kernel_samsung_a34x-permissive/drivers/net/ieee802154/adf7242.c

1361 lines
36 KiB
C
Raw Permalink Normal View History

/*
* Analog Devices ADF7242 Low-Power IEEE 802.15.4 Transceiver
*
* Copyright 2009-2017 Analog Devices Inc.
*
* Licensed under the GPL-2 or later.
*
* http://www.analog.com/ADF7242
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/workqueue.h>
#include <linux/spinlock.h>
#include <linux/firmware.h>
#include <linux/spi/spi.h>
#include <linux/skbuff.h>
#include <linux/of.h>
#include <linux/irq.h>
#include <linux/debugfs.h>
#include <linux/bitops.h>
#include <linux/ieee802154.h>
#include <net/mac802154.h>
#include <net/cfg802154.h>
#define FIRMWARE "adf7242_firmware.bin"
#define MAX_POLL_LOOPS 200
/* All Registers */
#define REG_EXT_CTRL 0x100 /* RW External LNA/PA and internal PA control */
#define REG_TX_FSK_TEST 0x101 /* RW TX FSK test mode configuration */
#define REG_CCA1 0x105 /* RW RSSI threshold for CCA */
#define REG_CCA2 0x106 /* RW CCA mode configuration */
#define REG_BUFFERCFG 0x107 /* RW RX_BUFFER overwrite control */
#define REG_PKT_CFG 0x108 /* RW FCS evaluation configuration */
#define REG_DELAYCFG0 0x109 /* RW RC_RX command to SFD or sync word delay */
#define REG_DELAYCFG1 0x10A /* RW RC_TX command to TX state */
#define REG_DELAYCFG2 0x10B /* RW Mac delay extension */
#define REG_SYNC_WORD0 0x10C /* RW sync word bits [7:0] of [23:0] */
#define REG_SYNC_WORD1 0x10D /* RW sync word bits [15:8] of [23:0] */
#define REG_SYNC_WORD2 0x10E /* RW sync word bits [23:16] of [23:0] */
#define REG_SYNC_CONFIG 0x10F /* RW sync word configuration */
#define REG_RC_CFG 0x13E /* RW RX / TX packet configuration */
#define REG_RC_VAR44 0x13F /* RW RESERVED */
#define REG_CH_FREQ0 0x300 /* RW Channel Frequency Settings - Low */
#define REG_CH_FREQ1 0x301 /* RW Channel Frequency Settings - Middle */
#define REG_CH_FREQ2 0x302 /* RW Channel Frequency Settings - High */
#define REG_TX_FD 0x304 /* RW TX Frequency Deviation Register */
#define REG_DM_CFG0 0x305 /* RW RX Discriminator BW Register */
#define REG_TX_M 0x306 /* RW TX Mode Register */
#define REG_RX_M 0x307 /* RW RX Mode Register */
#define REG_RRB 0x30C /* R RSSI Readback Register */
#define REG_LRB 0x30D /* R Link Quality Readback Register */
#define REG_DR0 0x30E /* RW bits [15:8] of [15:0] data rate setting */
#define REG_DR1 0x30F /* RW bits [7:0] of [15:0] data rate setting */
#define REG_PRAMPG 0x313 /* RW RESERVED */
#define REG_TXPB 0x314 /* RW TX Packet Storage Base Address */
#define REG_RXPB 0x315 /* RW RX Packet Storage Base Address */
#define REG_TMR_CFG0 0x316 /* RW Wake up Timer Conf Register - High */
#define REG_TMR_CFG1 0x317 /* RW Wake up Timer Conf Register - Low */
#define REG_TMR_RLD0 0x318 /* RW Wake up Timer Value Register - High */
#define REG_TMR_RLD1 0x319 /* RW Wake up Timer Value Register - Low */
#define REG_TMR_CTRL 0x31A /* RW Wake up Timer Timeout flag */
#define REG_PD_AUX 0x31E /* RW Battmon enable */
#define REG_GP_CFG 0x32C /* RW GPIO Configuration */
#define REG_GP_OUT 0x32D /* RW GPIO Configuration */
#define REG_GP_IN 0x32E /* R GPIO Configuration */
#define REG_SYNT 0x335 /* RW bandwidth calibration timers */
#define REG_CAL_CFG 0x33D /* RW Calibration Settings */
#define REG_PA_BIAS 0x36E /* RW PA BIAS */
#define REG_SYNT_CAL 0x371 /* RW Oscillator and Doubler Configuration */
#define REG_IIRF_CFG 0x389 /* RW BB Filter Decimation Rate */
#define REG_CDR_CFG 0x38A /* RW CDR kVCO */
#define REG_DM_CFG1 0x38B /* RW Postdemodulator Filter */
#define REG_AGCSTAT 0x38E /* R RXBB Ref Osc Calibration Engine Readback */
#define REG_RXCAL0 0x395 /* RW RX BB filter tuning, LSB */
#define REG_RXCAL1 0x396 /* RW RX BB filter tuning, MSB */
#define REG_RXFE_CFG 0x39B /* RW RXBB Ref Osc & RXFE Calibration */
#define REG_PA_RR 0x3A7 /* RW Set PA ramp rate */
#define REG_PA_CFG 0x3A8 /* RW PA enable */
#define REG_EXTPA_CFG 0x3A9 /* RW External PA BIAS DAC */
#define REG_EXTPA_MSC 0x3AA /* RW PA Bias Mode */
#define REG_ADC_RBK 0x3AE /* R Readback temp */
#define REG_AGC_CFG1 0x3B2 /* RW GC Parameters */
#define REG_AGC_MAX 0x3B4 /* RW Slew rate */
#define REG_AGC_CFG2 0x3B6 /* RW RSSI Parameters */
#define REG_AGC_CFG3 0x3B7 /* RW RSSI Parameters */
#define REG_AGC_CFG4 0x3B8 /* RW RSSI Parameters */
#define REG_AGC_CFG5 0x3B9 /* RW RSSI & NDEC Parameters */
#define REG_AGC_CFG6 0x3BA /* RW NDEC Parameters */
#define REG_OCL_CFG1 0x3C4 /* RW OCL System Parameters */
#define REG_IRQ1_EN0 0x3C7 /* RW Interrupt Mask set bits for IRQ1 */
#define REG_IRQ1_EN1 0x3C8 /* RW Interrupt Mask set bits for IRQ1 */
#define REG_IRQ2_EN0 0x3C9 /* RW Interrupt Mask set bits for IRQ2 */
#define REG_IRQ2_EN1 0x3CA /* RW Interrupt Mask set bits for IRQ2 */
#define REG_IRQ1_SRC0 0x3CB /* RW Interrupt Source bits for IRQ */
#define REG_IRQ1_SRC1 0x3CC /* RW Interrupt Source bits for IRQ */
#define REG_OCL_BW0 0x3D2 /* RW OCL System Parameters */
#define REG_OCL_BW1 0x3D3 /* RW OCL System Parameters */
#define REG_OCL_BW2 0x3D4 /* RW OCL System Parameters */
#define REG_OCL_BW3 0x3D5 /* RW OCL System Parameters */
#define REG_OCL_BW4 0x3D6 /* RW OCL System Parameters */
#define REG_OCL_BWS 0x3D7 /* RW OCL System Parameters */
#define REG_OCL_CFG13 0x3E0 /* RW OCL System Parameters */
#define REG_GP_DRV 0x3E3 /* RW I/O pads Configuration and bg trim */
#define REG_BM_CFG 0x3E6 /* RW Batt. Monitor Threshold Voltage setting */
#define REG_SFD_15_4 0x3F4 /* RW Option to set non standard SFD */
#define REG_AFC_CFG 0x3F7 /* RW AFC mode and polarity */
#define REG_AFC_KI_KP 0x3F8 /* RW AFC ki and kp */
#define REG_AFC_RANGE 0x3F9 /* RW AFC range */
#define REG_AFC_READ 0x3FA /* RW Readback frequency error */
/* REG_EXTPA_MSC */
#define PA_PWR(x) (((x) & 0xF) << 4)
#define EXTPA_BIAS_SRC BIT(3)
#define EXTPA_BIAS_MODE(x) (((x) & 0x7) << 0)
/* REG_PA_CFG */
#define PA_BRIDGE_DBIAS(x) (((x) & 0x1F) << 0)
#define PA_DBIAS_HIGH_POWER 21
#define PA_DBIAS_LOW_POWER 13
/* REG_PA_BIAS */
#define PA_BIAS_CTRL(x) (((x) & 0x1F) << 1)
#define REG_PA_BIAS_DFL BIT(0)
#define PA_BIAS_HIGH_POWER 63
#define PA_BIAS_LOW_POWER 55
#define REG_PAN_ID0 0x112
#define REG_PAN_ID1 0x113
#define REG_SHORT_ADDR_0 0x114
#define REG_SHORT_ADDR_1 0x115
#define REG_IEEE_ADDR_0 0x116
#define REG_IEEE_ADDR_1 0x117
#define REG_IEEE_ADDR_2 0x118
#define REG_IEEE_ADDR_3 0x119
#define REG_IEEE_ADDR_4 0x11A
#define REG_IEEE_ADDR_5 0x11B
#define REG_IEEE_ADDR_6 0x11C
#define REG_IEEE_ADDR_7 0x11D
#define REG_FFILT_CFG 0x11E
#define REG_AUTO_CFG 0x11F
#define REG_AUTO_TX1 0x120
#define REG_AUTO_TX2 0x121
#define REG_AUTO_STATUS 0x122
/* REG_FFILT_CFG */
#define ACCEPT_BEACON_FRAMES BIT(0)
#define ACCEPT_DATA_FRAMES BIT(1)
#define ACCEPT_ACK_FRAMES BIT(2)
#define ACCEPT_MACCMD_FRAMES BIT(3)
#define ACCEPT_RESERVED_FRAMES BIT(4)
#define ACCEPT_ALL_ADDRESS BIT(5)
/* REG_AUTO_CFG */
#define AUTO_ACK_FRAMEPEND BIT(0)
#define IS_PANCOORD BIT(1)
#define RX_AUTO_ACK_EN BIT(3)
#define CSMA_CA_RX_TURNAROUND BIT(4)
/* REG_AUTO_TX1 */
#define MAX_FRAME_RETRIES(x) ((x) & 0xF)
#define MAX_CCA_RETRIES(x) (((x) & 0x7) << 4)
/* REG_AUTO_TX2 */
#define CSMA_MAX_BE(x) ((x) & 0xF)
#define CSMA_MIN_BE(x) (((x) & 0xF) << 4)
#define CMD_SPI_NOP 0xFF /* No operation. Use for dummy writes */
#define CMD_SPI_PKT_WR 0x10 /* Write telegram to the Packet RAM
* starting from the TX packet base address
* pointer tx_packet_base
*/
#define CMD_SPI_PKT_RD 0x30 /* Read telegram from the Packet RAM
* starting from RX packet base address
* pointer rxpb.rx_packet_base
*/
#define CMD_SPI_MEM_WR(x) (0x18 + (x >> 8)) /* Write data to MCR or
* Packet RAM sequentially
*/
#define CMD_SPI_MEM_RD(x) (0x38 + (x >> 8)) /* Read data from MCR or
* Packet RAM sequentially
*/
#define CMD_SPI_MEMR_WR(x) (0x08 + (x >> 8)) /* Write data to MCR or Packet
* RAM as random block
*/
#define CMD_SPI_MEMR_RD(x) (0x28 + (x >> 8)) /* Read data from MCR or
* Packet RAM random block
*/
#define CMD_SPI_PRAM_WR 0x1E /* Write data sequentially to current
* PRAM page selected
*/
#define CMD_SPI_PRAM_RD 0x3E /* Read data sequentially from current
* PRAM page selected
*/
#define CMD_RC_SLEEP 0xB1 /* Invoke transition of radio controller
* into SLEEP state
*/
#define CMD_RC_IDLE 0xB2 /* Invoke transition of radio controller
* into IDLE state
*/
#define CMD_RC_PHY_RDY 0xB3 /* Invoke transition of radio controller
* into PHY_RDY state
*/
#define CMD_RC_RX 0xB4 /* Invoke transition of radio controller
* into RX state
*/
#define CMD_RC_TX 0xB5 /* Invoke transition of radio controller
* into TX state
*/
#define CMD_RC_MEAS 0xB6 /* Invoke transition of radio controller
* into MEAS state
*/
#define CMD_RC_CCA 0xB7 /* Invoke Clear channel assessment */
#define CMD_RC_CSMACA 0xC1 /* initiates CSMA-CA channel access
* sequence and frame transmission
*/
#define CMD_RC_PC_RESET 0xC7 /* Program counter reset */
#define CMD_RC_RESET 0xC8 /* Resets the ADF7242 and puts it in
* the sleep state
*/
#define CMD_RC_PC_RESET_NO_WAIT (CMD_RC_PC_RESET | BIT(31))
/* STATUS */
#define STAT_SPI_READY BIT(7)
#define STAT_IRQ_STATUS BIT(6)
#define STAT_RC_READY BIT(5)
#define STAT_CCA_RESULT BIT(4)
#define RC_STATUS_IDLE 1
#define RC_STATUS_MEAS 2
#define RC_STATUS_PHY_RDY 3
#define RC_STATUS_RX 4
#define RC_STATUS_TX 5
#define RC_STATUS_MASK 0xF
/* AUTO_STATUS */
#define SUCCESS 0
#define SUCCESS_DATPEND 1
#define FAILURE_CSMACA 2
#define FAILURE_NOACK 3
#define AUTO_STATUS_MASK 0x3
#define PRAM_PAGESIZE 256
/* IRQ1 */
#define IRQ_CCA_COMPLETE BIT(0)
#define IRQ_SFD_RX BIT(1)
#define IRQ_SFD_TX BIT(2)
#define IRQ_RX_PKT_RCVD BIT(3)
#define IRQ_TX_PKT_SENT BIT(4)
#define IRQ_FRAME_VALID BIT(5)
#define IRQ_ADDRESS_VALID BIT(6)
#define IRQ_CSMA_CA BIT(7)
#define AUTO_TX_TURNAROUND BIT(3)
#define ADDON_EN BIT(4)
#define FLAG_XMIT 0
#define FLAG_START 1
#define ADF7242_REPORT_CSMA_CA_STAT 0 /* framework doesn't handle yet */
struct adf7242_local {
struct spi_device *spi;
struct completion tx_complete;
struct ieee802154_hw *hw;
struct mutex bmux; /* protect SPI messages */
struct spi_message stat_msg;
struct spi_transfer stat_xfer;
struct dentry *debugfs_root;
struct delayed_work work;
struct workqueue_struct *wqueue;
unsigned long flags;
int tx_stat;
bool promiscuous;
s8 rssi;
u8 max_frame_retries;
u8 max_cca_retries;
u8 max_be;
u8 min_be;
/* DMA (thus cache coherency maintenance) requires the
* transfer buffers to live in their own cache lines.
*/
u8 buf[3] ____cacheline_aligned;
u8 buf_reg_tx[3];
u8 buf_read_tx[4];
u8 buf_read_rx[4];
u8 buf_stat_rx;
u8 buf_stat_tx;
u8 buf_cmd;
};
static int adf7242_soft_reset(struct adf7242_local *lp, int line);
static int adf7242_status(struct adf7242_local *lp, u8 *stat)
{
int status;
mutex_lock(&lp->bmux);
status = spi_sync(lp->spi, &lp->stat_msg);
*stat = lp->buf_stat_rx;
mutex_unlock(&lp->bmux);
return status;
}
static int adf7242_wait_status(struct adf7242_local *lp, unsigned int status,
unsigned int mask, int line)
{
int cnt = 0, ret = 0;
u8 stat;
do {
adf7242_status(lp, &stat);
cnt++;
} while (((stat & mask) != status) && (cnt < MAX_POLL_LOOPS));
if (cnt >= MAX_POLL_LOOPS) {
ret = -ETIMEDOUT;
if (!(stat & STAT_RC_READY)) {
adf7242_soft_reset(lp, line);
adf7242_status(lp, &stat);
if ((stat & mask) == status)
ret = 0;
}
if (ret < 0)
dev_warn(&lp->spi->dev,
"%s:line %d Timeout status 0x%x (%d)\n",
__func__, line, stat, cnt);
}
dev_vdbg(&lp->spi->dev, "%s : loops=%d line %d\n", __func__, cnt, line);
return ret;
}
static int adf7242_wait_rc_ready(struct adf7242_local *lp, int line)
{
return adf7242_wait_status(lp, STAT_RC_READY | STAT_SPI_READY,
STAT_RC_READY | STAT_SPI_READY, line);
}
static int adf7242_wait_spi_ready(struct adf7242_local *lp, int line)
{
return adf7242_wait_status(lp, STAT_SPI_READY,
STAT_SPI_READY, line);
}
static int adf7242_write_fbuf(struct adf7242_local *lp, u8 *data, u8 len)
{
u8 *buf = lp->buf;
int status;
struct spi_message msg;
struct spi_transfer xfer_head = {
.len = 2,
.tx_buf = buf,
};
struct spi_transfer xfer_buf = {
.len = len,
.tx_buf = data,
};
spi_message_init(&msg);
spi_message_add_tail(&xfer_head, &msg);
spi_message_add_tail(&xfer_buf, &msg);
adf7242_wait_spi_ready(lp, __LINE__);
mutex_lock(&lp->bmux);
buf[0] = CMD_SPI_PKT_WR;
buf[1] = len + 2;
status = spi_sync(lp->spi, &msg);
mutex_unlock(&lp->bmux);
return status;
}
static int adf7242_read_fbuf(struct adf7242_local *lp,
u8 *data, size_t len, bool packet_read)
{
u8 *buf = lp->buf;
int status;
struct spi_message msg;
struct spi_transfer xfer_head = {
.len = 3,
.tx_buf = buf,
.rx_buf = buf,
};
struct spi_transfer xfer_buf = {
.len = len,
.rx_buf = data,
};
spi_message_init(&msg);
spi_message_add_tail(&xfer_head, &msg);
spi_message_add_tail(&xfer_buf, &msg);
adf7242_wait_spi_ready(lp, __LINE__);
mutex_lock(&lp->bmux);
if (packet_read) {
buf[0] = CMD_SPI_PKT_RD;
buf[1] = CMD_SPI_NOP;
buf[2] = 0; /* PHR */
} else {
buf[0] = CMD_SPI_PRAM_RD;
buf[1] = 0;
buf[2] = CMD_SPI_NOP;
}
status = spi_sync(lp->spi, &msg);
mutex_unlock(&lp->bmux);
return status;
}
static int adf7242_read_reg(struct adf7242_local *lp, u16 addr, u8 *data)
{
int status;
struct spi_message msg;
struct spi_transfer xfer = {
.len = 4,
.tx_buf = lp->buf_read_tx,
.rx_buf = lp->buf_read_rx,
};
adf7242_wait_spi_ready(lp, __LINE__);
mutex_lock(&lp->bmux);
lp->buf_read_tx[0] = CMD_SPI_MEM_RD(addr);
lp->buf_read_tx[1] = addr;
lp->buf_read_tx[2] = CMD_SPI_NOP;
lp->buf_read_tx[3] = CMD_SPI_NOP;
spi_message_init(&msg);
spi_message_add_tail(&xfer, &msg);
status = spi_sync(lp->spi, &msg);
if (msg.status)
status = msg.status;
if (!status)
*data = lp->buf_read_rx[3];
mutex_unlock(&lp->bmux);
dev_vdbg(&lp->spi->dev, "%s : REG 0x%X, VAL 0x%X\n", __func__,
addr, *data);
return status;
}
static int adf7242_write_reg(struct adf7242_local *lp, u16 addr, u8 data)
{
int status;
adf7242_wait_spi_ready(lp, __LINE__);
mutex_lock(&lp->bmux);
lp->buf_reg_tx[0] = CMD_SPI_MEM_WR(addr);
lp->buf_reg_tx[1] = addr;
lp->buf_reg_tx[2] = data;
status = spi_write(lp->spi, lp->buf_reg_tx, 3);
mutex_unlock(&lp->bmux);
dev_vdbg(&lp->spi->dev, "%s : REG 0x%X, VAL 0x%X\n",
__func__, addr, data);
return status;
}
static int adf7242_cmd(struct adf7242_local *lp, unsigned int cmd)
{
int status;
dev_vdbg(&lp->spi->dev, "%s : CMD=0x%X\n", __func__, cmd);
if (cmd != CMD_RC_PC_RESET_NO_WAIT)
adf7242_wait_rc_ready(lp, __LINE__);
mutex_lock(&lp->bmux);
lp->buf_cmd = cmd;
status = spi_write(lp->spi, &lp->buf_cmd, 1);
mutex_unlock(&lp->bmux);
return status;
}
static int adf7242_upload_firmware(struct adf7242_local *lp, u8 *data, u16 len)
{
struct spi_message msg;
struct spi_transfer xfer_buf = { };
int status, i, page = 0;
u8 *buf = lp->buf;
struct spi_transfer xfer_head = {
.len = 2,
.tx_buf = buf,
};
buf[0] = CMD_SPI_PRAM_WR;
buf[1] = 0;
spi_message_init(&msg);
spi_message_add_tail(&xfer_head, &msg);
spi_message_add_tail(&xfer_buf, &msg);
for (i = len; i >= 0; i -= PRAM_PAGESIZE) {
adf7242_write_reg(lp, REG_PRAMPG, page);
xfer_buf.len = (i >= PRAM_PAGESIZE) ? PRAM_PAGESIZE : i;
xfer_buf.tx_buf = &data[page * PRAM_PAGESIZE];
mutex_lock(&lp->bmux);
status = spi_sync(lp->spi, &msg);
mutex_unlock(&lp->bmux);
page++;
}
return status;
}
static int adf7242_verify_firmware(struct adf7242_local *lp,
const u8 *data, size_t len)
{
#ifdef DEBUG
int i, j;
unsigned int page;
u8 *buf = kmalloc(PRAM_PAGESIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
for (page = 0, i = len; i >= 0; i -= PRAM_PAGESIZE, page++) {
size_t nb = (i >= PRAM_PAGESIZE) ? PRAM_PAGESIZE : i;
adf7242_write_reg(lp, REG_PRAMPG, page);
adf7242_read_fbuf(lp, buf, nb, false);
for (j = 0; j < nb; j++) {
if (buf[j] != data[page * PRAM_PAGESIZE + j]) {
kfree(buf);
return -EIO;
}
}
}
kfree(buf);
#endif
return 0;
}
static void adf7242_clear_irqstat(struct adf7242_local *lp)
{
adf7242_write_reg(lp, REG_IRQ1_SRC1, IRQ_CCA_COMPLETE | IRQ_SFD_RX |
IRQ_SFD_TX | IRQ_RX_PKT_RCVD | IRQ_TX_PKT_SENT |
IRQ_FRAME_VALID | IRQ_ADDRESS_VALID | IRQ_CSMA_CA);
}
static int adf7242_cmd_rx(struct adf7242_local *lp)
{
/* Wait until the ACK is sent */
adf7242_wait_status(lp, RC_STATUS_PHY_RDY, RC_STATUS_MASK, __LINE__);
adf7242_clear_irqstat(lp);
mod_delayed_work(lp->wqueue, &lp->work, msecs_to_jiffies(400));
return adf7242_cmd(lp, CMD_RC_RX);
}
static void adf7242_rx_cal_work(struct work_struct *work)
{
struct adf7242_local *lp =
container_of(work, struct adf7242_local, work.work);
/* Reissuing RC_RX every 400ms - to adjust for offset
* drift in receiver (datasheet page 61, OCL section)
*/
if (!test_bit(FLAG_XMIT, &lp->flags)) {
adf7242_cmd(lp, CMD_RC_PHY_RDY);
adf7242_cmd_rx(lp);
}
}
static int adf7242_set_txpower(struct ieee802154_hw *hw, int mbm)
{
struct adf7242_local *lp = hw->priv;
u8 pwr, bias_ctrl, dbias, tmp;
int db = mbm / 100;
dev_vdbg(&lp->spi->dev, "%s : Power %d dB\n", __func__, db);
if (db > 5 || db < -26)
return -EINVAL;
db = DIV_ROUND_CLOSEST(db + 29, 2);
if (db > 15) {
dbias = PA_DBIAS_HIGH_POWER;
bias_ctrl = PA_BIAS_HIGH_POWER;
} else {
dbias = PA_DBIAS_LOW_POWER;
bias_ctrl = PA_BIAS_LOW_POWER;
}
pwr = clamp_t(u8, db, 3, 15);
adf7242_read_reg(lp, REG_PA_CFG, &tmp);
tmp &= ~PA_BRIDGE_DBIAS(~0);
tmp |= PA_BRIDGE_DBIAS(dbias);
adf7242_write_reg(lp, REG_PA_CFG, tmp);
adf7242_read_reg(lp, REG_PA_BIAS, &tmp);
tmp &= ~PA_BIAS_CTRL(~0);
tmp |= PA_BIAS_CTRL(bias_ctrl);
adf7242_write_reg(lp, REG_PA_BIAS, tmp);
adf7242_read_reg(lp, REG_EXTPA_MSC, &tmp);
tmp &= ~PA_PWR(~0);
tmp |= PA_PWR(pwr);
return adf7242_write_reg(lp, REG_EXTPA_MSC, tmp);
}
static int adf7242_set_csma_params(struct ieee802154_hw *hw, u8 min_be,
u8 max_be, u8 retries)
{
struct adf7242_local *lp = hw->priv;
int ret;
dev_vdbg(&lp->spi->dev, "%s : min_be=%d max_be=%d retries=%d\n",
__func__, min_be, max_be, retries);
if (min_be > max_be || max_be > 8 || retries > 5)
return -EINVAL;
ret = adf7242_write_reg(lp, REG_AUTO_TX1,
MAX_FRAME_RETRIES(lp->max_frame_retries) |
MAX_CCA_RETRIES(retries));
if (ret)
return ret;
lp->max_cca_retries = retries;
lp->max_be = max_be;
lp->min_be = min_be;
return adf7242_write_reg(lp, REG_AUTO_TX2, CSMA_MAX_BE(max_be) |
CSMA_MIN_BE(min_be));
}
static int adf7242_set_frame_retries(struct ieee802154_hw *hw, s8 retries)
{
struct adf7242_local *lp = hw->priv;
int ret = 0;
dev_vdbg(&lp->spi->dev, "%s : Retries = %d\n", __func__, retries);
if (retries < -1 || retries > 15)
return -EINVAL;
if (retries >= 0)
ret = adf7242_write_reg(lp, REG_AUTO_TX1,
MAX_FRAME_RETRIES(retries) |
MAX_CCA_RETRIES(lp->max_cca_retries));
lp->max_frame_retries = retries;
return ret;
}
static int adf7242_ed(struct ieee802154_hw *hw, u8 *level)
{
struct adf7242_local *lp = hw->priv;
*level = lp->rssi;
dev_vdbg(&lp->spi->dev, "%s :Exit level=%d\n",
__func__, *level);
return 0;
}
static int adf7242_start(struct ieee802154_hw *hw)
{
struct adf7242_local *lp = hw->priv;
adf7242_cmd(lp, CMD_RC_PHY_RDY);
adf7242_clear_irqstat(lp);
enable_irq(lp->spi->irq);
set_bit(FLAG_START, &lp->flags);
return adf7242_cmd_rx(lp);
}
static void adf7242_stop(struct ieee802154_hw *hw)
{
struct adf7242_local *lp = hw->priv;
disable_irq(lp->spi->irq);
cancel_delayed_work_sync(&lp->work);
adf7242_cmd(lp, CMD_RC_IDLE);
clear_bit(FLAG_START, &lp->flags);
adf7242_clear_irqstat(lp);
}
static int adf7242_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
{
struct adf7242_local *lp = hw->priv;
unsigned long freq;
dev_dbg(&lp->spi->dev, "%s :Channel=%d\n", __func__, channel);
might_sleep();
WARN_ON(page != 0);
WARN_ON(channel < 11);
WARN_ON(channel > 26);
freq = (2405 + 5 * (channel - 11)) * 100;
adf7242_cmd(lp, CMD_RC_PHY_RDY);
adf7242_write_reg(lp, REG_CH_FREQ0, freq);
adf7242_write_reg(lp, REG_CH_FREQ1, freq >> 8);
adf7242_write_reg(lp, REG_CH_FREQ2, freq >> 16);
if (test_bit(FLAG_START, &lp->flags))
return adf7242_cmd_rx(lp);
else
return adf7242_cmd(lp, CMD_RC_PHY_RDY);
}
static int adf7242_set_hw_addr_filt(struct ieee802154_hw *hw,
struct ieee802154_hw_addr_filt *filt,
unsigned long changed)
{
struct adf7242_local *lp = hw->priv;
u8 reg;
dev_dbg(&lp->spi->dev, "%s :Changed=0x%lX\n", __func__, changed);
might_sleep();
if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
u8 addr[8], i;
memcpy(addr, &filt->ieee_addr, 8);
for (i = 0; i < 8; i++)
adf7242_write_reg(lp, REG_IEEE_ADDR_0 + i, addr[i]);
}
if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
u16 saddr = le16_to_cpu(filt->short_addr);
adf7242_write_reg(lp, REG_SHORT_ADDR_0, saddr);
adf7242_write_reg(lp, REG_SHORT_ADDR_1, saddr >> 8);
}
if (changed & IEEE802154_AFILT_PANID_CHANGED) {
u16 pan_id = le16_to_cpu(filt->pan_id);
adf7242_write_reg(lp, REG_PAN_ID0, pan_id);
adf7242_write_reg(lp, REG_PAN_ID1, pan_id >> 8);
}
if (changed & IEEE802154_AFILT_PANC_CHANGED) {
adf7242_read_reg(lp, REG_AUTO_CFG, &reg);
if (filt->pan_coord)
reg |= IS_PANCOORD;
else
reg &= ~IS_PANCOORD;
adf7242_write_reg(lp, REG_AUTO_CFG, reg);
}
return 0;
}
static int adf7242_set_promiscuous_mode(struct ieee802154_hw *hw, bool on)
{
struct adf7242_local *lp = hw->priv;
dev_dbg(&lp->spi->dev, "%s : mode %d\n", __func__, on);
lp->promiscuous = on;
if (on) {
adf7242_write_reg(lp, REG_AUTO_CFG, 0);
return adf7242_write_reg(lp, REG_FFILT_CFG,
ACCEPT_BEACON_FRAMES |
ACCEPT_DATA_FRAMES |
ACCEPT_MACCMD_FRAMES |
ACCEPT_ALL_ADDRESS |
ACCEPT_ACK_FRAMES |
ACCEPT_RESERVED_FRAMES);
} else {
adf7242_write_reg(lp, REG_FFILT_CFG,
ACCEPT_BEACON_FRAMES |
ACCEPT_DATA_FRAMES |
ACCEPT_MACCMD_FRAMES |
ACCEPT_RESERVED_FRAMES);
return adf7242_write_reg(lp, REG_AUTO_CFG, RX_AUTO_ACK_EN);
}
}
static int adf7242_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
{
struct adf7242_local *lp = hw->priv;
s8 level = clamp_t(s8, mbm / 100, S8_MIN, S8_MAX);
dev_dbg(&lp->spi->dev, "%s : level %d\n", __func__, level);
return adf7242_write_reg(lp, REG_CCA1, level);
}
static int adf7242_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
{
struct adf7242_local *lp = hw->priv;
int ret;
/* ensure existing instances of the IRQ handler have completed */
disable_irq(lp->spi->irq);
set_bit(FLAG_XMIT, &lp->flags);
cancel_delayed_work_sync(&lp->work);
reinit_completion(&lp->tx_complete);
adf7242_cmd(lp, CMD_RC_PHY_RDY);
adf7242_clear_irqstat(lp);
ret = adf7242_write_fbuf(lp, skb->data, skb->len);
if (ret)
goto err;
ret = adf7242_cmd(lp, CMD_RC_CSMACA);
if (ret)
goto err;
enable_irq(lp->spi->irq);
ret = wait_for_completion_interruptible_timeout(&lp->tx_complete,
HZ / 10);
if (ret < 0)
goto err;
if (ret == 0) {
dev_dbg(&lp->spi->dev, "Timeout waiting for TX interrupt\n");
ret = -ETIMEDOUT;
goto err;
}
if (lp->tx_stat != SUCCESS) {
dev_dbg(&lp->spi->dev,
"Error xmit: Retry count exceeded Status=0x%x\n",
lp->tx_stat);
ret = -ECOMM;
} else {
ret = 0;
}
err:
clear_bit(FLAG_XMIT, &lp->flags);
adf7242_cmd_rx(lp);
return ret;
}
static int adf7242_rx(struct adf7242_local *lp)
{
struct sk_buff *skb;
size_t len;
int ret;
u8 lqi, len_u8, *data;
ret = adf7242_read_reg(lp, 0, &len_u8);
if (ret)
return ret;
len = len_u8;
if (!ieee802154_is_valid_psdu_len(len)) {
dev_dbg(&lp->spi->dev,
"corrupted frame received len %d\n", (int)len);
len = IEEE802154_MTU;
}
skb = dev_alloc_skb(len);
if (!skb) {
adf7242_cmd_rx(lp);
return -ENOMEM;
}
data = skb_put(skb, len);
ret = adf7242_read_fbuf(lp, data, len, true);
if (ret < 0) {
kfree_skb(skb);
adf7242_cmd_rx(lp);
return ret;
}
lqi = data[len - 2];
lp->rssi = data[len - 1];
ret = adf7242_cmd_rx(lp);
skb_trim(skb, len - 2); /* Don't put RSSI/LQI or CRC into the frame */
ieee802154_rx_irqsafe(lp->hw, skb, lqi);
dev_dbg(&lp->spi->dev, "%s: ret=%d len=%d lqi=%d rssi=%d\n",
__func__, ret, (int)len, (int)lqi, lp->rssi);
return ret;
}
static const struct ieee802154_ops adf7242_ops = {
.owner = THIS_MODULE,
.xmit_sync = adf7242_xmit,
.ed = adf7242_ed,
.set_channel = adf7242_channel,
.set_hw_addr_filt = adf7242_set_hw_addr_filt,
.start = adf7242_start,
.stop = adf7242_stop,
.set_csma_params = adf7242_set_csma_params,
.set_frame_retries = adf7242_set_frame_retries,
.set_txpower = adf7242_set_txpower,
.set_promiscuous_mode = adf7242_set_promiscuous_mode,
.set_cca_ed_level = adf7242_set_cca_ed_level,
};
static void adf7242_debug(struct adf7242_local *lp, u8 irq1)
{
#ifdef DEBUG
u8 stat;
adf7242_status(lp, &stat);
dev_dbg(&lp->spi->dev, "%s IRQ1 = %X:\n%s%s%s%s%s%s%s%s\n",
__func__, irq1,
irq1 & IRQ_CCA_COMPLETE ? "IRQ_CCA_COMPLETE\n" : "",
irq1 & IRQ_SFD_RX ? "IRQ_SFD_RX\n" : "",
irq1 & IRQ_SFD_TX ? "IRQ_SFD_TX\n" : "",
irq1 & IRQ_RX_PKT_RCVD ? "IRQ_RX_PKT_RCVD\n" : "",
irq1 & IRQ_TX_PKT_SENT ? "IRQ_TX_PKT_SENT\n" : "",
irq1 & IRQ_CSMA_CA ? "IRQ_CSMA_CA\n" : "",
irq1 & IRQ_FRAME_VALID ? "IRQ_FRAME_VALID\n" : "",
irq1 & IRQ_ADDRESS_VALID ? "IRQ_ADDRESS_VALID\n" : "");
dev_dbg(&lp->spi->dev, "%s STATUS = %X:\n%s\n%s\n%s\n%s\n%s%s%s%s%s\n",
__func__, stat,
stat & STAT_SPI_READY ? "SPI_READY" : "SPI_BUSY",
stat & STAT_IRQ_STATUS ? "IRQ_PENDING" : "IRQ_CLEAR",
stat & STAT_RC_READY ? "RC_READY" : "RC_BUSY",
stat & STAT_CCA_RESULT ? "CHAN_IDLE" : "CHAN_BUSY",
(stat & 0xf) == RC_STATUS_IDLE ? "RC_STATUS_IDLE" : "",
(stat & 0xf) == RC_STATUS_MEAS ? "RC_STATUS_MEAS" : "",
(stat & 0xf) == RC_STATUS_PHY_RDY ? "RC_STATUS_PHY_RDY" : "",
(stat & 0xf) == RC_STATUS_RX ? "RC_STATUS_RX" : "",
(stat & 0xf) == RC_STATUS_TX ? "RC_STATUS_TX" : "");
#endif
}
static irqreturn_t adf7242_isr(int irq, void *data)
{
struct adf7242_local *lp = data;
unsigned int xmit;
u8 irq1;
mod_delayed_work(lp->wqueue, &lp->work, msecs_to_jiffies(400));
adf7242_read_reg(lp, REG_IRQ1_SRC1, &irq1);
if (!(irq1 & (IRQ_RX_PKT_RCVD | IRQ_CSMA_CA)))
dev_err(&lp->spi->dev, "%s :ERROR IRQ1 = 0x%X\n",
__func__, irq1);
adf7242_debug(lp, irq1);
xmit = test_bit(FLAG_XMIT, &lp->flags);
if (xmit && (irq1 & IRQ_CSMA_CA)) {
adf7242_wait_status(lp, RC_STATUS_PHY_RDY,
RC_STATUS_MASK, __LINE__);
if (ADF7242_REPORT_CSMA_CA_STAT) {
u8 astat;
adf7242_read_reg(lp, REG_AUTO_STATUS, &astat);
astat &= AUTO_STATUS_MASK;
dev_dbg(&lp->spi->dev, "AUTO_STATUS = %X:\n%s%s%s%s\n",
astat,
astat == SUCCESS ? "SUCCESS" : "",
astat ==
SUCCESS_DATPEND ? "SUCCESS_DATPEND" : "",
astat == FAILURE_CSMACA ? "FAILURE_CSMACA" : "",
astat == FAILURE_NOACK ? "FAILURE_NOACK" : "");
/* save CSMA-CA completion status */
lp->tx_stat = astat;
} else {
lp->tx_stat = SUCCESS;
}
complete(&lp->tx_complete);
adf7242_clear_irqstat(lp);
} else if (!xmit && (irq1 & IRQ_RX_PKT_RCVD) &&
(irq1 & IRQ_FRAME_VALID)) {
adf7242_rx(lp);
} else if (!xmit && test_bit(FLAG_START, &lp->flags)) {
/* Invalid packet received - drop it and restart */
dev_dbg(&lp->spi->dev, "%s:%d : ERROR IRQ1 = 0x%X\n",
__func__, __LINE__, irq1);
adf7242_cmd(lp, CMD_RC_PHY_RDY);
adf7242_cmd_rx(lp);
} else {
/* This can only be xmit without IRQ, likely a RX packet.
* we get an TX IRQ shortly - do nothing or let the xmit
* timeout handle this
*/
dev_dbg(&lp->spi->dev, "%s:%d : ERROR IRQ1 = 0x%X, xmit %d\n",
__func__, __LINE__, irq1, xmit);
adf7242_wait_status(lp, RC_STATUS_PHY_RDY,
RC_STATUS_MASK, __LINE__);
complete(&lp->tx_complete);
adf7242_clear_irqstat(lp);
}
return IRQ_HANDLED;
}
static int adf7242_soft_reset(struct adf7242_local *lp, int line)
{
dev_warn(&lp->spi->dev, "%s (line %d)\n", __func__, line);
if (test_bit(FLAG_START, &lp->flags))
disable_irq_nosync(lp->spi->irq);
adf7242_cmd(lp, CMD_RC_PC_RESET_NO_WAIT);
usleep_range(200, 250);
adf7242_write_reg(lp, REG_PKT_CFG, ADDON_EN | BIT(2));
adf7242_cmd(lp, CMD_RC_PHY_RDY);
adf7242_set_promiscuous_mode(lp->hw, lp->promiscuous);
adf7242_set_csma_params(lp->hw, lp->min_be, lp->max_be,
lp->max_cca_retries);
adf7242_clear_irqstat(lp);
if (test_bit(FLAG_START, &lp->flags)) {
enable_irq(lp->spi->irq);
return adf7242_cmd(lp, CMD_RC_RX);
}
return 0;
}
static int adf7242_hw_init(struct adf7242_local *lp)
{
int ret;
const struct firmware *fw;
adf7242_cmd(lp, CMD_RC_RESET);
adf7242_cmd(lp, CMD_RC_IDLE);
/* get ADF7242 addon firmware
* build this driver as module
* and place under /lib/firmware/adf7242_firmware.bin
* or compile firmware into the kernel.
*/
ret = request_firmware(&fw, FIRMWARE, &lp->spi->dev);
if (ret) {
dev_err(&lp->spi->dev,
"request_firmware() failed with %d\n", ret);
return ret;
}
ret = adf7242_upload_firmware(lp, (u8 *)fw->data, fw->size);
if (ret) {
dev_err(&lp->spi->dev,
"upload firmware failed with %d\n", ret);
release_firmware(fw);
return ret;
}
ret = adf7242_verify_firmware(lp, (u8 *)fw->data, fw->size);
if (ret) {
dev_err(&lp->spi->dev,
"verify firmware failed with %d\n", ret);
release_firmware(fw);
return ret;
}
adf7242_cmd(lp, CMD_RC_PC_RESET);
release_firmware(fw);
adf7242_write_reg(lp, REG_FFILT_CFG,
ACCEPT_BEACON_FRAMES |
ACCEPT_DATA_FRAMES |
ACCEPT_MACCMD_FRAMES |
ACCEPT_RESERVED_FRAMES);
adf7242_write_reg(lp, REG_AUTO_CFG, RX_AUTO_ACK_EN);
adf7242_write_reg(lp, REG_PKT_CFG, ADDON_EN | BIT(2));
adf7242_write_reg(lp, REG_EXTPA_MSC, 0xF1);
adf7242_write_reg(lp, REG_RXFE_CFG, 0x1D);
adf7242_write_reg(lp, REG_IRQ1_EN0, 0);
adf7242_write_reg(lp, REG_IRQ1_EN1, IRQ_RX_PKT_RCVD | IRQ_CSMA_CA);
adf7242_clear_irqstat(lp);
adf7242_write_reg(lp, REG_IRQ1_SRC0, 0xFF);
adf7242_cmd(lp, CMD_RC_IDLE);
return 0;
}
static int adf7242_stats_show(struct seq_file *file, void *offset)
{
struct adf7242_local *lp = spi_get_drvdata(file->private);
u8 stat, irq1;
adf7242_status(lp, &stat);
adf7242_read_reg(lp, REG_IRQ1_SRC1, &irq1);
seq_printf(file, "IRQ1 = %X:\n%s%s%s%s%s%s%s%s\n", irq1,
irq1 & IRQ_CCA_COMPLETE ? "IRQ_CCA_COMPLETE\n" : "",
irq1 & IRQ_SFD_RX ? "IRQ_SFD_RX\n" : "",
irq1 & IRQ_SFD_TX ? "IRQ_SFD_TX\n" : "",
irq1 & IRQ_RX_PKT_RCVD ? "IRQ_RX_PKT_RCVD\n" : "",
irq1 & IRQ_TX_PKT_SENT ? "IRQ_TX_PKT_SENT\n" : "",
irq1 & IRQ_CSMA_CA ? "IRQ_CSMA_CA\n" : "",
irq1 & IRQ_FRAME_VALID ? "IRQ_FRAME_VALID\n" : "",
irq1 & IRQ_ADDRESS_VALID ? "IRQ_ADDRESS_VALID\n" : "");
seq_printf(file, "STATUS = %X:\n%s\n%s\n%s\n%s\n%s%s%s%s%s\n", stat,
stat & STAT_SPI_READY ? "SPI_READY" : "SPI_BUSY",
stat & STAT_IRQ_STATUS ? "IRQ_PENDING" : "IRQ_CLEAR",
stat & STAT_RC_READY ? "RC_READY" : "RC_BUSY",
stat & STAT_CCA_RESULT ? "CHAN_IDLE" : "CHAN_BUSY",
(stat & 0xf) == RC_STATUS_IDLE ? "RC_STATUS_IDLE" : "",
(stat & 0xf) == RC_STATUS_MEAS ? "RC_STATUS_MEAS" : "",
(stat & 0xf) == RC_STATUS_PHY_RDY ? "RC_STATUS_PHY_RDY" : "",
(stat & 0xf) == RC_STATUS_RX ? "RC_STATUS_RX" : "",
(stat & 0xf) == RC_STATUS_TX ? "RC_STATUS_TX" : "");
seq_printf(file, "RSSI = %d\n", lp->rssi);
return 0;
}
static int adf7242_debugfs_init(struct adf7242_local *lp)
{
char debugfs_dir_name[DNAME_INLINE_LEN + 1] = "adf7242-";
struct dentry *stats;
strncat(debugfs_dir_name, dev_name(&lp->spi->dev), DNAME_INLINE_LEN);
lp->debugfs_root = debugfs_create_dir(debugfs_dir_name, NULL);
if (IS_ERR_OR_NULL(lp->debugfs_root))
return PTR_ERR_OR_ZERO(lp->debugfs_root);
stats = debugfs_create_devm_seqfile(&lp->spi->dev, "status",
lp->debugfs_root,
adf7242_stats_show);
return PTR_ERR_OR_ZERO(stats);
return 0;
}
static const s32 adf7242_powers[] = {
500, 400, 300, 200, 100, 0, -100, -200, -300, -400, -500, -600, -700,
-800, -900, -1000, -1100, -1200, -1300, -1400, -1500, -1600, -1700,
-1800, -1900, -2000, -2100, -2200, -2300, -2400, -2500, -2600,
};
static const s32 adf7242_ed_levels[] = {
-9000, -8900, -8800, -8700, -8600, -8500, -8400, -8300, -8200, -8100,
-8000, -7900, -7800, -7700, -7600, -7500, -7400, -7300, -7200, -7100,
-7000, -6900, -6800, -6700, -6600, -6500, -6400, -6300, -6200, -6100,
-6000, -5900, -5800, -5700, -5600, -5500, -5400, -5300, -5200, -5100,
-5000, -4900, -4800, -4700, -4600, -4500, -4400, -4300, -4200, -4100,
-4000, -3900, -3800, -3700, -3600, -3500, -3400, -3200, -3100, -3000
};
static int adf7242_probe(struct spi_device *spi)
{
struct ieee802154_hw *hw;
struct adf7242_local *lp;
int ret, irq_type;
if (!spi->irq) {
dev_err(&spi->dev, "no IRQ specified\n");
return -EINVAL;
}
hw = ieee802154_alloc_hw(sizeof(*lp), &adf7242_ops);
if (!hw)
return -ENOMEM;
lp = hw->priv;
lp->hw = hw;
lp->spi = spi;
hw->priv = lp;
hw->parent = &spi->dev;
hw->extra_tx_headroom = 0;
/* We support only 2.4 Ghz */
hw->phy->supported.channels[0] = 0x7FFF800;
hw->flags = IEEE802154_HW_OMIT_CKSUM |
IEEE802154_HW_CSMA_PARAMS |
IEEE802154_HW_FRAME_RETRIES | IEEE802154_HW_AFILT |
IEEE802154_HW_PROMISCUOUS;
hw->phy->flags = WPAN_PHY_FLAG_TXPOWER |
WPAN_PHY_FLAG_CCA_ED_LEVEL |
WPAN_PHY_FLAG_CCA_MODE;
hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY);
hw->phy->supported.cca_ed_levels = adf7242_ed_levels;
hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(adf7242_ed_levels);
hw->phy->cca.mode = NL802154_CCA_ENERGY;
hw->phy->supported.tx_powers = adf7242_powers;
hw->phy->supported.tx_powers_size = ARRAY_SIZE(adf7242_powers);
hw->phy->supported.min_minbe = 0;
hw->phy->supported.max_minbe = 8;
hw->phy->supported.min_maxbe = 3;
hw->phy->supported.max_maxbe = 8;
hw->phy->supported.min_frame_retries = 0;
hw->phy->supported.max_frame_retries = 15;
hw->phy->supported.min_csma_backoffs = 0;
hw->phy->supported.max_csma_backoffs = 5;
ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
mutex_init(&lp->bmux);
init_completion(&lp->tx_complete);
/* Setup Status Message */
lp->stat_xfer.len = 1;
lp->stat_xfer.tx_buf = &lp->buf_stat_tx;
lp->stat_xfer.rx_buf = &lp->buf_stat_rx;
lp->buf_stat_tx = CMD_SPI_NOP;
spi_message_init(&lp->stat_msg);
spi_message_add_tail(&lp->stat_xfer, &lp->stat_msg);
spi_set_drvdata(spi, lp);
INIT_DELAYED_WORK(&lp->work, adf7242_rx_cal_work);
lp->wqueue = alloc_ordered_workqueue(dev_name(&spi->dev),
WQ_MEM_RECLAIM);
if (unlikely(!lp->wqueue)) {
ret = -ENOMEM;
goto err_alloc_wq;
}
ret = adf7242_hw_init(lp);
if (ret)
goto err_hw_init;
irq_type = irq_get_trigger_type(spi->irq);
if (!irq_type)
irq_type = IRQF_TRIGGER_HIGH;
ret = devm_request_threaded_irq(&spi->dev, spi->irq, NULL, adf7242_isr,
irq_type | IRQF_ONESHOT,
dev_name(&spi->dev), lp);
if (ret)
goto err_hw_init;
disable_irq(spi->irq);
ret = ieee802154_register_hw(lp->hw);
if (ret)
goto err_hw_init;
dev_set_drvdata(&spi->dev, lp);
adf7242_debugfs_init(lp);
dev_info(&spi->dev, "mac802154 IRQ-%d registered\n", spi->irq);
return ret;
err_hw_init:
destroy_workqueue(lp->wqueue);
err_alloc_wq:
mutex_destroy(&lp->bmux);
ieee802154_free_hw(lp->hw);
return ret;
}
static int adf7242_remove(struct spi_device *spi)
{
struct adf7242_local *lp = spi_get_drvdata(spi);
debugfs_remove_recursive(lp->debugfs_root);
cancel_delayed_work_sync(&lp->work);
destroy_workqueue(lp->wqueue);
ieee802154_unregister_hw(lp->hw);
mutex_destroy(&lp->bmux);
ieee802154_free_hw(lp->hw);
return 0;
}
static const struct of_device_id adf7242_of_match[] = {
{ .compatible = "adi,adf7242", },
{ .compatible = "adi,adf7241", },
{ },
};
MODULE_DEVICE_TABLE(of, adf7242_of_match);
static const struct spi_device_id adf7242_device_id[] = {
{ .name = "adf7242", },
{ .name = "adf7241", },
{ },
};
MODULE_DEVICE_TABLE(spi, adf7242_device_id);
static struct spi_driver adf7242_driver = {
.id_table = adf7242_device_id,
.driver = {
.of_match_table = of_match_ptr(adf7242_of_match),
.name = "adf7242",
.owner = THIS_MODULE,
},
.probe = adf7242_probe,
.remove = adf7242_remove,
};
module_spi_driver(adf7242_driver);
MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>");
MODULE_DESCRIPTION("ADF7242 IEEE802.15.4 Transceiver Driver");
MODULE_LICENSE("GPL");