync = dsi_vc_generic_write_nosync,
.gen_read = dsi_vc_generic_read,
.bta_sync = dsi_vc_send_bta_sync,
.set_max_rx_packet_size = dsi_vc_set_max_rx_packet_size,
};
static void dsi_init_output(struct dsi_data *dsi)
{
struct omap_dss_device *out = &dsi->output;
out->dev = dsi->dev;
out->id = dsi->module_id == 0 ?
OMAP_DSS_OUTPUT_DSI1 : OMAP_DSS_OUTPUT_DSI2;
out->output_type = OMAP_DISPLAY_TYPE_DSI;
out->name = dsi->module_id == 0 ? "dsi.0" : "dsi.1";
out->dispc_channel = dsi_get_channel(dsi);
out->ops.dsi = &dsi_ops;
out->owner = THIS_MODULE;
omapdss_register_output(out);
}
static void dsi_uninit_output(struct dsi_data *dsi)
{
struct omap_dss_device *out = &dsi->output;
omapdss_unregister_output(out);
}
static int dsi_probe_of(struct dsi_data *dsi)
{
struct device_node *node = dsi->dev->of_node;
struct property *prop;
u32 lane_arr[10];
int len, num_pins;
int r, i;
struct device_node *ep;
struct omap_dsi_pin_config pin_cfg;
ep = of_graph_get_endpoint_by_regs(node, 0, 0);
if (!ep)
return 0;
prop = of_find_property(ep, "lanes", &len);
if (prop == NULL) {
dev_err(dsi->dev, "failed to find lane data\n");
r = -EINVAL;
goto err;
}
num_pins = len / sizeof(u32);
if (num_pins < 4 || num_pins % 2 != 0 ||
num_pins > dsi->num_lanes_supported * 2) {
dev_err(dsi->dev, "bad number of lanes\n");
r = -EINVAL;
goto err;
}
r = of_property_read_u32_array(ep, "lanes", lane_arr, num_pins);
if (r) {
dev_err(dsi->dev, "failed to read lane data\n");
goto err;
}
pin_cfg.num_pins = num_pins;
for (i = 0; i < num_pins; ++i)
pin_cfg.pins[i] = (int)lane_arr[i];
r = dsi_configure_pins(&dsi->output, &pin_cfg);
if (r) {
dev_err(dsi->dev, "failed to configure pins");
goto err;
}
of_node_put(ep);
return 0;
err:
of_node_put(ep);
return r;
}
static const struct dss_pll_ops dsi_pll_ops = {
.enable = dsi_pll_enable,
.disable = dsi_pll_disable,
.set_config = dss_pll_write_config_type_a,
};
static const struct dss_pll_hw dss_omap3_dsi_pll_hw = {
.type = DSS_PLL_TYPE_A,
.n_max = (1 << 7) - 1,
.m_max = (1 << 11) - 1,
.mX_max = (1 << 4) - 1,
.fint_min = 750000,
.fint_max = 2100000,
.clkdco_low = 1000000000,
.clkdco_max = 1800000000,
.n_msb = 7,
.n_lsb = 1,
.m_msb = 18,
.m_lsb = 8,
.mX_msb[0] = 22,
.mX_lsb[0] = 19,
.mX_msb[1] = 26,
.mX_lsb[1] = 23,
.has_stopmode = true,
.has_freqsel = true,
.has_selfreqdco = false,
.has_refsel = false,
};
static const struct dss_pll_hw dss_omap4_dsi_pll_hw = {
.type = DSS_PLL_TYPE_A,
.n_max = (1 << 8) - 1,
.m_max = (1 << 12) - 1,
.mX_max = (1 << 5) - 1,
.fint_min = 500000,
.fint_max = 2500000,
.clkdco_low = 1000000000,
.clkdco_max = 1800000000,
.n_msb = 8,
.n_lsb = 1,
.m_msb = 20,
.m_lsb = 9,
.mX_msb[0] = 25,
.mX_lsb[0] = 21,
.mX_msb[1] = 30,
.mX_lsb[1] = 26,
.has_stopmode = true,
.has_freqsel = false,
.has_selfreqdco = false,
.has_refsel = false,
};
static const struct dss_pll_hw dss_omap5_dsi_pll_hw = {
.type = DSS_PLL_TYPE_A,
.n_max = (1 << 8) - 1,
.m_max = (1 << 12) - 1,
.mX_max = (1 << 5) - 1,
.fint_min = 150000,
.fint_max = 52000000,
.clkdco_low = 1000000000,
.clkdco_max = 1800000000,
.n_msb = 8,
.n_lsb = 1,
.m_msb = 20,
.m_lsb = 9,
.mX_msb[0] = 25,
.mX_lsb[0] = 21,
.mX_msb[1] = 30,
.mX_lsb[1] = 26,
.has_stopmode = true,
.has_freqsel = false,
.has_selfreqdco = true,
.has_refsel = true,
};
static int dsi_init_pll_data(struct dss_device *dss, struct dsi_data *dsi)
{
struct dss_pll *pll = &dsi->pll;
struct clk *clk;
int r;
clk = devm_clk_get(dsi->dev, "sys_clk");
if (IS_ERR(clk)) {
DSSERR("can't get sys_clk\n");
return PTR_ERR(clk);
}
pll->name = dsi->module_id == 0 ? "dsi0" : "dsi1";
pll->id = dsi->module_id == 0 ? DSS_PLL_DSI1 : DSS_PLL_DSI2;
pll->clkin = clk;
pll->base = dsi->pll_base;
pll->hw = dsi->data->pll_hw;
pll->ops = &dsi_pll_ops;
r = dss_pll_register(dss, pll);
if (r)
return r;
return 0;
}
/* DSI1 HW IP initialisation */
static const struct dsi_of_data dsi_of_data_omap34xx = {
.model = DSI_MODEL_OMAP3,
.pll_hw = &dss_omap3_dsi_pll_hw,
.modules = (const struct dsi_module_id_data[]) {
{ .address = 0x4804fc00, .id = 0, },
{ },
},
.max_fck_freq = 173000000,
.max_pll_lpdiv = (1 << 13) - 1,
.quirks = DSI_QUIRK_REVERSE_TXCLKESC,
};
static const struct dsi_of_data dsi_of_data_omap36xx = {
.model = DSI_MODEL_OMAP3,
.pll_hw = &dss_omap3_dsi_pll_hw,
.modules = (const struct dsi_module_id_data[]) {
{ .address = 0x4804fc00, .id = 0, },
{ },
},
.max_fck_freq = 173000000,
.max_pll_lpdiv = (1 << 13) - 1,
.quirks = DSI_QUIRK_PLL_PWR_BUG,
};
static const struct dsi_of_data dsi_of_data_omap4 = {
.model = DSI_MODEL_OMAP4,
.pll_hw = &dss_omap4_dsi_pll_hw,
.modules = (const struct dsi_module_id_data[]) {
{ .address = 0x58004000, .id = 0, },
{ .address = 0x58005000, .id = 1, },
{ },
},
.max_fck_freq = 170000000,
.max_pll_lpdiv = (1 << 13) - 1,
.quirks = DSI_QUIRK_DCS_CMD_CONFIG_VC | DSI_QUIRK_VC_OCP_WIDTH
| DSI_QUIRK_GNQ,
};
static const struct dsi_of_data dsi_of_data_omap5 = {
.model = DSI_MODEL_OMAP5,
.pll_hw = &dss_omap5_dsi_pll_hw,
.modules = (const struct dsi_module_id_data[]) {
{ .address = 0x58004000, .id = 0, },
{ .address = 0x58009000, .id = 1, },
{ },
},
.max_fck_freq = 209250000,
.max_pll_lpdiv = (1 << 13) - 1,
.quirks = DSI_QUIRK_DCS_CMD_CONFIG_VC | DSI_QUIRK_VC_OCP_WIDTH
| DSI_QUIRK_GNQ | DSI_QUIRK_PHY_DCC,
};
static const struct of_device_id dsi_of_match[] = {
{ .compatible = "ti,omap3-dsi", .data = &dsi_of_data_omap36xx, },
{ .compatible = "ti,omap4-dsi", .data = &dsi_of_data_omap4, },
{ .compatible = "ti,omap5-dsi", .data = &dsi_of_data_omap5, },
{},
};
static const struct soc_device_attribute dsi_soc_devices[] = {
{ .machine = "OMAP3[45]*", .data = &dsi_of_data_omap34xx },
{ .machine = "AM35*", .data = &dsi_of_data_omap34xx },
{ /* sentinel */ }
};
static int dsi_bind(struct device *dev, struct device *master, void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct dss_device *dss = dss_get_device(master);
const struct soc_device_attribute *soc;
const struct dsi_module_id_data *d;
u32 rev;
int r, i;
struct dsi_data *dsi;
struct resource *dsi_mem;
struct resource *res;
dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
dsi->dss = dss;
dsi->dev = dev;
dev_set_drvdata(dev, dsi);
spin_lock_init(&dsi->irq_lock);
spin_lock_init(&dsi->errors_lock);
dsi->errors = 0;
#ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
spin_lock_init(&dsi->irq_stats_lock);
dsi->irq_stats.last_reset = jiffies;
#endif
mutex_init(&dsi->lock);
sema_init(&dsi->bus_lock, 1);
INIT_DEFERRABLE_WORK(&dsi->framedone_timeout_work,
dsi_framedone_timeout_work_callback);
#ifdef DSI_CATCH_MISSING_TE
timer_setup(&dsi->te_timer, dsi_te_timeout, 0);
#endif
dsi_mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "proto");
dsi->proto_base = devm_ioremap_resource(dev, dsi_mem);
if (IS_ERR(dsi->proto_base))
return PTR_ERR(dsi->proto_base);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "phy");
dsi->phy_base = devm_ioremap_resource(dev, res);
if (IS_ERR(dsi->phy_base))
return PTR_ERR(dsi->phy_base);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "pll");
dsi->pll_base = devm_ioremap_resource(dev, res);
if (IS_ERR(dsi->pll_base))
return PTR_ERR(dsi->pll_base);
dsi->irq = platform_get_irq(pdev, 0);
if (dsi->irq < 0) {
DSSERR("platform_get_irq failed\n");
return -ENODEV;
}
r = devm_request_irq(dev, dsi->irq, omap_dsi_irq_handler,
IRQF_SHARED, dev_name(dev), dsi);
if (r < 0) {
DSSERR("request_irq failed\n");
return r;
}
soc = soc_device_match(dsi_soc_devices);
if (soc)
dsi->data = soc->data;
else
dsi->data = of_match_node(dsi_of_match, dev->of_node)->data;
d = dsi->data->modules;
while (d->address != 0 && d->address != dsi_mem->start)
d++;
if (d->address == 0) {
DSSERR("unsupported DSI module\n");
return -ENODEV;
}
dsi->module_id = d->id;
if (dsi->data->model == DSI_MODEL_OMAP4 ||
dsi->data->model == DSI_MODEL_OMAP5) {
struct device_node *np;
/*
* The OMAP4/5 display DT bindings don't reference the padconf
* syscon. Our only option to retrieve it is to find it by name.
*/
np = of_find_node_by_name(NULL,
dsi->data->model == DSI_MODEL_OMAP4 ?
"omap4_padconf_global" : "omap5_padconf_global");
if (!np)
return -ENODEV;
dsi->syscon = syscon_node_to_regmap(np);
of_node_put(np);
}
/* DSI VCs initialization */
for (i = 0; i < ARRAY_SIZE(dsi->vc); i++) {
dsi->vc[i].source = DSI_VC_SOURCE_L4;
dsi->vc[i].dssdev = NULL;
dsi->vc[i].vc_id = 0;
}
r = dsi_get_clocks(dsi);
if (r)
return r;
dsi_init_pll_data(dss, dsi);
pm_runtime_enable(dev);
r = dsi_runtime_get(dsi);
if (r)
goto err_runtime_get;
rev = dsi_read_reg(dsi, DSI_REVISION);
dev_dbg(dev, "OMAP DSI rev %d.%d\n",
FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
/* DSI on OMAP3 doesn't have register DSI_GNQ, set number
* of data to 3 by default */
if (dsi->data->quirks & DSI_QUIRK_GNQ)
/* NB_DATA_LANES */
dsi->num_lanes_supported = 1 + REG_GET(dsi, DSI_GNQ, 11, 9);
else
dsi->num_lanes_supported = 3;
dsi->line_buffer_size = dsi_get_line_buf_size(dsi);
dsi_init_output(dsi);
r = dsi_probe_of(dsi);
if (r) {
DSSERR("Invalid DSI DT data\n");
goto err_probe_of;
}
r = of_platform_populate(dev->of_node, NULL, NULL, dev);
if (r)
DSSERR("Failed to populate DSI child devices: %d\n", r);
dsi_runtime_put(dsi);
if (dsi->module_id == 0)
dsi->debugfs.regs = dss_debugfs_create_file(dss, "dsi1_regs",
dsi1_dump_regs,
&dsi);
else
dsi->debugfs.regs = dss_debugfs_create_file(dss, "dsi2_regs",
dsi2_dump_regs,
&dsi);
#ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
if (dsi->module_id == 0)
dsi->debugfs.irqs = dss_debugfs_create_file(dss, "dsi1_irqs",
dsi1_dump_irqs,
&dsi);
else
dsi->debugfs.irqs = dss_debugfs_create_file(dss, "dsi2_irqs",
dsi2_dump_irqs,
&dsi);
#endif
return 0;
err_probe_of:
dsi_uninit_output(dsi);
dsi_runtime_put(dsi);
err_runtime_get:
pm_runtime_disable(dev);
return r;
}
static void dsi_unbind(struct device *dev, struct device *master, void *data)
{
struct dsi_data *dsi = dev_get_drvdata(dev);
dss_debugfs_remove_file(dsi->debugfs.irqs);
dss_debugfs_remove_file(dsi->debugfs.regs);
of_platform_depopulate(dev);
WARN_ON(dsi->scp_clk_refcount > 0);
dss_pll_unregister(&dsi->pll);
dsi_uninit_output(dsi);
pm_runtime_disable(dev);
if (dsi->vdds_dsi_reg != NULL && dsi->vdds_dsi_enabled) {
regulator_disable(dsi->vdds_dsi_reg);
dsi->vdds_dsi_enabled = false;
}
}
static const struct component_ops dsi_component_ops = {
.bind = dsi_bind,
.unbind = dsi_unbind,
};
static int dsi_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &dsi_component_ops);
}
static int dsi_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &dsi_component_ops);
return 0;
}
static int dsi_runtime_suspend(struct device *dev)
{
struct dsi_data *dsi = dev_get_drvdata(dev);
dsi->is_enabled = false;
/* ensure the irq handler sees the is_enabled value */
smp_wmb();
/* wait for current handler to finish before turning the DSI off */
synchronize_irq(dsi->irq);
dispc_runtime_put(dsi->dss->dispc);
return 0;
}
static int dsi_runtime_resume(struct device *dev)
{
struct dsi_data *dsi = dev_get_drvdata(dev);
int r;
r = dispc_runtime_get(dsi->dss->dispc);
if (r)
return r;
dsi->is_enabled = true;
/* ensure the irq handler sees the is_enabled value */
smp_wmb();
return 0;
}
static const struct dev_pm_ops dsi_pm_ops = {
.runtime_suspend = dsi_runtime_suspend,
.runtime_resume = dsi_runtime_resume,
};
struct platform_driver omap_dsihw_driver = {
.probe = dsi_probe,
.remove = dsi_remove,
.driver = {
.name = "omapdss_dsi",
.pm = &dsi_pm_ops,
.of_match_table = dsi_of_match,
.suppress_bind_attrs = true,
},
};