kernel_samsung_a34x-permissive/drivers/soc/fsl/dpio/qbman-portal.c

1006 lines
27 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
/*
* Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
* Copyright 2016 NXP
*
*/
#include <asm/cacheflush.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <soc/fsl/dpaa2-global.h>
#include "qbman-portal.h"
#define QMAN_REV_4000 0x04000000
#define QMAN_REV_4100 0x04010000
#define QMAN_REV_4101 0x04010001
#define QMAN_REV_MASK 0xffff0000
/* All QBMan command and result structures use this "valid bit" encoding */
#define QB_VALID_BIT ((u32)0x80)
/* QBMan portal management command codes */
#define QBMAN_MC_ACQUIRE 0x30
#define QBMAN_WQCHAN_CONFIGURE 0x46
/* CINH register offsets */
#define QBMAN_CINH_SWP_EQAR 0x8c0
#define QBMAN_CINH_SWP_DQPI 0xa00
#define QBMAN_CINH_SWP_DCAP 0xac0
#define QBMAN_CINH_SWP_SDQCR 0xb00
#define QBMAN_CINH_SWP_RAR 0xcc0
#define QBMAN_CINH_SWP_ISR 0xe00
#define QBMAN_CINH_SWP_IER 0xe40
#define QBMAN_CINH_SWP_ISDR 0xe80
#define QBMAN_CINH_SWP_IIR 0xec0
/* CENA register offsets */
#define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6))
#define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6))
#define QBMAN_CENA_SWP_RCR(n) (0x400 + ((u32)(n) << 6))
#define QBMAN_CENA_SWP_CR 0x600
#define QBMAN_CENA_SWP_RR(vb) (0x700 + ((u32)(vb) >> 1))
#define QBMAN_CENA_SWP_VDQCR 0x780
/* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
#define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6)
/* Define token used to determine if response written to memory is valid */
#define QMAN_DQ_TOKEN_VALID 1
/* SDQCR attribute codes */
#define QB_SDQCR_FC_SHIFT 29
#define QB_SDQCR_FC_MASK 0x1
#define QB_SDQCR_DCT_SHIFT 24
#define QB_SDQCR_DCT_MASK 0x3
#define QB_SDQCR_TOK_SHIFT 16
#define QB_SDQCR_TOK_MASK 0xff
#define QB_SDQCR_SRC_SHIFT 0
#define QB_SDQCR_SRC_MASK 0xffff
/* opaque token for static dequeues */
#define QMAN_SDQCR_TOKEN 0xbb
enum qbman_sdqcr_dct {
qbman_sdqcr_dct_null = 0,
qbman_sdqcr_dct_prio_ics,
qbman_sdqcr_dct_active_ics,
qbman_sdqcr_dct_active
};
enum qbman_sdqcr_fc {
qbman_sdqcr_fc_one = 0,
qbman_sdqcr_fc_up_to_3 = 1
};
/* Portal Access */
static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset)
{
return readl_relaxed(p->addr_cinh + offset);
}
static inline void qbman_write_register(struct qbman_swp *p, u32 offset,
u32 value)
{
writel_relaxed(value, p->addr_cinh + offset);
}
static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset)
{
return p->addr_cena + offset;
}
#define QBMAN_CINH_SWP_CFG 0xd00
#define SWP_CFG_DQRR_MF_SHIFT 20
#define SWP_CFG_EST_SHIFT 16
#define SWP_CFG_WN_SHIFT 14
#define SWP_CFG_RPM_SHIFT 12
#define SWP_CFG_DCM_SHIFT 10
#define SWP_CFG_EPM_SHIFT 8
#define SWP_CFG_SD_SHIFT 5
#define SWP_CFG_SP_SHIFT 4
#define SWP_CFG_SE_SHIFT 3
#define SWP_CFG_DP_SHIFT 2
#define SWP_CFG_DE_SHIFT 1
#define SWP_CFG_EP_SHIFT 0
static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn, u8 est, u8 rpm, u8 dcm,
u8 epm, int sd, int sp, int se,
int dp, int de, int ep)
{
return (max_fill << SWP_CFG_DQRR_MF_SHIFT |
est << SWP_CFG_EST_SHIFT |
wn << SWP_CFG_WN_SHIFT |
rpm << SWP_CFG_RPM_SHIFT |
dcm << SWP_CFG_DCM_SHIFT |
epm << SWP_CFG_EPM_SHIFT |
sd << SWP_CFG_SD_SHIFT |
sp << SWP_CFG_SP_SHIFT |
se << SWP_CFG_SE_SHIFT |
dp << SWP_CFG_DP_SHIFT |
de << SWP_CFG_DE_SHIFT |
ep << SWP_CFG_EP_SHIFT);
}
/**
* qbman_swp_init() - Create a functional object representing the given
* QBMan portal descriptor.
* @d: the given qbman swp descriptor
*
* Return qbman_swp portal for success, NULL if the object cannot
* be created.
*/
struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
{
struct qbman_swp *p = kmalloc(sizeof(*p), GFP_KERNEL);
u32 reg;
if (!p)
return NULL;
p->desc = d;
p->mc.valid_bit = QB_VALID_BIT;
p->sdq = 0;
p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
atomic_set(&p->vdq.available, 1);
p->vdq.valid_bit = QB_VALID_BIT;
p->dqrr.next_idx = 0;
p->dqrr.valid_bit = QB_VALID_BIT;
if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) {
p->dqrr.dqrr_size = 4;
p->dqrr.reset_bug = 1;
} else {
p->dqrr.dqrr_size = 8;
p->dqrr.reset_bug = 0;
}
p->addr_cena = d->cena_bar;
p->addr_cinh = d->cinh_bar;
reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
1, /* Writes Non-cacheable */
0, /* EQCR_CI stashing threshold */
3, /* RPM: Valid bit mode, RCR in array mode */
2, /* DCM: Discrete consumption ack mode */
3, /* EPM: Valid bit mode, EQCR in array mode */
0, /* mem stashing drop enable == FALSE */
1, /* mem stashing priority == TRUE */
0, /* mem stashing enable == FALSE */
1, /* dequeue stashing priority == TRUE */
0, /* dequeue stashing enable == FALSE */
0); /* EQCR_CI stashing priority == FALSE */
qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg);
reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG);
if (!reg) {
pr_err("qbman: the portal is not enabled!\n");
return NULL;
}
/*
* SDQCR needs to be initialized to 0 when no channels are
* being dequeued from or else the QMan HW will indicate an
* error. The values that were calculated above will be
* applied when dequeues from a specific channel are enabled.
*/
qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0);
return p;
}
/**
* qbman_swp_finish() - Create and destroy a functional object representing
* the given QBMan portal descriptor.
* @p: the qbman_swp object to be destroyed
*/
void qbman_swp_finish(struct qbman_swp *p)
{
kfree(p);
}
/**
* qbman_swp_interrupt_read_status()
* @p: the given software portal
*
* Return the value in the SWP_ISR register.
*/
u32 qbman_swp_interrupt_read_status(struct qbman_swp *p)
{
return qbman_read_register(p, QBMAN_CINH_SWP_ISR);
}
/**
* qbman_swp_interrupt_clear_status()
* @p: the given software portal
* @mask: The mask to clear in SWP_ISR register
*/
void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask)
{
qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask);
}
/**
* qbman_swp_interrupt_get_trigger() - read interrupt enable register
* @p: the given software portal
*
* Return the value in the SWP_IER register.
*/
u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
{
return qbman_read_register(p, QBMAN_CINH_SWP_IER);
}
/**
* qbman_swp_interrupt_set_trigger() - enable interrupts for a swp
* @p: the given software portal
* @mask: The mask of bits to enable in SWP_IER
*/
void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask)
{
qbman_write_register(p, QBMAN_CINH_SWP_IER, mask);
}
/**
* qbman_swp_interrupt_get_inhibit() - read interrupt mask register
* @p: the given software portal object
*
* Return the value in the SWP_IIR register.
*/
int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
{
return qbman_read_register(p, QBMAN_CINH_SWP_IIR);
}
/**
* qbman_swp_interrupt_set_inhibit() - write interrupt mask register
* @p: the given software portal object
* @mask: The mask to set in SWP_IIR register
*/
void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
{
qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
}
/*
* Different management commands all use this common base layer of code to issue
* commands and poll for results.
*/
/*
* Returns a pointer to where the caller should fill in their management command
* (caller should ignore the verb byte)
*/
void *qbman_swp_mc_start(struct qbman_swp *p)
{
return qbman_get_cmd(p, QBMAN_CENA_SWP_CR);
}
/*
* Commits merges in the caller-supplied command verb (which should not include
* the valid-bit) and submits the command to hardware
*/
void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb)
{
u8 *v = cmd;
dma_wmb();
*v = cmd_verb | p->mc.valid_bit;
}
/*
* Checks for a completed response (returns non-NULL if only if the response
* is complete).
*/
void *qbman_swp_mc_result(struct qbman_swp *p)
{
u32 *ret, verb;
ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
/* Remove the valid-bit - command completed if the rest is non-zero */
verb = ret[0] & ~QB_VALID_BIT;
if (!verb)
return NULL;
p->mc.valid_bit ^= QB_VALID_BIT;
return ret;
}
#define QB_ENQUEUE_CMD_OPTIONS_SHIFT 0
enum qb_enqueue_commands {
enqueue_empty = 0,
enqueue_response_always = 1,
enqueue_rejects_to_fq = 2
};
#define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT 2
#define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
#define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT 4
/**
* qbman_eq_desc_clear() - Clear the contents of a descriptor to
* default/starting state.
*/
void qbman_eq_desc_clear(struct qbman_eq_desc *d)
{
memset(d, 0, sizeof(*d));
}
/**
* qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp
* @d: the enqueue descriptor.
* @response_success: 1 = enqueue with response always; 0 = enqueue with
* rejections returned on a FQ.
*/
void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
{
d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
if (respond_success)
d->verb |= enqueue_response_always;
else
d->verb |= enqueue_rejects_to_fq;
}
/*
* Exactly one of the following descriptor "targets" should be set. (Calling any
* one of these will replace the effect of any prior call to one of these.)
* -enqueue to a frame queue
* -enqueue to a queuing destination
*/
/**
* qbman_eq_desc_set_fq() - set the FQ for the enqueue command
* @d: the enqueue descriptor
* @fqid: the id of the frame queue to be enqueued
*/
void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid)
{
d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
d->tgtid = cpu_to_le32(fqid);
}
/**
* qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command
* @d: the enqueue descriptor
* @qdid: the id of the queuing destination to be enqueued
* @qd_bin: the queuing destination bin
* @qd_prio: the queuing destination priority
*/
void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid,
u32 qd_bin, u32 qd_prio)
{
d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
d->tgtid = cpu_to_le32(qdid);
d->qdbin = cpu_to_le16(qd_bin);
d->qpri = qd_prio;
}
#define EQAR_IDX(eqar) ((eqar) & 0x7)
#define EQAR_VB(eqar) ((eqar) & 0x80)
#define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
/**
* qbman_swp_enqueue() - Issue an enqueue command
* @s: the software portal used for enqueue
* @d: the enqueue descriptor
* @fd: the frame descriptor to be enqueued
*
* Please note that 'fd' should only be NULL if the "action" of the
* descriptor is "orp_hole" or "orp_nesn".
*
* Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
*/
int qbman_swp_enqueue(struct qbman_swp *s, const struct qbman_eq_desc *d,
const struct dpaa2_fd *fd)
{
struct qbman_eq_desc *p;
u32 eqar = qbman_read_register(s, QBMAN_CINH_SWP_EQAR);
if (!EQAR_SUCCESS(eqar))
return -EBUSY;
p = qbman_get_cmd(s, QBMAN_CENA_SWP_EQCR(EQAR_IDX(eqar)));
memcpy(&p->dca, &d->dca, 31);
memcpy(&p->fd, fd, sizeof(*fd));
/* Set the verb byte, have to substitute in the valid-bit */
dma_wmb();
p->verb = d->verb | EQAR_VB(eqar);
return 0;
}
/* Static (push) dequeue */
/**
* qbman_swp_push_get() - Get the push dequeue setup
* @p: the software portal object
* @channel_idx: the channel index to query
* @enabled: returned boolean to show whether the push dequeue is enabled
* for the given channel
*/
void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled)
{
u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
WARN_ON(channel_idx > 15);
*enabled = src | (1 << channel_idx);
}
/**
* qbman_swp_push_set() - Enable or disable push dequeue
* @p: the software portal object
* @channel_idx: the channel index (0 to 15)
* @enable: enable or disable push dequeue
*/
void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable)
{
u16 dqsrc;
WARN_ON(channel_idx > 15);
if (enable)
s->sdq |= 1 << channel_idx;
else
s->sdq &= ~(1 << channel_idx);
/* Read make the complete src map. If no channels are enabled
* the SDQCR must be 0 or else QMan will assert errors
*/
dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
if (dqsrc != 0)
qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq);
else
qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0);
}
#define QB_VDQCR_VERB_DCT_SHIFT 0
#define QB_VDQCR_VERB_DT_SHIFT 2
#define QB_VDQCR_VERB_RLS_SHIFT 4
#define QB_VDQCR_VERB_WAE_SHIFT 5
enum qb_pull_dt_e {
qb_pull_dt_channel,
qb_pull_dt_workqueue,
qb_pull_dt_framequeue
};
/**
* qbman_pull_desc_clear() - Clear the contents of a descriptor to
* default/starting state
* @d: the pull dequeue descriptor to be cleared
*/
void qbman_pull_desc_clear(struct qbman_pull_desc *d)
{
memset(d, 0, sizeof(*d));
}
/**
* qbman_pull_desc_set_storage()- Set the pull dequeue storage
* @d: the pull dequeue descriptor to be set
* @storage: the pointer of the memory to store the dequeue result
* @storage_phys: the physical address of the storage memory
* @stash: to indicate whether write allocate is enabled
*
* If not called, or if called with 'storage' as NULL, the result pull dequeues
* will produce results to DQRR. If 'storage' is non-NULL, then results are
* produced to the given memory location (using the DMA address which
* the caller provides in 'storage_phys'), and 'stash' controls whether or not
* those writes to main-memory express a cache-warming attribute.
*/
void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
struct dpaa2_dq *storage,
dma_addr_t storage_phys,
int stash)
{
/* save the virtual address */
d->rsp_addr_virt = (u64)(uintptr_t)storage;
if (!storage) {
d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
return;
}
d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
if (stash)
d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
else
d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
d->rsp_addr = cpu_to_le64(storage_phys);
}
/**
* qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued
* @d: the pull dequeue descriptor to be set
* @numframes: number of frames to be set, must be between 1 and 16, inclusive
*/
void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes)
{
d->numf = numframes - 1;
}
/*
* Exactly one of the following descriptor "actions" should be set. (Calling any
* one of these will replace the effect of any prior call to one of these.)
* - pull dequeue from the given frame queue (FQ)
* - pull dequeue from any FQ in the given work queue (WQ)
* - pull dequeue from any FQ in any WQ in the given channel
*/
/**
* qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues
* @fqid: the frame queue index of the given FQ
*/
void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid)
{
d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
d->dq_src = cpu_to_le32(fqid);
}
/**
* qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues
* @wqid: composed of channel id and wqid within the channel
* @dct: the dequeue command type
*/
void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid,
enum qbman_pull_type_e dct)
{
d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
d->dq_src = cpu_to_le32(wqid);
}
/**
* qbman_pull_desc_set_channel() - Set channelid from which the dequeue command
* dequeues
* @chid: the channel id to be dequeued
* @dct: the dequeue command type
*/
void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid,
enum qbman_pull_type_e dct)
{
d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
d->dq_src = cpu_to_le32(chid);
}
/**
* qbman_swp_pull() - Issue the pull dequeue command
* @s: the software portal object
* @d: the software portal descriptor which has been configured with
* the set of qbman_pull_desc_set_*() calls
*
* Return 0 for success, and -EBUSY if the software portal is not ready
* to do pull dequeue.
*/
int qbman_swp_pull(struct qbman_swp *s, struct qbman_pull_desc *d)
{
struct qbman_pull_desc *p;
if (!atomic_dec_and_test(&s->vdq.available)) {
atomic_inc(&s->vdq.available);
return -EBUSY;
}
s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
p->numf = d->numf;
p->tok = QMAN_DQ_TOKEN_VALID;
p->dq_src = d->dq_src;
p->rsp_addr = d->rsp_addr;
p->rsp_addr_virt = d->rsp_addr_virt;
dma_wmb();
/* Set the verb byte, have to substitute in the valid-bit */
p->verb = d->verb | s->vdq.valid_bit;
s->vdq.valid_bit ^= QB_VALID_BIT;
return 0;
}
#define QMAN_DQRR_PI_MASK 0xf
/**
* qbman_swp_dqrr_next() - Get an valid DQRR entry
* @s: the software portal object
*
* Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
* only once, so repeated calls can return a sequence of DQRR entries, without
* requiring they be consumed immediately or in any particular order.
*/
const struct dpaa2_dq *qbman_swp_dqrr_next(struct qbman_swp *s)
{
u32 verb;
u32 response_verb;
u32 flags;
struct dpaa2_dq *p;
/* Before using valid-bit to detect if something is there, we have to
* handle the case of the DQRR reset bug...
*/
if (unlikely(s->dqrr.reset_bug)) {
/*
* We pick up new entries by cache-inhibited producer index,
* which means that a non-coherent mapping would require us to
* invalidate and read *only* once that PI has indicated that
* there's an entry here. The first trip around the DQRR ring
* will be much less efficient than all subsequent trips around
* it...
*/
u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
QMAN_DQRR_PI_MASK;
/* there are new entries if pi != next_idx */
if (pi == s->dqrr.next_idx)
return NULL;
/*
* if next_idx is/was the last ring index, and 'pi' is
* different, we can disable the workaround as all the ring
* entries have now been DMA'd to so valid-bit checking is
* repaired. Note: this logic needs to be based on next_idx
* (which increments one at a time), rather than on pi (which
* can burst and wrap-around between our snapshots of it).
*/
if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
s->dqrr.next_idx, pi);
s->dqrr.reset_bug = 0;
}
prefetch(qbman_get_cmd(s,
QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
}
p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
verb = p->dq.verb;
/*
* If the valid-bit isn't of the expected polarity, nothing there. Note,
* in the DQRR reset bug workaround, we shouldn't need to skip these
* check, because we've already determined that a new entry is available
* and we've invalidated the cacheline before reading it, so the
* valid-bit behaviour is repaired and should tell us what we already
* knew from reading PI.
*/
if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
prefetch(qbman_get_cmd(s,
QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
return NULL;
}
/*
* There's something there. Move "next_idx" attention to the next ring
* entry (and prefetch it) before returning what we found.
*/
s->dqrr.next_idx++;
s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
if (!s->dqrr.next_idx)
s->dqrr.valid_bit ^= QB_VALID_BIT;
/*
* If this is the final response to a volatile dequeue command
* indicate that the vdq is available
*/
flags = p->dq.stat;
response_verb = verb & QBMAN_RESULT_MASK;
if ((response_verb == QBMAN_RESULT_DQ) &&
(flags & DPAA2_DQ_STAT_VOLATILE) &&
(flags & DPAA2_DQ_STAT_EXPIRED))
atomic_inc(&s->vdq.available);
prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
return p;
}
/**
* qbman_swp_dqrr_consume() - Consume DQRR entries previously returned from
* qbman_swp_dqrr_next().
* @s: the software portal object
* @dq: the DQRR entry to be consumed
*/
void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq)
{
qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
}
/**
* qbman_result_has_new_result() - Check and get the dequeue response from the
* dq storage memory set in pull dequeue command
* @s: the software portal object
* @dq: the dequeue result read from the memory
*
* Return 1 for getting a valid dequeue result, or 0 for not getting a valid
* dequeue result.
*
* Only used for user-provided storage of dequeue results, not DQRR. For
* efficiency purposes, the driver will perform any required endianness
* conversion to ensure that the user's dequeue result storage is in host-endian
* format. As such, once the user has called qbman_result_has_new_result() and
* been returned a valid dequeue result, they should not call it again on
* the same memory location (except of course if another dequeue command has
* been executed to produce a new result to that location).
*/
int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq)
{
if (dq->dq.tok != QMAN_DQ_TOKEN_VALID)
return 0;
/*
* Set token to be 0 so we will detect change back to 1
* next time the looping is traversed. Const is cast away here
* as we want users to treat the dequeue responses as read only.
*/
((struct dpaa2_dq *)dq)->dq.tok = 0;
/*
* Determine whether VDQCR is available based on whether the
* current result is sitting in the first storage location of
* the busy command.
*/
if (s->vdq.storage == dq) {
s->vdq.storage = NULL;
atomic_inc(&s->vdq.available);
}
return 1;
}
/**
* qbman_release_desc_clear() - Clear the contents of a descriptor to
* default/starting state.
*/
void qbman_release_desc_clear(struct qbman_release_desc *d)
{
memset(d, 0, sizeof(*d));
d->verb = 1 << 5; /* Release Command Valid */
}
/**
* qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to
*/
void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid)
{
d->bpid = cpu_to_le16(bpid);
}
/**
* qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI
* interrupt source should be asserted after the release command is completed.
*/
void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
{
if (enable)
d->verb |= 1 << 6;
else
d->verb &= ~(1 << 6);
}
#define RAR_IDX(rar) ((rar) & 0x7)
#define RAR_VB(rar) ((rar) & 0x80)
#define RAR_SUCCESS(rar) ((rar) & 0x100)
/**
* qbman_swp_release() - Issue a buffer release command
* @s: the software portal object
* @d: the release descriptor
* @buffers: a pointer pointing to the buffer address to be released
* @num_buffers: number of buffers to be released, must be less than 8
*
* Return 0 for success, -EBUSY if the release command ring is not ready.
*/
int qbman_swp_release(struct qbman_swp *s, const struct qbman_release_desc *d,
const u64 *buffers, unsigned int num_buffers)
{
int i;
struct qbman_release_desc *p;
u32 rar;
if (!num_buffers || (num_buffers > 7))
return -EINVAL;
rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
if (!RAR_SUCCESS(rar))
return -EBUSY;
/* Start the release command */
p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
/* Copy the caller's buffer pointers to the command */
for (i = 0; i < num_buffers; i++)
p->buf[i] = cpu_to_le64(buffers[i]);
p->bpid = d->bpid;
/*
* Set the verb byte, have to substitute in the valid-bit and the number
* of buffers.
*/
dma_wmb();
p->verb = d->verb | RAR_VB(rar) | num_buffers;
return 0;
}
struct qbman_acquire_desc {
u8 verb;
u8 reserved;
__le16 bpid;
u8 num;
u8 reserved2[59];
};
struct qbman_acquire_rslt {
u8 verb;
u8 rslt;
__le16 reserved;
u8 num;
u8 reserved2[3];
__le64 buf[7];
};
/**
* qbman_swp_acquire() - Issue a buffer acquire command
* @s: the software portal object
* @bpid: the buffer pool index
* @buffers: a pointer pointing to the acquired buffer addresses
* @num_buffers: number of buffers to be acquired, must be less than 8
*
* Return 0 for success, or negative error code if the acquire command
* fails.
*/
int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers,
unsigned int num_buffers)
{
struct qbman_acquire_desc *p;
struct qbman_acquire_rslt *r;
int i;
if (!num_buffers || (num_buffers > 7))
return -EINVAL;
/* Start the management command */
p = qbman_swp_mc_start(s);
if (!p)
return -EBUSY;
/* Encode the caller-provided attributes */
p->bpid = cpu_to_le16(bpid);
p->num = num_buffers;
/* Complete the management command */
r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
if (unlikely(!r)) {
pr_err("qbman: acquire from BPID %d failed, no response\n",
bpid);
return -EIO;
}
/* Decode the outcome */
WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE);
/* Determine success or failure */
if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n",
bpid, r->rslt);
return -EIO;
}
WARN_ON(r->num > num_buffers);
/* Copy the acquired buffers to the caller's array */
for (i = 0; i < r->num; i++)
buffers[i] = le64_to_cpu(r->buf[i]);
return (int)r->num;
}
struct qbman_alt_fq_state_desc {
u8 verb;
u8 reserved[3];
__le32 fqid;
u8 reserved2[56];
};
struct qbman_alt_fq_state_rslt {
u8 verb;
u8 rslt;
u8 reserved[62];
};
#define ALT_FQ_FQID_MASK 0x00FFFFFF
int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid,
u8 alt_fq_verb)
{
struct qbman_alt_fq_state_desc *p;
struct qbman_alt_fq_state_rslt *r;
/* Start the management command */
p = qbman_swp_mc_start(s);
if (!p)
return -EBUSY;
p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK);
/* Complete the management command */
r = qbman_swp_mc_complete(s, p, alt_fq_verb);
if (unlikely(!r)) {
pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
alt_fq_verb);
return -EIO;
}
/* Decode the outcome */
WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb);
/* Determine success or failure */
if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n",
fqid, r->verb, r->rslt);
return -EIO;
}
return 0;
}
struct qbman_cdan_ctrl_desc {
u8 verb;
u8 reserved;
__le16 ch;
u8 we;
u8 ctrl;
__le16 reserved2;
__le64 cdan_ctx;
u8 reserved3[48];
};
struct qbman_cdan_ctrl_rslt {
u8 verb;
u8 rslt;
__le16 ch;
u8 reserved[60];
};
int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid,
u8 we_mask, u8 cdan_en,
u64 ctx)
{
struct qbman_cdan_ctrl_desc *p = NULL;
struct qbman_cdan_ctrl_rslt *r = NULL;
/* Start the management command */
p = qbman_swp_mc_start(s);
if (!p)
return -EBUSY;
/* Encode the caller-provided attributes */
p->ch = cpu_to_le16(channelid);
p->we = we_mask;
if (cdan_en)
p->ctrl = 1;
else
p->ctrl = 0;
p->cdan_ctx = cpu_to_le64(ctx);
/* Complete the management command */
r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
if (unlikely(!r)) {
pr_err("qbman: wqchan config failed, no response\n");
return -EIO;
}
WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE);
/* Determine success or failure */
if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n",
channelid, r->rslt);
return -EIO;
}
return 0;
}