kernel_samsung_a34x-permissive/drivers/misc/mediatek/usb20/mt6833/usb20.c

2192 lines
52 KiB
C
Raw Permalink Normal View History

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2019 MediaTek Inc.
*/
#include <linux/module.h>
#include <linux/usb/usb_phy_generic.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/of_address.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <usb20.h>
#include <musb.h>
#include <musb_core.h>
#include <mtk_musb.h>
#include <musb_dr.h>
#include <musbhsdma.h>
#ifdef CONFIG_MTK_MUSB_PHY
#include <usb20_phy.h>
#endif
#include <mt-plat/mtk_boot_common.h>
#if defined(CONFIG_BATTERY_SAMSUNG)
#include "../../../../battery/common/sec_charging_common.h"
#endif
#if IS_ENABLED(CONFIG_USB_NOTIFY_LAYER)
#include <linux/usb_notify.h>
#endif
MODULE_LICENSE("GPL v2");
struct musb *mtk_musb;
EXPORT_SYMBOL(mtk_musb);
bool mtk_usb_power;
EXPORT_SYMBOL(mtk_usb_power);
int musb_force_on;
EXPORT_SYMBOL(musb_force_on);
static void (*usb_hal_dpidle_request_fptr)(int);
void usb_hal_dpidle_request(int mode)
{
if (usb_hal_dpidle_request_fptr)
usb_hal_dpidle_request_fptr(mode);
}
EXPORT_SYMBOL(usb_hal_dpidle_request);
void register_usb_hal_dpidle_request(void (*function)(int))
{
usb_hal_dpidle_request_fptr = function;
}
EXPORT_SYMBOL(register_usb_hal_dpidle_request);
void (*usb_hal_disconnect_check_fptr)(void);
void usb_hal_disconnect_check(void)
{
if (usb_hal_disconnect_check_fptr)
usb_hal_disconnect_check_fptr();
}
EXPORT_SYMBOL(usb_hal_disconnect_check);
void register_usb_hal_disconnect_check(void (*function)(void))
{
usb_hal_disconnect_check_fptr = function;
}
EXPORT_SYMBOL(register_usb_hal_disconnect_check);
#ifdef FPGA_PLATFORM
#include <linux/i2c.h>
#include "mtk-phy-a60810.h"
#endif
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
#include "musb_qmu.h"
#endif
#ifdef CONFIG_MTK_USB2JTAG_SUPPORT
#include <mt-plat/mtk_usb2jtag.h>
#endif
#ifndef FPGA_PLATFORM
#include <linux/arm-smccc.h>
#include <linux/soc/mediatek/mtk_sip_svc.h>
#if defined(CONFIG_BATTERY_SAMSUNG)
static int musb_set_vbus_current(int usb_state)
{
struct power_supply *psy;
union power_supply_propval pval = {0};
int cur = 100;
if (usb_state == USB_CONFIGURED)
cur = USB_CURRENT_HIGH_SPEED;
else
cur = USB_CURRENT_UNCONFIGURED;
pr_info("%s : %dmA\n", __func__, cur);
psy = power_supply_get_by_name("battery");
if (psy) {
pval.intval = cur;
psy_do_property("battery", set,
POWER_SUPPLY_EXT_PROP_USB_CONFIGURE, pval);
power_supply_put(psy);
}
return 0;
}
static void musb_set_vbus_current_work(struct work_struct *w)
{
struct musb *musb = container_of(w,
struct musb, set_vbus_current_work);
#if IS_ENABLED(CONFIG_USB_NOTIFY_LAYER)
struct otg_notify *o_notify = get_otg_notify();
switch (musb->usb_state) {
case USB_SUSPEND:
/* set vbus current for suspend state is called in usb_notify. */
send_otg_notify(o_notify, NOTIFY_EVENT_USBD_SUSPENDED, 1);
goto skip;
case USB_UNCONFIGURED:
send_otg_notify(o_notify, NOTIFY_EVENT_USBD_UNCONFIGURED, 1);
break;
case USB_CONFIGURED:
send_otg_notify(o_notify, NOTIFY_EVENT_USBD_CONFIGURED, 1);
break;
default:
break;
}
#endif
musb_set_vbus_current(musb->usb_state);
#if IS_ENABLED(CONFIG_USB_NOTIFY_LAYER)
skip:
return;
#endif
}
#endif
static void usb_dpidle_request(int mode)
{
struct arm_smccc_res res;
int op;
switch (mode) {
case USB_DPIDLE_SUSPEND:
op = MTK_USB_SMC_INFRA_REQUEST;
break;
case USB_DPIDLE_RESUME:
op = MTK_USB_SMC_INFRA_RELEASE;
break;
default:
return;
}
DBG(0, "operatio = %d\n", op);
arm_smccc_smc(MTK_SIP_KERNEL_USB_CONTROL, op, 0, 0, 0, 0, 0, 0, &res);
}
#endif
/* BC1.2 */
/* Duplicate define in phy-mtk-tphy */
#define PHY_MODE_BC11_SW_SET 1
#define PHY_MODE_BC11_SW_CLR 2
void Charger_Detect_Init(void)
{
#if 0
if ((get_boot_mode() == META_BOOT) ||
(get_boot_mode() == ADVMETA_BOOT) ||
!mtk_musb) {
DBG(0, "%s Skip, musb<%p>\n",
__func__, mtk_musb);
return;
}
#endif
usb_prepare_enable_clock(true);
/* wait 50 usec. */
udelay(50);
/* RG_USB20_BC11_SW_EN = 1'b1 */
phy_set_mode_ext(glue->phy, PHY_MODE_USB_DEVICE, PHY_MODE_BC11_SW_SET);
usb_prepare_enable_clock(false);
DBG(0, "%s\n", __func__);
}
EXPORT_SYMBOL(Charger_Detect_Init);
void Charger_Detect_Release(void)
{
#if 0
if ((get_boot_mode() == META_BOOT) ||
(get_boot_mode() == ADVMETA_BOOT) ||
!mtk_musb) {
DBG(0, "%s Skip, musb<%p>\n",
__func__, mtk_musb);
return;
}
#endif
usb_prepare_enable_clock(true);
/* RG_USB20_BC11_SW_EN = 1'b0 */
phy_set_mode_ext(glue->phy, PHY_MODE_USB_DEVICE, PHY_MODE_BC11_SW_CLR);
udelay(1);
usb_prepare_enable_clock(false);
DBG(0, "%s\n", __func__);
}
EXPORT_SYMBOL(Charger_Detect_Release);
void usb_phy_context_save(void)
{
#ifdef CONFIG_MTK_UART_USB_SWITCH
in_uart_mode = usb_phy_check_in_uart_mode();
#endif
}
void usb_phy_context_restore(void)
{
#ifdef CONFIG_MTK_UART_USB_SWITCH
if (in_uart_mode)
usb_phy_switch_to_uart();
#endif
}
#ifdef CONFIG_USB_MTK_OTG
static struct regmap *pericfg;
static struct regmap *infracg;
static void mt_usb_wakeup(struct musb *musb, bool enable)
{
u32 tmp;
bool is_con = musb->port1_status & USB_PORT_STAT_CONNECTION;
if (IS_ERR_OR_NULL(pericfg) || IS_ERR_OR_NULL(infracg)) {
DBG(0, "init fail");
return;
}
DBG(0, "connection=%d\n", is_con);
if (enable) {
tmp = musb_readl(musb->mregs, RESREG);
if (is_con)
tmp &= ~HSTPWRDWN_OPT;
else
tmp |= HSTPWRDWN_OPT;
musb_writel(musb->mregs, RESREG, tmp);
regmap_read(infracg, MISC_CONFIG, &tmp);
tmp |= USB_CD_CLR;
regmap_write(infracg, MISC_CONFIG, tmp);
mdelay(5);
regmap_read(pericfg, USB_WK_CTRL, &tmp);
tmp |= USB_CDDEBOUNCE(0x8) | USB_CDEN;
regmap_write(pericfg, USB_WK_CTRL, tmp);
mdelay(5);
regmap_read(infracg, MISC_CONFIG, &tmp);
tmp &= ~USB_CD_CLR;
regmap_write(infracg, MISC_CONFIG, tmp);
} else {
regmap_read(pericfg, USB_WK_CTRL, &tmp);
tmp &= ~(USB_CDEN | USB_CDDEBOUNCE(0x8));
regmap_write(pericfg, USB_WK_CTRL, tmp);
tmp = musb_readw(musb->mregs, RESREG);
tmp &= ~HSTPWRDWN_OPT;
musb_writew(musb->mregs, RESREG, tmp);
}
}
static int mt_usb_wakeup_init(struct musb *musb)
{
struct device_node *node;
node = of_find_compatible_node(NULL, NULL,
"mediatek,mt6833-usb20");
if (!node) {
DBG(0, "map node failed\n");
return -ENODEV;
}
pericfg = syscon_regmap_lookup_by_phandle(node,
"pericfg");
if (IS_ERR(pericfg)) {
DBG(0, "fail to get pericfg regs\n");
return PTR_ERR(pericfg);
}
infracg = syscon_regmap_lookup_by_phandle(node,
"infracg");
if (IS_ERR(infracg)) {
DBG(0, "fail to get infracg regs\n");
return PTR_ERR(infracg);
}
return 0;
}
#endif
static u32 cable_mode = CABLE_MODE_NORMAL;
#ifndef FPGA_PLATFORM
struct clk *musb_clk;
struct clk *musb_ref_clk;
struct clk *musb_clk_top_sel;
struct clk *musb_clk_univpll5_d4;
static struct regulator *reg_vusb;
static struct regulator *reg_vio18;
static struct regulator *reg_va12;
#endif
void __iomem *usb_phy_base;
#ifdef CONFIG_MTK_UART_USB_SWITCH
static u32 port_mode = PORT_MODE_USB;
#define AP_GPIO_COMPATIBLE_NAME "mediatek,gpio"
void __iomem *ap_gpio_base;
#endif
/*EP Fifo Config*/
static struct musb_fifo_cfg fifo_cfg[] __initdata = {
{.hw_ep_num = 1, .style = FIFO_TX, .maxpacket = 512,
.ep_mode = EP_BULK, .mode = BUF_DOUBLE},
{.hw_ep_num = 1, .style = FIFO_RX, .maxpacket = 512,
.ep_mode = EP_BULK, .mode = BUF_DOUBLE},
{.hw_ep_num = 2, .style = FIFO_TX, .maxpacket = 512,
.ep_mode = EP_BULK, .mode = BUF_DOUBLE},
{.hw_ep_num = 2, .style = FIFO_RX, .maxpacket = 512,
.ep_mode = EP_BULK, .mode = BUF_DOUBLE},
{.hw_ep_num = 3, .style = FIFO_TX, .maxpacket = 512,
.ep_mode = EP_BULK, .mode = BUF_DOUBLE},
{.hw_ep_num = 3, .style = FIFO_RX, .maxpacket = 512,
.ep_mode = EP_BULK, .mode = BUF_DOUBLE},
{.hw_ep_num = 4, .style = FIFO_TX, .maxpacket = 512,
.ep_mode = EP_BULK, .mode = BUF_DOUBLE},
{.hw_ep_num = 4, .style = FIFO_RX, .maxpacket = 512,
.ep_mode = EP_BULK, .mode = BUF_DOUBLE},
{.hw_ep_num = 5, .style = FIFO_TX, .maxpacket = 512,
.ep_mode = EP_INT, .mode = BUF_SINGLE},
{.hw_ep_num = 5, .style = FIFO_RX, .maxpacket = 512,
.ep_mode = EP_INT, .mode = BUF_SINGLE},
{.hw_ep_num = 6, .style = FIFO_TX, .maxpacket = 512,
.ep_mode = EP_INT, .mode = BUF_SINGLE},
{.hw_ep_num = 6, .style = FIFO_RX, .maxpacket = 512,
.ep_mode = EP_INT, .mode = BUF_SINGLE},
{.hw_ep_num = 7, .style = FIFO_TX, .maxpacket = 512,
.ep_mode = EP_BULK, .mode = BUF_SINGLE},
{.hw_ep_num = 7, .style = FIFO_RX, .maxpacket = 512,
.ep_mode = EP_BULK, .mode = BUF_SINGLE},
{.hw_ep_num = 8, .style = FIFO_TX, .maxpacket = 512,
.ep_mode = EP_ISO, .mode = BUF_DOUBLE},
{.hw_ep_num = 8, .style = FIFO_RX, .maxpacket = 512,
.ep_mode = EP_ISO, .mode = BUF_DOUBLE},
};
#ifdef FPGA_PLATFORM
bool usb_enable_clock(bool enable)
{
return true;
}
bool usb_prepare_clock(bool enable)
{
return true;
}
void usb_prepare_enable_clock(bool enable)
{
}
#else
void usb_prepare_enable_clock(bool enable)
{
if (enable) {
usb_prepare_clock(true);
usb_enable_clock(true);
} else {
usb_enable_clock(false);
usb_prepare_clock(false);
}
}
DEFINE_MUTEX(prepare_lock);
static atomic_t clk_prepare_cnt = ATOMIC_INIT(0);
bool usb_prepare_clock(bool enable)
{
int before_cnt = atomic_read(&clk_prepare_cnt);
mutex_lock(&prepare_lock);
if (IS_ERR_OR_NULL(glue->musb_clk) ||
IS_ERR_OR_NULL(glue->musb_ref_clk) ||
IS_ERR_OR_NULL(glue->musb_clk_top_sel) ||
IS_ERR_OR_NULL(glue->musb_clk_univpll5_d4)) {
DBG(0, "clk not ready\n");
mutex_unlock(&prepare_lock);
return 0;
}
if (enable) {
if (clk_prepare(glue->musb_clk_top_sel)) {
DBG(0, "musb_clk_top_sel prepare fail\n");
} else {
if (clk_set_parent(glue->musb_clk_top_sel,
glue->musb_clk_univpll5_d4))
DBG(0, "musb_clk_top_sel set_parent fail\n");
}
if (clk_prepare(glue->musb_clk))
DBG(0, "musb_clk prepare fail\n");
if (clk_prepare(glue->musb_ref_clk))
DBG(0, "musb_ref_clk prepare fail\n");
atomic_inc(&clk_prepare_cnt);
} else {
clk_unprepare(glue->musb_clk_top_sel);
clk_unprepare(glue->musb_ref_clk);
clk_unprepare(glue->musb_clk);
atomic_dec(&clk_prepare_cnt);
}
mutex_unlock(&prepare_lock);
DBG(1, "enable(%d), usb prepare_cnt, before(%d), after(%d)\n",
enable, before_cnt, atomic_read(&clk_prepare_cnt));
#ifdef CONFIG_MTK_AEE_FEATURE
if (atomic_read(&clk_prepare_cnt) < 0)
aee_kernel_warning("usb20", "usb clock prepare_cnt error\n");
#endif
return 1;
}
EXPORT_SYMBOL(usb_prepare_clock);
static DEFINE_SPINLOCK(musb_reg_clock_lock);
bool usb_enable_clock(bool enable)
{
static int count;
static int real_enable = 0, real_disable;
static int virt_enable = 0, virt_disable;
unsigned long flags;
DBG(1, "enable(%d),count(%d),<%d,%d,%d,%d>\n",
enable, count, virt_enable, virt_disable,
real_enable, real_disable);
spin_lock_irqsave(&musb_reg_clock_lock, flags);
if (unlikely(atomic_read(&clk_prepare_cnt) <= 0)) {
DBG_LIMIT(1, "clock not prepare");
goto exit;
}
if (enable && count == 0) {
if (clk_enable(glue->musb_clk_top_sel)) {
DBG(0, "musb_clk_top_sel enable fail\n");
goto exit;
}
if (clk_enable(glue->musb_clk)) {
DBG(0, "musb_clk enable fail\n");
clk_disable(glue->musb_clk_top_sel);
goto exit;
}
if (clk_enable(glue->musb_ref_clk)) {
DBG(0, "musb_ref_clk enable fail\n");
clk_disable(glue->musb_clk);
clk_disable(glue->musb_clk_top_sel);
goto exit;
}
usb_hal_dpidle_request(USB_DPIDLE_FORBIDDEN);
real_enable++;
} else if (!enable && count == 1) {
clk_disable(glue->musb_clk);
clk_disable(glue->musb_ref_clk);
clk_disable(glue->musb_clk_top_sel);
usb_hal_dpidle_request(USB_DPIDLE_ALLOWED);
real_disable++;
}
if (enable)
count++;
else
count = (count == 0) ? 0 : (count - 1);
exit:
if (enable)
virt_enable++;
else
virt_disable++;
spin_unlock_irqrestore(&musb_reg_clock_lock, flags);
DBG(1, "enable(%d),count(%d), <%d,%d,%d,%d>\n",
enable, count, virt_enable, virt_disable,
real_enable, real_disable);
return 1;
}
EXPORT_SYMBOL(usb_enable_clock);
#endif
/*=======================================================================*/
/* USB GADGET */
/*=======================================================================*/
static const struct of_device_id apusb_of_ids[] = {
{.compatible = "mediatek,mt6833-usb20",},
{},
};
MODULE_DEVICE_TABLE(of, apusb_of_ids);
static struct delayed_work idle_work;
void do_idle_work(struct work_struct *data)
{
struct musb *musb = mtk_musb;
unsigned long flags;
u8 devctl;
enum usb_otg_state old_state;
usb_prepare_clock(true);
spin_lock_irqsave(&musb->lock, flags);
old_state = musb->xceiv->otg->state;
if (musb->is_active) {
DBG(0,
"%s active, igonre do_idle\n",
otg_state_string(musb->xceiv->otg->state));
goto exit;
}
switch (musb->xceiv->otg->state) {
case OTG_STATE_B_PERIPHERAL:
case OTG_STATE_A_WAIT_BCON:
devctl = musb_readb(musb->mregs, MUSB_DEVCTL);
if (devctl & MUSB_DEVCTL_BDEVICE) {
musb->xceiv->otg->state = OTG_STATE_B_IDLE;
MUSB_DEV_MODE(musb);
} else {
musb->xceiv->otg->state = OTG_STATE_A_IDLE;
MUSB_HST_MODE(musb);
}
break;
case OTG_STATE_A_HOST:
devctl = musb_readb(musb->mregs, MUSB_DEVCTL);
if (devctl & MUSB_DEVCTL_BDEVICE)
musb->xceiv->otg->state = OTG_STATE_B_IDLE;
else
musb->xceiv->otg->state = OTG_STATE_A_WAIT_BCON;
break;
default:
break;
}
DBG(0, "otg_state %s to %s, is_active<%d>\n",
otg_state_string(old_state),
otg_state_string(musb->xceiv->otg->state),
musb->is_active);
exit:
spin_unlock_irqrestore(&musb->lock, flags);
usb_prepare_clock(false);
}
static void musb_do_idle(struct timer_list *t)
{
struct musb *musb = from_timer(musb, t, idle_timer);
queue_delayed_work(musb->st_wq, &idle_work, 0);
}
static void mt_usb_try_idle(struct musb *musb, unsigned long timeout)
{
unsigned long default_timeout = jiffies + msecs_to_jiffies(3);
static unsigned long last_timer;
DBG(0, "skip %s\n", __func__);
return;
if (timeout == 0)
timeout = default_timeout;
/* Never idle if active, or when VBUS timeout is not set as host */
if (musb->is_active || ((musb->a_wait_bcon == 0)
&& (musb->xceiv->otg->state
== OTG_STATE_A_WAIT_BCON))) {
DBG(0, "%s active, deleting timer\n",
otg_state_string(musb->xceiv->otg->state));
del_timer(&musb->idle_timer);
last_timer = jiffies;
return;
}
if (time_after(last_timer, timeout)) {
if (!timer_pending(&musb->idle_timer))
last_timer = timeout;
else {
DBG(0, "Longer idle timer already pending, ignoring\n");
return;
}
}
last_timer = timeout;
DBG(0, "%s inactive, for idle timer for %lu ms\n",
otg_state_string(musb->xceiv->otg->state),
(unsigned long)jiffies_to_msecs(timeout - jiffies));
mod_timer(&musb->idle_timer, timeout);
}
static int real_enable = 0, real_disable;
static int virt_enable = 0, virt_disable;
static void mt_usb_enable(struct musb *musb)
{
unsigned long flags;
#ifdef CONFIG_MTK_UART_USB_SWITCH
static int is_check;
#endif
virt_enable++;
DBG(0, "begin <%d,%d>,<%d,%d,%d,%d>\n",
mtk_usb_power, musb->power,
virt_enable, virt_disable,
real_enable, real_disable);
if (musb->power == true)
return;
/* clock alredy prepare before enter here */
usb_enable_clock(true);
mdelay(10);
#ifdef CONFIG_MTK_UART_USB_SWITCH
if (!is_check) {
in_uart_mode = usb_phy_check_in_uart_mode();
is_check = 1;
}
#endif
flags = musb_readl(musb->mregs, USB_L1INTM);
/* update musb->power & mtk_usb_power in the same time */
musb->power = true;
mtk_usb_power = true;
real_enable++;
if (in_interrupt()) {
DBG(0, "in interrupt !!!!!!!!!!!!!!!\n");
DBG(0, "in interrupt !!!!!!!!!!!!!!!\n");
DBG(0, "in interrupt !!!!!!!!!!!!!!!\n");
}
DBG(0, "end, <%d,%d,%d,%d>\n",
virt_enable, virt_disable,
real_enable, real_disable);
musb_writel(mtk_musb->mregs, USB_L1INTM, flags);
}
static void mt_usb_disable(struct musb *musb)
{
virt_disable++;
DBG(0, "begin, <%d,%d>,<%d,%d,%d,%d>\n",
mtk_usb_power, musb->power,
virt_enable, virt_disable,
real_enable, real_disable);
if (musb->power == false)
return;
usb_enable_clock(false);
/* clock will unprepare when leave here */
real_disable++;
DBG(0, "end, <%d,%d,%d,%d>\n",
virt_enable, virt_disable,
real_enable, real_disable);
/* update musb->power & mtk_usb_power in the same time */
musb->power = 0;
mtk_usb_power = false;
}
/* ================================ */
/* connect and disconnect functions */
/* ================================ */
bool mt_usb_is_device(void)
{
DBG(4, "called\n");
if (!mtk_musb) {
DBG(0, "mtk_musb is NULL\n");
/* don't do charger detection when usb is not ready */
return false;
}
DBG(4, "is_host=%d\n", mtk_musb->is_host);
#ifdef CONFIG_MTK_UART_USB_SWITCH
if (in_uart_mode) {
DBG(0, "in UART Mode\n");
return false;
}
#endif
#ifdef CONFIG_USB_MTK_OTG
return !mtk_musb->is_host;
#else
return true;
#endif
}
static struct delayed_work disconnect_check_work;
static bool musb_hal_is_vbus_exist(void);
void do_disconnect_check_work(struct work_struct *data)
{
bool vbus_exist = false;
unsigned long flags = 0;
struct musb *musb = mtk_musb;
msleep(200);
vbus_exist = musb_hal_is_vbus_exist();
DBG(1, "vbus_exist:<%d>\n", vbus_exist);
if (vbus_exist)
return;
spin_lock_irqsave(&mtk_musb->lock, flags);
DBG(1, "speed <%d>\n", musb->g.speed);
/* notify gadget driver, g.speed judge is very important */
if (!musb->is_host && musb->g.speed != USB_SPEED_UNKNOWN) {
DBG(0, "musb->gadget_driver:%p\n", musb->gadget_driver);
if (musb->gadget_driver && musb->gadget_driver->disconnect) {
DBG(0, "musb->gadget_driver->disconnect:%p\n",
musb->gadget_driver->disconnect);
/* align musb_g_disconnect */
spin_unlock(&musb->lock);
musb->gadget_driver->disconnect(&musb->g);
spin_lock(&musb->lock);
}
musb->g.speed = USB_SPEED_UNKNOWN;
}
DBG(1, "speed <%d>\n", musb->g.speed);
spin_unlock_irqrestore(&mtk_musb->lock, flags);
}
void trigger_disconnect_check_work(void)
{
static int inited;
if (!inited) {
INIT_DELAYED_WORK(&disconnect_check_work,
do_disconnect_check_work);
inited = 1;
}
queue_delayed_work(mtk_musb->st_wq, &disconnect_check_work, 0);
}
static bool musb_hal_is_vbus_exist(void)
{
bool vbus_exist = true;
return vbus_exist;
}
DEFINE_MUTEX(cable_connected_lock);
/* be aware this could not be used in non-sleep context */
#if IS_ENABLED(CONFIG_USB_NOTIFY_LAYER)
bool usb_cable_connected(void)
{
struct otg_notify *usb_notify;
int usb_mode = 0;
usb_notify = get_otg_notify();
usb_mode = get_usb_mode(usb_notify);
pr_info("usb: %s: %d\n", __func__, usb_mode);
if (usb_mode == NOTIFY_PERIPHERAL_MODE)
return true;
else
return false;
}
#else
bool usb_cable_connected(struct musb *musb)
{
if (musb->usb_connected)
return true;
else
return false;
}
#endif
static bool cmode_effect_on(void)
{
bool effect = false;
/* CMODE CHECK */
if (cable_mode == CABLE_MODE_CHRG_ONLY /*||
(cable_mode == CABLE_MODE_HOST_ONLY &&
chg_type != CHARGING_HOST)*/)
effect = true;
DBG(0, "cable_mode=%d, effect=%d\n", cable_mode, effect);
return effect;
}
void do_connection_work(struct work_struct *data)
{
unsigned long flags = 0;
int usb_clk_state = NO_CHANGE;
bool usb_on, usb_connected;
struct mt_usb_work *work =
container_of(data, struct mt_usb_work, dwork.work);
DBG(0, "is_host<%d>, power<%d>, ops<%d>\n",
mtk_musb->is_host, mtk_musb->power, work->ops);
/* always prepare clock and check if need to unprepater later */
/* clk_prepare_cnt +1 here*/
usb_prepare_clock(true);
#if IS_ENABLED(CONFIG_USB_NOTIFY_LAYER)
usb_connected = usb_cable_connected();
#else
/* be aware this could not be used in non-sleep context */
usb_connected = mtk_musb->usb_connected;
#endif
/* additional check operation here */
if (musb_force_on)
usb_on = true;
else if (work->ops == CONNECTION_OPS_CHECK)
usb_on = usb_connected;
else
usb_on = (work->ops ==
CONNECTION_OPS_CONN ? true : false);
if (cmode_effect_on())
usb_on = false;
/* additional check operation done */
spin_lock_irqsave(&mtk_musb->lock, flags);
if (mtk_musb->is_host) {
DBG(0, "is host, return\n");
goto exit;
}
#ifdef CONFIG_MTK_UART_USB_SWITCH
if (in_uart_mode) {
DBG(0, "in uart mode, return\n");
goto exit;
}
#endif
if (!mtk_musb->power && (usb_on == true)) {
/* enable usb */
if (!mtk_musb->usb_lock->active) {
__pm_stay_awake(mtk_musb->usb_lock);
DBG(0, "lock\n");
} else {
DBG(0, "already lock\n");
}
/* note this already put SOFTCON */
musb_start(mtk_musb);
usb_clk_state = OFF_TO_ON;
} else if (mtk_musb->power && (usb_on == false)) {
/* disable usb */
musb_stop(mtk_musb);
if (mtk_musb->usb_lock->active) {
DBG(0, "unlock\n");
__pm_relax(mtk_musb->usb_lock);
} else {
DBG(0, "lock not active\n");
}
usb_clk_state = ON_TO_OFF;
mtk_musb->xceiv->otg->state = OTG_STATE_B_IDLE;
} else
DBG(0, "do nothing, usb_on:%d, power:%d\n",
usb_on, mtk_musb->power);
exit:
spin_unlock_irqrestore(&mtk_musb->lock, flags);
if (usb_clk_state == ON_TO_OFF) {
/* clock on -> of: clk_prepare_cnt -2 */
usb_prepare_clock(false);
usb_prepare_clock(false);
} else if (usb_clk_state == NO_CHANGE) {
/* clock no change : clk_prepare_cnt -1 */
usb_prepare_clock(false);
}
/* free mt_usb_work */
kfree(work);
}
static void issue_connection_work(int ops)
{
struct mt_usb_work *work;
if (!mtk_musb) {
DBG(0, "mtk_musb = NULL\n");
return;
}
/* create and prepare worker */
work = kzalloc(sizeof(struct mt_usb_work), GFP_ATOMIC);
if (!work) {
DBG(0, "wrap is NULL, directly return\n");
return;
}
work->ops = ops;
INIT_DELAYED_WORK(&work->dwork, do_connection_work);
/* issue connection work */
DBG(0, "issue work, ops<%d>\n", ops);
queue_delayed_work(mtk_musb->st_wq, &work->dwork, 0);
}
void mt_usb_connect(void)
{
DBG(0, "[MUSB] USB connect\n");
issue_connection_work(CONNECTION_OPS_CONN);
}
EXPORT_SYMBOL(mt_usb_connect);
void mt_usb_disconnect(void)
{
DBG(0, "[MUSB] USB disconnect\n");
issue_connection_work(CONNECTION_OPS_DISC);
}
void mt_usb_reconnect(void)
{
DBG(0, "[MUSB] USB reconnect\n");
issue_connection_work(CONNECTION_OPS_CHECK);
}
EXPORT_SYMBOL(mt_usb_reconnect);
/* build time force on */
#if defined(CONFIG_FPGA_EARLY_PORTING) ||\
defined(U3_COMPLIANCE) || defined(FOR_BRING_UP)
#define BYPASS_PMIC_LINKAGE
#endif
void musb_platform_reset(struct musb *musb)
{
u16 swrst = 0;
void __iomem *mbase = musb->mregs;
u8 bit;
/* clear all DMA enable bit */
for (bit = 0; bit < MUSB_HSDMA_CHANNELS; bit++)
musb_writew(mbase,
MUSB_HSDMA_CHANNEL_OFFSET(bit, MUSB_HSDMA_CONTROL), 0);
/* set DMA channel 0 burst mode to boost QMU speed */
musb_writel(musb->mregs, 0x204,
musb_readl(musb->mregs, 0x204) | 0x600);
#ifdef CONFIG_MTK_MUSB_DRV_36BIT
/* eanble DMA channel 0 36-BIT support */
musb_writel(musb->mregs, 0x204,
musb_readl(musb->mregs, 0x204) | 0x4000);
#endif
swrst = musb_readw(mbase, MUSB_SWRST);
swrst |= (MUSB_SWRST_DISUSBRESET | MUSB_SWRST_SWRST);
musb_writew(mbase, MUSB_SWRST, swrst);
}
EXPORT_SYMBOL(musb_platform_reset);
bool is_switch_charger(void)
{
#ifdef SWITCH_CHARGER
return true;
#else
return false;
#endif
}
void pmic_chrdet_int_en(int is_on)
{
#ifndef FPGA_PLATFORM
#ifdef CONFIG_MTK_PMIC
DBG(0, "is_on<%d>\n", is_on);
upmu_interrupt_chrdet_int_en(is_on);
#else
DBG(0, "FIXME, no upmu_interrupt_chrdet_int_en ???\n");
#endif
#endif
}
void musb_sync_with_bat(struct musb *musb, int usb_state)
{
#ifndef FPGA_PLATFORM
DBG(1, "BATTERY_SetUSBState, state=%d\n", usb_state);
#ifdef CONFIG_MTK_CHARGER
BATTERY_SetUSBState(usb_state);
#endif
#endif
#if defined(CONFIG_BATTERY_SAMSUNG)
musb->usb_state = usb_state;
schedule_work(&musb->set_vbus_current_work);
#endif
}
EXPORT_SYMBOL(musb_sync_with_bat);
/*-------------------------------------------------------------------------*/
static irqreturn_t generic_interrupt(int irq, void *__hci)
{
irqreturn_t retval = IRQ_NONE;
struct musb *musb = __hci;
/* musb_read_clear_generic_interrupt */
musb->int_usb =
musb_readb(musb->mregs, MUSB_INTRUSB) &
musb_readb(musb->mregs, MUSB_INTRUSBE);
musb->int_tx = musb_readw(musb->mregs, MUSB_INTRTX) &
musb_readw(musb->mregs, MUSB_INTRTXE);
musb->int_rx = musb_readw(musb->mregs, MUSB_INTRRX) &
musb_readw(musb->mregs, MUSB_INTRRXE);
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
musb->int_queue = musb_readl(musb->mregs, MUSB_QISAR);
#endif
/* hw status up to date before W1C */
mb();
musb_writew(musb->mregs, MUSB_INTRRX, musb->int_rx);
musb_writew(musb->mregs, MUSB_INTRTX, musb->int_tx);
musb_writeb(musb->mregs, MUSB_INTRUSB, musb->int_usb);
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
if (musb->int_queue) {
musb_writel(musb->mregs, MUSB_QISAR, musb->int_queue);
musb->int_queue &= ~(musb_readl(musb->mregs, MUSB_QIMR));
}
#endif
/* musb_read_clear_generic_interrupt */
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
if (musb->int_usb || musb->int_tx || musb->int_rx || musb->int_queue)
retval = musb_interrupt(musb);
#else
if (musb->int_usb || musb->int_tx || musb->int_rx)
retval = musb_interrupt(musb);
#endif
return retval;
}
static irqreturn_t mt_usb_interrupt(int irq, void *dev_id)
{
irqreturn_t tmp_status;
irqreturn_t status = IRQ_NONE;
struct musb *musb = (struct musb *)dev_id;
u32 usb_l1_ints;
unsigned long flags;
spin_lock_irqsave(&musb->lock, flags);
usb_l1_ints = musb_readl(musb->mregs, USB_L1INTS) &
musb_readl(mtk_musb->mregs, USB_L1INTM);
DBG(1, "usb interrupt assert %x %x %x %x %x %x %x\n", usb_l1_ints,
musb_readl(mtk_musb->mregs, USB_L1INTM),
musb_readb(musb->mregs, MUSB_INTRUSBE),
musb_readw(musb->mregs, MUSB_INTRTX),
musb_readw(musb->mregs, MUSB_INTRTXE),
musb_readw(musb->mregs, MUSB_INTRRX),
musb_readw(musb->mregs, MUSB_INTRRXE));
if ((usb_l1_ints & TX_INT_STATUS) || (usb_l1_ints & RX_INT_STATUS)
|| (usb_l1_ints & USBCOM_INT_STATUS)
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
|| (usb_l1_ints & QINT_STATUS)
#endif
) {
tmp_status = generic_interrupt(irq, musb);
if (tmp_status != IRQ_NONE)
status = tmp_status;
}
spin_unlock_irqrestore(&musb->lock, flags);
/* FIXME, workaround for device_qmu + host_dma */
#if 1
/* #ifndef CONFIG_MTK_MUSB_QMU_SUPPORT */
if (usb_l1_ints & DMA_INT_STATUS) {
tmp_status = dma_controller_irq(irq, musb->dma_controller);
if (tmp_status != IRQ_NONE)
status = tmp_status;
}
#endif
return status;
}
static bool saving_mode;
static ssize_t saving_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
if (!dev) {
DBG(0, "dev is null!!\n");
return 0;
}
return scnprintf(buf, PAGE_SIZE, "%d\n", saving_mode);
}
static ssize_t saving_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int saving;
long tmp_val;
if (!dev) {
DBG(0, "dev is null!!\n");
return count;
/* } else if (1 == sscanf(buf, "%d", &saving)) { */
} else if (kstrtol(buf, 10, (long *)&tmp_val) == 0) {
saving = tmp_val;
DBG(0, "old=%d new=%d\n", saving, saving_mode);
if (saving_mode == (!saving))
saving_mode = !saving_mode;
}
return count;
}
bool is_saving_mode(void)
{
DBG(0, "%d\n", saving_mode);
return saving_mode;
}
EXPORT_SYMBOL(is_saving_mode);
void usb_dump_debug_register(void)
{
struct musb *musb = mtk_musb;
usb_enable_clock(true);
/* 1:Read 0x11200620; */
pr_notice("[IPI USB dump]addr: 0x620, value: %x\n",
musb_readl(musb->mregs, 0x620));
/* 2: set 0x11200600[5:0] = 0x23; */
/* Read 0x11200634; */
musb_writew(musb->mregs, 0x600, 0x23);
pr_notice("[IPI USB dump]addr: 0x634, 0x23 value: %x\n",
musb_readl(musb->mregs, 0x634));
/* 3: set 0x11200600[5:0] = 0x24; */
/* Read 0x11200634; */
musb_writew(musb->mregs, 0x600, 0x24);
pr_notice("[IPI USB dump]addr: 0x634, 0x24 value: %x\n",
musb_readl(musb->mregs, 0x634));
/* 4:set 0x11200600[5:0] = 0x25; */
/* Read 0x11200634; */
musb_writew(musb->mregs, 0x600, 0x25);
pr_notice("[IPI USB dump]addr: 0x634, 0x25 value: %x\n",
musb_readl(musb->mregs, 0x634));
/* 5:set 0x11200600[5:0] = 0x26; */
/* Read 0x11200634; */
musb_writew(musb->mregs, 0x600, 0x26);
pr_notice("[IPI USB dump]addr: 0x634, 0x26 value: %x\n",
musb_readl(musb->mregs, 0x634));
usb_enable_clock(false);
}
DEVICE_ATTR_RW(saving);
#ifdef CONFIG_MTK_UART_USB_SWITCH
static void uart_usb_switch_dump_register(void)
{
usb_enable_clock(true);
#ifdef CONFIG_MTK_MUSB_PHY
DBG(0, "[MUSB]addr: 0x68, value: %x\n"
"[MUSB]addr: 0x6C, value: %x\n"
"[MUSB]addr: 0x20, value: %x\n"
"[MUSB]addr: 0x18, value: %x\n",
USBPHY_READ32(0x68),
USBPHY_READ32(0x6C),
USBPHY_READ32(0x20),
USBPHY_READ32(0x18));
#endif
usb_enable_clock(false);
DBG(0, "[MUSB]GPIO_SEL=%x\n", GET_GPIO_SEL_VAL(readl(ap_gpio_base)));
}
static ssize_t mt_usb_show_portmode(struct device *dev,
struct device_attribute *attr,
char *buf)
{
if (!dev) {
DBG(0, "dev is null!!\n");
return 0;
}
usb_prepare_enable_clock(true);
in_uart_mode = usb_phy_check_in_uart_mode();
if (in_uart_mode)
port_mode = PORT_MODE_UART;
else
port_mode = PORT_MODE_USB;
if (port_mode == PORT_MODE_USB)
DBG(0, "\nUSB Port mode -> USB\n");
else if (port_mode == PORT_MODE_UART)
DBG(0, "\nUSB Port mode -> UART\n");
uart_usb_switch_dump_register();
usb_prepare_enable_clock(false);
return scnprintf(buf, PAGE_SIZE, "%d\n", port_mode);
}
static ssize_t portmode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned int portmode;
in_uart_mode = usb_phy_check_in_uart_mode();
if (in_uart_mode)
port_mode = PORT_MODE_UART;
if (!dev) {
DBG(0, "dev is null!!\n");
return count;
} else if (kstrtouint(buf, 10, &portmode) == 0) {
usb_prepare_enable_clock(true);
DBG(0,
"\nUSB Port mode: current => %d (port_mode), change to => %d (portmode)\n",
port_mode, portmode);
if (portmode >= PORT_MODE_MAX)
portmode = PORT_MODE_USB;
if (port_mode != portmode) {
/* Changing to USB Mode */
if (portmode == PORT_MODE_USB) {
DBG(0, "USB Port mode -> USB\n");
usb_phy_switch_to_usb();
/* Changing to UART Mode */
} else if (portmode == PORT_MODE_UART) {
DBG(0, "USB Port mode -> UART\n");
usb_phy_switch_to_uart();
}
uart_usb_switch_dump_register();
port_mode = portmode;
}
usb_prepare_enable_clock(false);
}
return count;
}
DEVICE_ATTR_RW(portmode);
static ssize_t mt_usb_show_uart_path(struct device *dev,
struct device_attribute *attr,
char *buf)
{
u32 var;
if (!dev) {
DBG(0, "dev is null!!\n");
return 0;
}
var = GET_GPIO_SEL_VAL(readl(ap_gpio_base));
DBG(0, "[MUSB]GPIO SELECT=%x\n", var);
return scnprintf(buf, PAGE_SIZE, "%x\n", var);
}
DEVICE_ATTR(uartpath, 0444, mt_usb_show_uart_path, NULL);
#endif
#ifndef FPGA_PLATFORM
static struct device_attribute *mt_usb_attributes[] = {
&dev_attr_saving,
#ifdef CONFIG_MTK_UART_USB_SWITCH
&dev_attr_portmode,
&dev_attr_uartpath,
#endif
NULL
};
static int init_sysfs(struct device *dev)
{
struct device_attribute **attr;
int rc;
for (attr = mt_usb_attributes; *attr; attr++) {
rc = device_create_file(dev, *attr);
if (rc)
goto out_unreg;
}
return 0;
out_unreg:
for (; attr >= mt_usb_attributes; attr--)
device_remove_file(dev, *attr);
return rc;
}
#endif
#ifdef FPGA_PLATFORM
static struct i2c_client *usb_i2c_client;
static const struct i2c_device_id usb_i2c_id[] = { {"mtk-usb", 0}, {} };
void USB_PHY_Write_Register8(u8 var, u8 addr)
{
char buffer[2];
buffer[0] = addr;
buffer[1] = var;
i2c_master_send(usb_i2c_client, buffer, 2);
}
u8 USB_PHY_Read_Register8(u8 addr)
{
u8 var;
i2c_master_send(usb_i2c_client, &addr, 1);
i2c_master_recv(usb_i2c_client, &var, 1);
return var;
}
#define U3_PHY_PAGE 0xff
void _u3_write_bank(u32 value)
{
USB_PHY_Write_Register8((u8)value, (u8)U3_PHY_PAGE);
}
u32 _u3_read_reg(u32 address)
{
u8 databuffer = 0;
databuffer = USB_PHY_Read_Register8((u8)address);
return databuffer;
}
void _u3_write_reg(u32 address, u32 value)
{
USB_PHY_Write_Register8((u8)value, (u8)address);
}
u32 u3_phy_read_reg32(u32 addr)
{
u32 bank;
u32 addr8;
u32 data;
bank = (addr >> 16) & 0xff;
addr8 = addr & 0xff;
_u3_write_bank(bank);
data = _u3_read_reg(addr8);
data |= (_u3_read_reg(addr8 + 1) << 8);
data |= (_u3_read_reg(addr8 + 2) << 16);
data |= (_u3_read_reg(addr8 + 3) << 24);
return data;
}
u32 u3_phy_write_reg32(u32 addr, u32 data)
{
u32 bank;
u32 addr8;
u32 data_0, data_1, data_2, data_3;
bank = (addr >> 16) & 0xff;
addr8 = addr & 0xff;
data_0 = data & 0xff;
data_1 = (data >> 8) & 0xff;
data_2 = (data >> 16) & 0xff;
data_3 = (data >> 24) & 0xff;
_u3_write_bank(bank);
_u3_write_reg(addr8, data_0);
_u3_write_reg(addr8 + 1, data_1);
_u3_write_reg(addr8 + 2, data_2);
_u3_write_reg(addr8 + 3, data_3);
return 0;
}
void u3_phy_write_field32(int addr, int offset, int mask, int value)
{
u32 cur_value;
u32 new_value;
cur_value = u3_phy_read_reg32(addr);
new_value = (cur_value & (~mask)) | ((value << offset) & mask);
u3_phy_write_reg32(addr, new_value);
}
u32 u3_phy_write_reg8(u32 addr, u8 data)
{
u32 bank;
u32 addr8;
bank = (addr >> 16) & 0xff;
addr8 = addr & 0xff;
_u3_write_bank(bank);
_u3_write_reg(addr8, data);
return 0;
}
static int usb_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
void __iomem *base;
u32 val = 0;
/* if i2c probe before musb prob, this would cause KE */
/* base = (unsigned long)((unsigned long)mtk_musb->xceiv->io_priv); */
base = usb_phy_base + USB_PHY_OFFSET;
DBG(0, "[MUSB]%s, start, base:%p\n", __func__, base);
usb_i2c_client = client;
/* disable usb mac suspend */
val = musb_readl(base, 0x68);
DBG(0, "[MUSB]0x68=0x%x\n", val);
musb_writel(base, 0x68, (val & ~(0x4 << 16)));
DBG(0, "[MUSB]0x68=0x%x\n"
"[MUSB]addr: 0xFF, value: %x\n",
musb_readl(base, 0x68),
USB_PHY_Read_Register8(0xFF));
USB_PHY_Write_Register8(0x20, 0xFF);
DBG(0, "[MUSB]version=[%02x %02x %02x %02x]\n",
USB_PHY_Read_Register8(0xE4),
USB_PHY_Read_Register8(0xE5),
USB_PHY_Read_Register8(0xE6),
USB_PHY_Read_Register8(0xE7));
if (USB_PHY_Read_Register8(0xE7) == 0xa) {
static struct u3phy_info info;
DBG(0, "[A60801A] Phy version is %x\n",
u3_phy_read_reg32(0x2000e4));
info.u2phy_regs_a = (struct u2phy_reg_a *)0x0;
info.u3phyd_regs_a = (struct u3phyd_reg_a *)0x100000;
info.u3phyd_bank2_regs_a =
(struct u3phyd_bank2_reg_a *)0x200000;
info.u3phya_regs_a = (struct u3phya_reg_a *)0x300000;
info.u3phya_da_regs_a = (struct u3phya_da_reg_a *)0x400000;
info.sifslv_chip_regs_a = (struct sifslv_chip_reg_a *)0x500000;
info.spllc_regs_a = (struct spllc_reg_a *)0x600000;
info.sifslv_fm_regs_a = (struct sifslv_fm_reg_a *)0xf00000;
/* BANK 0x00 */
/* for U2 hS eye diagram */
u3_phy_write_field32(((phys_addr_t)(uintptr_t)
&info.u2phy_regs_a->usbphyacr1)
, A60810_RG_USB20_TERM_VREF_SEL_OFST
, A60810_RG_USB20_TERM_VREF_SEL
, 0x05);
/* for U2 hS eye diagram */
u3_phy_write_field32(((phys_addr_t)(uintptr_t)
&info.u2phy_regs_a->usbphyacr1)
, A60810_RG_USB20_VRT_VREF_SEL_OFST
, A60810_RG_USB20_VRT_VREF_SEL
, 0x05);
/* for U2 sensititvity */
u3_phy_write_field32(((phys_addr_t)(uintptr_t)
&info.u2phy_regs_a->usbphyacr6)
, A60810_RG_USB20_SQTH_OFST
, A60810_RG_USB20_SQTH
, 0x04);
/* BANK 0x10 */
/* disable ssusb_p3_entry to work around resume from P3 bug */
u3_phy_write_field32(((phys_addr_t)(uintptr_t)
&info.u3phyd_regs_a->phyd_lfps0)
, A60810_RG_SSUSB_P3_ENTRY_OFST
, A60810_RG_SSUSB_P3_ENTRY
, 0x00);
/* force disable ssusb_p3_entry to
* work around resume from P3 bug
*/
u3_phy_write_field32(((phys_addr_t)(uintptr_t)
&info.u3phyd_regs_a->phyd_lfps0)
, A60810_RG_SSUSB_P3_ENTRY_SEL_OFST
, A60810_RG_SSUSB_P3_ENTRY_SEL
, 0x01);
/* BANK 0x40 */
/* fine tune SSC delta1 to let SSC min average ~0ppm */
u3_phy_write_field32(((phys_addr_t)(uintptr_t)
&info.u3phya_da_regs_a->reg19)
, A60810_RG_SSUSB_PLL_SSC_DELTA1_U3_OFST
, A60810_RG_SSUSB_PLL_SSC_DELTA1_U3
, 0x46);
/* U3PhyWriteField32(((u32)&info.u3phya_da_regs_a->reg19) */
u3_phy_write_field32(((phys_addr_t)(uintptr_t)
&info.u3phya_da_regs_a->reg21)
, A60810_RG_SSUSB_PLL_SSC_DELTA1_PE1H_OFST
, A60810_RG_SSUSB_PLL_SSC_DELTA1_PE1H
, 0x40);
/* fine tune SSC delta to let SSC min average ~0ppm */
/* Fine tune SYSPLL to improve phase noise */
/* I2C 60 0x08[01:00] 0x03
* RW RG_SSUSB_PLL_BC_U3
*/
u3_phy_write_field32(((phys_addr_t)(uintptr_t)
&info.u3phya_da_regs_a->reg4)
, A60810_RG_SSUSB_PLL_BC_U3_OFST
, A60810_RG_SSUSB_PLL_BC_U3
, 0x3);
/* I2C 60 0x08[12:10] 0x03
* RW RG_SSUSB_PLL_DIVEN_U3
*/
u3_phy_write_field32(((phys_addr_t)(uintptr_t)
&info.u3phya_da_regs_a->reg4)
, A60810_RG_SSUSB_PLL_DIVEN_U3_OFST
, A60810_RG_SSUSB_PLL_DIVEN_U3
, 0x3);
/* I2C 60 0x0C[03:00] 0x01 RW RG_SSUSB_PLL_IC_U3 */
u3_phy_write_field32(((phys_addr_t)(uintptr_t)
&info.u3phya_da_regs_a->reg5)
, A60810_RG_SSUSB_PLL_IC_U3_OFST
, A60810_RG_SSUSB_PLL_IC_U3
, 0x1);
/* I2C 60 0x0C[23:22] 0x01 RW RG_SSUSB_PLL_BR_U3 */
u3_phy_write_field32(((phys_addr_t)(uintptr_t)
&info.u3phya_da_regs_a->reg5)
, A60810_RG_SSUSB_PLL_BR_U3_OFST
, A60810_RG_SSUSB_PLL_BR_U3
, 0x1);
/* I2C 60 0x10[03:00] 0x01
* RW RG_SSUSB_PLL_IR_U3
*/
u3_phy_write_field32(((phys_addr_t)(uintptr_t)
&info.u3phya_da_regs_a->reg6)
, A60810_RG_SSUSB_PLL_IR_U3_OFST
, A60810_RG_SSUSB_PLL_IR_U3
, 0x1);
/* I2C 60 0x14[03:00] 0x0F RW RG_SSUSB_PLL_BP_U3 */
u3_phy_write_field32(((phys_addr_t)(uintptr_t)
&info.u3phya_da_regs_a->reg7)
, A60810_RG_SSUSB_PLL_BP_U3_OFST
, A60810_RG_SSUSB_PLL_BP_U3
, 0x0f);
/* BANK 0x60 */
/* force xtal pwd mode enable */
u3_phy_write_field32(((phys_addr_t)(uintptr_t)
&info.spllc_regs_a->u3d_xtalctl_2)
, A60810_RG_SSUSB_FORCE_XTAL_PWD_OFST
, A60810_RG_SSUSB_FORCE_XTAL_PWD
, 0x1);
/* force bias pwd mode enable */
u3_phy_write_field32(((phys_addr_t)(uintptr_t)
&info.spllc_regs_a->u3d_xtalctl_2)
, A60810_RG_SSUSB_FORCE_BIAS_PWD_OFST
, A60810_RG_SSUSB_FORCE_BIAS_PWD
, 0x1);
/* force xtal pwd mode off to work around xtal drv de */
u3_phy_write_field32(((phys_addr_t)(uintptr_t)
&info.spllc_regs_a->u3d_xtalctl_2)
, A60810_RG_SSUSB_XTAL_PWD_OFST
, A60810_RG_SSUSB_XTAL_PWD
, 0x0);
/* force bias pwd mode off to work around xtal drv de */
u3_phy_write_field32(((phys_addr_t)(uintptr_t)
&info.spllc_regs_a->u3d_xtalctl_2)
, A60810_RG_SSUSB_BIAS_PWD_OFST
, A60810_RG_SSUSB_BIAS_PWD
, 0x0);
/********* test chip settings ***********/
/* BANK 0x00 */
/* slew rate setting */
u3_phy_write_field32(((phys_addr_t)(uintptr_t)
&info.u2phy_regs_a->usbphyacr5)
, A60810_RG_USB20_HSTX_SRCTRL_OFST
, A60810_RG_USB20_HSTX_SRCTRL
, 0x4);
/* BANK 0x50 */
/* PIPE setting BANK5 */
/* PIPE drv = 2 */
u3_phy_write_reg8(((phys_addr_t)(uintptr_t)
&info.sifslv_chip_regs_a->gpio_ctla) + 2, 0x10);
/* PIPE phase */
/* U3PhyWriteReg8(((u32)&info.sifslv_chip_regs_a->gpio_ctla)+3,
* 0xdc);
*/
u3_phy_write_reg8(((phys_addr_t)(uintptr_t)
&info.sifslv_chip_regs_a->gpio_ctla) + 3, 0x24);
} else {
USB_PHY_Write_Register8(0x00, 0xFF);
DBG(0, "[MUSB]addr: 0xFF, value: %x\n",
USB_PHY_Read_Register8(0xFF));
/* usb phy initial sequence */
USB_PHY_Write_Register8(0x00, 0xFF);
USB_PHY_Write_Register8(0x04, 0x61);
USB_PHY_Write_Register8(0x00, 0x68);
USB_PHY_Write_Register8(0x00, 0x6a);
USB_PHY_Write_Register8(0x6e, 0x00);
USB_PHY_Write_Register8(0x0c, 0x1b);
USB_PHY_Write_Register8(0x44, 0x08);
USB_PHY_Write_Register8(0x55, 0x11);
USB_PHY_Write_Register8(0x68, 0x1a);
DBG(0, "[MUSB]addr: 0xFF, value: %x\n"
"[MUSB]addr: 0x61, value: %x\n"
"[MUSB]addr: 0x68, value: %x\n"
"[MUSB]addr: 0x6a, value: %x\n"
"[MUSB]addr: 0x00, value: %x\n"
"[MUSB]addr: 0x1b, value: %x\n"
"[MUSB]addr: 0x08, value: %x\n"
"[MUSB]addr: 0x11, value: %x\n"
"[MUSB]addr: 0x1a, value: %x\n",
USB_PHY_Read_Register8(0xFF),
USB_PHY_Read_Register8(0x61),
USB_PHY_Read_Register8(0x68),
USB_PHY_Read_Register8(0x6a),
USB_PHY_Read_Register8(0x00),
USB_PHY_Read_Register8(0x1b),
USB_PHY_Read_Register8(0x08),
USB_PHY_Read_Register8(0x11),
USB_PHY_Read_Register8(0x1a));
}
DBG(0, "[MUSB]%s, end\n", __func__);
return 0;
}
static int usb_i2c_remove(struct i2c_client *client)
{
return 0;
}
static const struct of_device_id usb_of_match[] = {
{.compatible = "mediatek,mtk-usb"},
{},
};
struct i2c_driver usb_i2c_driver = {
.probe = usb_i2c_probe,
.remove = usb_i2c_remove,
.driver = {
.name = "mtk-usb",
.of_match_table = usb_of_match,
},
.id_table = usb_i2c_id,
};
static int add_usb_i2c_driver(void)
{
DBG(0, "%s\n", __func__);
if (i2c_add_driver(&usb_i2c_driver) != 0) {
DBG(0, "[MUSB]usb_i2c_driver initialization failed!!\n");
return -1;
}
DBG(0, "[MUSB]usb_i2c_driver initialization succeed!!\n");
return 0;
}
#endif /* End of FPGA_PLATFORM */
static int __init mt_usb_init(struct musb *musb)
{
int ret;
DBG(1, "%s\n", __func__);
musb->phy = glue->phy;
musb->xceiv = glue->xceiv;
musb->dma_irq = (int)SHARE_IRQ;
musb->fifo_cfg = fifo_cfg;
musb->fifo_cfg_size = ARRAY_SIZE(fifo_cfg);
musb->dyn_fifo = true;
musb->power = false;
musb->is_host = false;
musb->fifo_size = 8 * 1024;
musb->usb_lock = wakeup_source_register(NULL, "USB suspend lock");
ret = phy_init(glue->phy);
if (ret)
goto err_phy_init;
#ifdef CONFIG_MTK_UART_USB_SWITCH
in_uart_mode = usb_phy_check_in_uart_mode();
if (in_uart_mode) {
glue->phy_mode = PHY_MODE_UART;
DBG(0, "At UART mode. Switch to USB is not support\n");
}
#endif
phy_set_mode(glue->phy, glue->phy_mode);
if (glue->phy_mode != PHY_MODE_UART)
ret = phy_power_on(glue->phy);
if (ret)
goto err_phy_power_on;
#ifndef FPGA_PLATFORM
reg_vusb = regulator_get(musb->controller, "vusb");
if (!IS_ERR(reg_vusb)) {
#ifdef NEVER
#define VUSB33_VOL_MIN 3070000
#define VUSB33_VOL_MAX 3070000
ret = regulator_set_voltage(reg_vusb,
VUSB33_VOL_MIN, VUSB33_VOL_MAX);
if (ret < 0)
pr_err("regulator set vol failed: %d\n", ret);
else
DBG(0, "regulator set vol ok, <%d,%d>\n",
VUSB33_VOL_MIN, VUSB33_VOL_MAX);
#endif /* NEVER */
ret = regulator_enable(reg_vusb);
if (ret < 0) {
pr_err("regulator_enable vusb failed: %d\n", ret);
regulator_put(reg_vusb);
}
} else
pr_err("regulator_get vusb failed\n");
reg_vio18 = regulator_get(musb->controller, "vio18");
if (!IS_ERR(reg_vio18)) {
ret = regulator_enable(reg_vio18);
if (ret < 0) {
pr_err("regulator_enable vio18 failed: %d\n", ret);
regulator_put(reg_vio18);
}
} else
pr_err("regulator_get vio18 failed\n");
reg_va12 = regulator_get(musb->controller, "va12");
if (!IS_ERR(reg_va12)) {
ret = regulator_enable(reg_va12);
if (ret < 0) {
pr_err("regulator_enable va12 failed: %d\n", ret);
regulator_put(reg_va12);
}
} else
pr_err("regulator_get va12 failed\n");
#endif
/* ret = device_create_file(musb->controller, &dev_attr_cmode); */
/* mt_usb_enable(musb); */
musb->isr = mt_usb_interrupt;
musb_writel(musb->mregs,
MUSB_HSDMA_INTR, 0xff |
(0xff << DMA_INTR_UNMASK_SET_OFFSET));
DBG(1, "musb platform init %x\n",
musb_readl(musb->mregs, MUSB_HSDMA_INTR));
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
/* FIXME, workaround for device_qmu + host_dma */
musb_writel(musb->mregs,
USB_L1INTM,
TX_INT_STATUS |
RX_INT_STATUS |
USBCOM_INT_STATUS |
DMA_INT_STATUS |
QINT_STATUS);
#else
musb_writel(musb->mregs,
USB_L1INTM,
TX_INT_STATUS |
RX_INT_STATUS |
USBCOM_INT_STATUS |
DMA_INT_STATUS);
#endif
timer_setup(&musb->idle_timer, musb_do_idle, 0);
#if defined(CONFIG_BATTERY_SAMSUNG)
INIT_WORK(&musb->set_vbus_current_work, musb_set_vbus_current_work);
#endif
#ifdef CONFIG_USB_MTK_OTG
mt_usb_otg_init(musb);
/* enable host suspend mode */
mt_usb_wakeup_init(musb);
musb->host_suspend = true;
#endif
return 0;
err_phy_power_on:
phy_exit(glue->phy);
err_phy_init:
return ret;
}
static int mt_usb_exit(struct musb *musb)
{
del_timer_sync(&musb->idle_timer);
#ifndef FPGA_PLATFORM
if (reg_vusb) {
regulator_put(reg_vusb);
reg_vusb = NULL;
}
if (reg_vio18) {
regulator_put(reg_vio18);
reg_vio18 = NULL;
}
if (reg_va12) {
regulator_put(reg_va12);
reg_va12 = NULL;
}
#endif
#ifdef CONFIG_USB_MTK_OTG
mt_usb_otg_exit(musb);
#endif
phy_power_off(glue->phy);
phy_exit(glue->phy);
return 0;
}
static void mt_usb_enable_clk(struct musb *musb)
{
usb_enable_clock(true);
}
static void mt_usb_disable_clk(struct musb *musb)
{
usb_enable_clock(false);
}
static void mt_usb_prepare_clk(struct musb *musb)
{
usb_prepare_clock(true);
}
static void mt_usb_unprepare_clk(struct musb *musb)
{
usb_prepare_clock(false);
}
static const struct musb_platform_ops mt_usb_ops = {
.init = mt_usb_init,
.exit = mt_usb_exit,
/*.set_mode = mt_usb_set_mode, */
.try_idle = mt_usb_try_idle,
.enable = mt_usb_enable,
.disable = mt_usb_disable,
/* .set_vbus = mt_usb_set_vbus, */
.vbus_status = mt_usb_get_vbus_status,
.enable_clk = mt_usb_enable_clk,
.disable_clk = mt_usb_disable_clk,
.prepare_clk = mt_usb_prepare_clk,
.unprepare_clk = mt_usb_unprepare_clk,
#ifdef CONFIG_USB_MTK_OTG
.enable_wakeup = mt_usb_wakeup,
#endif
};
#ifdef CONFIG_MTK_MUSB_DRV_36BIT
static u64 mt_usb_dmamask = DMA_BIT_MASK(36);
#else
static u64 mt_usb_dmamask = DMA_BIT_MASK(32);
#endif
struct mt_usb_glue *glue;
EXPORT_SYMBOL(glue);
static int mt_usb_probe(struct platform_device *pdev)
{
struct musb_hdrc_platform_data *pdata = pdev->dev.platform_data;
struct platform_device *musb_pdev;
struct musb_hdrc_config *config;
struct device_node *np = pdev->dev.of_node;
#ifdef CONFIG_MTK_UART_USB_SWITCH
struct device_node *ap_gpio_node = NULL;
#endif
#ifdef CONFIG_MTK_MUSB_DUAL_ROLE
struct otg_switch_mtk *otg_sx;
#endif
int ret = -ENOMEM;
glue = kzalloc(sizeof(*glue), GFP_KERNEL);
if (!glue) {
/* dev_err(&pdev->dev, "failed to allocate glue context\n"); */
goto err0;
}
musb_pdev = platform_device_alloc("musb-hdrc", PLATFORM_DEVID_NONE);
if (!musb_pdev) {
dev_notice(&pdev->dev, "failed to allocate musb device\n");
goto err1;
}
glue->phy = devm_of_phy_get_by_index(&pdev->dev, np, 0);
if (IS_ERR(glue->phy)) {
dev_err(&pdev->dev, "fail to getting phy %ld\n",
PTR_ERR(glue->phy));
return PTR_ERR(glue->phy);
}
glue->usb_phy = usb_phy_generic_register();
if (IS_ERR(glue->usb_phy)) {
dev_err(&pdev->dev, "fail to registering usb-phy %ld\n",
PTR_ERR(glue->usb_phy));
return PTR_ERR(glue->usb_phy);
}
glue->xceiv = devm_usb_get_phy(&pdev->dev, USB_PHY_TYPE_USB2);
if (IS_ERR(glue->xceiv)) {
dev_err(&pdev->dev, "fail to getting usb-phy %d\n", ret);
ret = PTR_ERR(glue->xceiv);
goto err_unregister_usb_phy;
}
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
dev_notice(&pdev->dev, "failed to allocate musb platform data\n");
goto err2;
}
config = devm_kzalloc(&pdev->dev, sizeof(*config), GFP_KERNEL);
if (!config) {
/* dev_notice(&pdev->dev,
* "failed to allocate musb hdrc config\n");
*/
goto err2;
}
#ifdef CONFIG_MTK_UART_USB_SWITCH
ap_gpio_node =
of_find_compatible_node(NULL, NULL, AP_GPIO_COMPATIBLE_NAME);
if (ap_gpio_node == NULL) {
dev_err(&pdev->dev, "USB get ap_gpio_node failed\n");
if (ap_gpio_base)
iounmap(ap_gpio_base);
ap_gpio_base = 0;
} else {
ap_gpio_base = of_iomap(ap_gpio_node, 0);
ap_gpio_base += RG_GPIO_SELECT;
}
#endif
of_property_read_u32(np, "num_eps", (u32 *) &config->num_eps);
config->multipoint = of_property_read_bool(np, "multipoint");
pdata->config = config;
musb_pdev->dev.parent = &pdev->dev;
musb_pdev->dev.dma_mask = &mt_usb_dmamask;
musb_pdev->dev.coherent_dma_mask = mt_usb_dmamask;
pdev->dev.dma_mask = &mt_usb_dmamask;
pdev->dev.coherent_dma_mask = mt_usb_dmamask;
arch_setup_dma_ops(&musb_pdev->dev, 0, mt_usb_dmamask, NULL, 0);
glue->dev = &pdev->dev;
glue->musb_pdev = musb_pdev;
pdata->platform_ops = &mt_usb_ops;
/*
* Don't use the name from dtsi, like "11200000.usb0".
* So modify the device name. And rc can use the same path for
* all platform, like "/sys/devices/platform/mt_usb/".
*/
ret = device_rename(&pdev->dev, "mt_usb");
if (ret)
dev_notice(&pdev->dev, "failed to rename\n");
/*
* fix uaf(use afer free) issue:backup pdev->name,
* device_rename will free pdev->name
*/
pdev->name = pdev->dev.kobj.name;
platform_set_drvdata(pdev, glue);
ret = platform_device_add_resources(musb_pdev,
pdev->resource, pdev->num_resources);
if (ret) {
dev_err(&pdev->dev, "failed to add resources\n");
goto err2;
}
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
isoc_ep_end_idx = 1;
isoc_ep_gpd_count = 248; /* 30 ms for HS, at most (30*8 + 1) */
mtk_host_qmu_force_isoc_restart = 0;
#endif
#ifndef FPGA_PLATFORM
register_usb_hal_dpidle_request(usb_dpidle_request);
#endif
#ifdef BYPASS_PMIC_LINKAGE
register_usb_hal_disconnect_check(trigger_disconnect_check_work);
#endif
INIT_DELAYED_WORK(&idle_work, do_idle_work);
DBG(0, "keep musb->power & mtk_usb_power in the samae value\n");
mtk_usb_power = false;
#ifndef FPGA_PLATFORM
glue->musb_clk = devm_clk_get(&pdev->dev, "usb0");
if (IS_ERR(glue->musb_clk)) {
DBG(0, "cannot get musb_clk clock\n");
goto err2;
}
glue->musb_ref_clk = devm_clk_get(&pdev->dev, "usb0_ref");
if (IS_ERR(glue->musb_ref_clk)) {
DBG(0, "cannot get musb_ref_clk clock\n");
goto err2;
}
glue->musb_clk_top_sel = devm_clk_get(&pdev->dev, "usb0_clk_top_sel");
if (IS_ERR(glue->musb_clk_top_sel)) {
DBG(0, "cannot get musb_clk_top_sel clock\n");
goto err2;
}
glue->musb_clk_univpll5_d4 = devm_clk_get(&pdev->dev, "usb0_clk_univpll5_d4");
if (IS_ERR(glue->musb_clk_univpll5_d4)) {
DBG(0, "cannot get musb_clk_univpll5_d4 clock\n");
goto err2;
}
if (init_sysfs(&pdev->dev)) {
DBG(0, "failed to init_sysfs\n");
goto err2;
}
#ifdef CONFIG_USB_MTK_OTG
pdata->dr_mode = usb_get_dr_mode(&pdev->dev);
#else
of_property_read_u32(np, "dr_mode", (u32 *) &pdata->dr_mode);
#endif
switch (pdata->dr_mode) {
case USB_DR_MODE_HOST:
glue->phy_mode = PHY_MODE_USB_HOST;
break;
case USB_DR_MODE_PERIPHERAL:
glue->phy_mode = PHY_MODE_USB_DEVICE;
break;
case USB_DR_MODE_OTG:
glue->phy_mode = PHY_MODE_USB_OTG;
break;
default:
dev_err(&pdev->dev, "Error 'dr_mode' property\n");
return -EINVAL;
}
DBG(0, "get dr_mode: %d\n", pdata->dr_mode);
/* assign usb-role-sw */
otg_sx = &glue->otg_sx;
#ifdef CONFIG_MTK_MUSB_DUAL_ROLE
otg_sx->manual_drd_enabled =
of_property_read_bool(np, "enable-manual-drd");
otg_sx->role_sw_used = of_property_read_bool(np, "usb-role-switch");
if (!otg_sx->role_sw_used && of_property_read_bool(np, "extcon")) {
otg_sx->edev = extcon_get_edev_by_phandle(&musb_pdev->dev, 0);
if (IS_ERR(otg_sx->edev)) {
dev_err(&musb_pdev->dev, "couldn't get extcon device\n");
return PTR_ERR(otg_sx->edev);
}
}
#endif
ret = platform_device_add_data(musb_pdev, pdata, sizeof(*pdata));
if (ret) {
dev_notice(&pdev->dev, "failed to add platform_data\n");
goto err2;
}
ret = platform_device_add(musb_pdev);
if (ret) {
dev_notice(&pdev->dev, "failed to register musb device\n");
goto err2;
}
#endif
DBG(0, "USB probe done!\n");
#if defined(FPGA_PLATFORM) || defined(FOR_BRING_UP)
musb_force_on = 1;
#endif
return 0;
err2:
platform_device_put(musb_pdev);
platform_device_unregister(glue->musb_pdev);
err_unregister_usb_phy:
usb_phy_generic_unregister(glue->usb_phy);
err1:
kfree(glue);
err0:
return ret;
}
static int mt_usb_remove(struct platform_device *pdev)
{
struct mt_usb_glue *glue = platform_get_drvdata(pdev);
struct platform_device *usb_phy = glue->usb_phy;
platform_device_unregister(glue->musb_pdev);
usb_phy_generic_unregister(usb_phy);
kfree(glue);
return 0;
}
static struct platform_driver mt_usb_driver = {
.remove = mt_usb_remove,
.probe = mt_usb_probe,
.driver = {
.name = "mt_usb",
.of_match_table = apusb_of_ids,
},
};
module_platform_driver(mt_usb_driver);
static int __init usb20_init(void)
{
int ret;
DBG(0, "usb20 init\n");
#ifdef CONFIG_MTK_USB2JTAG_SUPPORT
if (usb2jtag_mode()) {
pr_notice("[USB2JTAG] in usb2jtag mode, not to initialize usb driver\n");
return 0;
}
#endif
/* Fix musb_plat build-in */
/* ret = platform_driver_register(&mt_usb_driver); */
ret = 0;
#ifdef FPGA_PLATFORM
add_usb_i2c_driver();
#endif
DBG(0, "usb20 init ret:%d\n", ret);
return ret;
}
fs_initcall(usb20_init);
static void __exit usb20_exit(void)
{
/* Fix musb_plat build-in */
/* platform_driver_unregister(&mt_usb_driver); */
}
module_exit(usb20_exit);