kernel_samsung_a34x-permissive/sound/soc/mediatek/common_int/mtk-soc-pcm-capture2.c

454 lines
12 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2019 MediaTek Inc.
* Author: Michael Hsiao <michael.hsiao@mediatek.com>
*/
/*******************************************************************************
*
* Filename:
* ---------
* mtk_pcm_capture2.c
*
* Project:
* --------
* Audio Driver Kernel Function
*
* Description:
* ------------
* Audio Ul1 data1 uplink
*
* Author:
* -------
* Chipeng Chang
*
*------------------------------------------------------------------------------
*
******************************************************************************
*/
/*****************************************************************************
* C O M P I L E R F L A G S
*****************************************************************************/
/*****************************************************************************
* E X T E R N A L R E F E R E N C E S
*****************************************************************************/
#include "mtk-auddrv-afe.h"
#include "mtk-auddrv-ana.h"
#include "mtk-auddrv-clk.h"
#include "mtk-auddrv-common.h"
#include "mtk-auddrv-def.h"
#include "mtk-auddrv-kernel.h"
#include "mtk-soc-afe-control.h"
#include "mtk-soc-pcm-common.h"
#include "mtk-soc-pcm-platform.h"
#include <linux/dma-mapping.h>
/* information about */
struct afe_mem_control_t *VUL2_Control_context;
static struct snd_dma_buffer *Capture2_dma_buf;
static bool mPrepareDone;
/*
* function implementation
*/
static int mtk_capture2_probe(struct platform_device *pdev);
static int mtk_capture2_pcm_close(struct snd_pcm_substream *substream);
static int mtk_afe_capture2_component_probe(struct snd_soc_component *component);
static struct snd_pcm_hardware mtk_capture2_hardware = {
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
.formats = SND_SOC_ADV_MT_FMTS,
.rates = SOC_HIGH_USE_RATE,
.rate_min = SOC_HIGH_USE_RATE_MIN,
.rate_max = SOC_HIGH_USE_RATE_MAX,
.channels_min = SOC_HIGH_USE_CHANNELS_MIN,
.channels_max = SOC_HIGH_USE_CHANNELS_MAX,
.buffer_bytes_max = UL2_MAX_BUFFER_SIZE,
.period_bytes_max = UL2_MAX_BUFFER_SIZE,
.periods_min = UL2_MIN_PERIOD_SIZE,
.periods_max = UL2_MAX_PERIOD_SIZE,
.fifo_size = 0,
};
static int mtk_capture2_pcm_prepare(struct snd_pcm_substream *substream)
{
pr_debug("%s, format = %d, rate = %d\n", __func__,
substream->runtime->format, substream->runtime->rate);
if (mPrepareDone == false) {
SetMemifSubStream(Soc_Aud_Digital_Block_MEM_VUL_DATA2,
substream);
if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE ||
substream->runtime->format == SNDRV_PCM_FORMAT_U32_LE) {
SetMemIfFetchFormatPerSample(
Soc_Aud_Digital_Block_MEM_VUL_DATA2,
AFE_WLEN_32_BIT_ALIGN_8BIT_0_24BIT_DATA);
SetConnectionFormat(OUTPUT_DATA_FORMAT_24BIT,
Soc_Aud_AFE_IO_Block_MEM_VUL_DATA2);
} else {
SetMemIfFetchFormatPerSample(
Soc_Aud_Digital_Block_MEM_VUL_DATA2,
AFE_WLEN_16_BIT);
SetConnectionFormat(OUTPUT_DATA_FORMAT_16BIT,
Soc_Aud_AFE_IO_Block_MEM_VUL_DATA2);
}
if (substream->runtime->channels > 2) {
pr_debug("%s channel(%d) open 4-ch path\n", __func__,
substream->runtime->channels);
SetIntfConnection(Soc_Aud_InterCon_Connection,
Soc_Aud_AFE_IO_Block_ADDA_UL,
Soc_Aud_AFE_IO_Block_MEM_VUL_DATA2);
SetIntfConnection(Soc_Aud_InterCon_Connection,
Soc_Aud_AFE_IO_Block_ADDA_UL2,
Soc_Aud_AFE_IO_Block_MEM_VUL);
if (GetMemoryPathEnable(
Soc_Aud_Digital_Block_ADDA_UL) == false) {
SetMemoryPathEnable(
Soc_Aud_Digital_Block_ADDA_UL, true);
set_adc_in(substream->runtime->rate);
set_adc_enable(true);
} else {
SetMemoryPathEnable(
Soc_Aud_Digital_Block_ADDA_UL, true);
}
} else {
SetIntfConnection(Soc_Aud_InterCon_Connection,
Soc_Aud_AFE_IO_Block_ADDA_UL2,
Soc_Aud_AFE_IO_Block_MEM_VUL_DATA2);
}
if (GetMemoryPathEnable(Soc_Aud_Digital_Block_ADDA_UL2) ==
false) {
SetMemoryPathEnable(Soc_Aud_Digital_Block_ADDA_UL2,
true);
set_adc2_in(substream->runtime->rate);
set_adc2_enable(true);
} else {
SetMemoryPathEnable(Soc_Aud_Digital_Block_ADDA_UL2,
true);
}
mPrepareDone = true;
}
return 0;
}
static int mtk_capture2_alsa_stop(struct snd_pcm_substream *substream)
{
irq_remove_user(
substream,
irq_request_number(Soc_Aud_Digital_Block_MEM_VUL_DATA2));
SetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_VUL_DATA2, false);
ClearMemBlock(Soc_Aud_Digital_Block_MEM_VUL_DATA2);
return 0;
}
static snd_pcm_uframes_t
mtk_capture2_pcm_pointer(struct snd_pcm_substream *substream)
{
return get_mem_frame_index(substream, VUL2_Control_context,
Soc_Aud_Digital_Block_MEM_VUL_DATA2);
}
static int mtk_capture2_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_dma_buffer *dma_buf = &substream->dma_buffer;
int ret = 0;
dma_buf->dev.type = SNDRV_DMA_TYPE_DEV;
dma_buf->dev.dev = substream->pcm->card->dev;
dma_buf->private_data = NULL;
if (Capture2_dma_buf->area) {
runtime->dma_bytes = Capture2_dma_buf->bytes;
runtime->dma_area = Capture2_dma_buf->area;
runtime->dma_addr = Capture2_dma_buf->addr;
runtime->buffer_size = Capture2_dma_buf->bytes;
SetHighAddr(Soc_Aud_Digital_Block_MEM_VUL_DATA2, true,
runtime->dma_addr);
} else {
ret = snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(hw_params));
}
set_mem_block(substream, hw_params, VUL2_Control_context,
Soc_Aud_Digital_Block_MEM_VUL_DATA2);
AudDrv_Emi_Clk_On();
return ret;
}
static int mtk_capture2_pcm_hw_free(struct snd_pcm_substream *substream)
{
AudDrv_Emi_Clk_Off();
if (Capture2_dma_buf->area)
return 0;
else
return snd_pcm_lib_free_pages(substream);
}
static struct snd_pcm_hw_constraint_list constraints_sample_rates = {
.count = ARRAY_SIZE(soc_high_supported_sample_rates),
.list = soc_high_supported_sample_rates,
};
static struct snd_pcm_hw_constraint_list constraints_channels = {
.count = ARRAY_SIZE(soc_multiple_supported_channels),
.list = soc_multiple_supported_channels,
};
static int mtk_capture2_pcm_open(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
int ret = 0;
AudDrv_Clk_On();
pr_debug("%s\n", __func__);
VUL2_Control_context =
Get_Mem_ControlT(Soc_Aud_Digital_Block_MEM_VUL_DATA2);
runtime->hw = mtk_capture2_hardware;
memcpy((void *)(&(runtime->hw)), (void *)&mtk_capture2_hardware,
sizeof(struct snd_pcm_hardware));
pr_debug("runtime->hw->rates = 0x%x\n ", runtime->hw.rates);
ret = snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
&constraints_sample_rates);
ret = snd_pcm_hw_constraint_list(
runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_channels);
ret = snd_pcm_hw_constraint_integer(runtime,
SNDRV_PCM_HW_PARAM_PERIODS);
if (ret < 0) {
pr_warn("capture2_pcm_close\n");
mtk_capture2_pcm_close(substream);
return ret;
}
return 0;
}
static int mtk_capture2_pcm_close(struct snd_pcm_substream *substream)
{
pr_debug("%s\n", __func__);
if (mPrepareDone == true) {
SetMemoryPathEnable(Soc_Aud_Digital_Block_ADDA_UL2, false);
if (GetMemoryPathEnable(Soc_Aud_Digital_Block_ADDA_UL2) ==
false)
set_adc2_enable(false);
/* here to turn off digital part */
if (substream->runtime->channels > 2) {
SetIntfConnection(Soc_Aud_InterCon_DisConnect,
Soc_Aud_AFE_IO_Block_ADDA_UL,
Soc_Aud_AFE_IO_Block_MEM_VUL_DATA2);
SetIntfConnection(Soc_Aud_InterCon_DisConnect,
Soc_Aud_AFE_IO_Block_ADDA_UL2,
Soc_Aud_AFE_IO_Block_MEM_VUL);
SetMemoryPathEnable(Soc_Aud_Digital_Block_ADDA_UL,
false);
if (GetMemoryPathEnable(
Soc_Aud_Digital_Block_ADDA_UL) == false)
set_adc_enable(false);
} else {
SetIntfConnection(Soc_Aud_InterCon_DisConnect,
Soc_Aud_AFE_IO_Block_ADDA_UL2,
Soc_Aud_AFE_IO_Block_MEM_VUL_DATA2);
}
RemoveMemifSubStream(Soc_Aud_Digital_Block_MEM_VUL_DATA2,
substream);
EnableAfe(false);
mPrepareDone = false;
}
AudDrv_Clk_Off();
return 0;
}
static int mtk_capture2_alsa_start(struct snd_pcm_substream *substream)
{
pr_debug("%s\n", __func__);
/* here to set interrupt */
irq_add_user(substream,
irq_request_number(Soc_Aud_Digital_Block_MEM_VUL_DATA2),
substream->runtime->rate, substream->runtime->period_size);
SetSampleRate(Soc_Aud_Digital_Block_MEM_VUL_DATA2,
substream->runtime->rate);
SetChannels(Soc_Aud_Digital_Block_MEM_VUL_DATA2,
substream->runtime->channels);
SetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_VUL_DATA2, true);
EnableAfe(true);
return 0;
}
static int mtk_capture2_pcm_trigger(struct snd_pcm_substream *substream,
int cmd)
{
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
return mtk_capture2_alsa_start(substream);
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
return mtk_capture2_alsa_stop(substream);
}
return -EINVAL;
}
static int mtk_capture2_pcm_copy(struct snd_pcm_substream *substream,
int channel, unsigned long pos,
void __user *dst, unsigned long count)
{
return mtk_memblk_copy(substream, channel, pos, dst, count,
VUL2_Control_context,
Soc_Aud_Digital_Block_MEM_VUL_DATA2);
}
static int mtk_capture2_pcm_silence(struct snd_pcm_substream *substream,
int channel,
unsigned long pos,
unsigned long bytes)
{
pr_debug("dummy_pcm_silence\n");
return 0; /* do nothing */
}
static void *dummy_page[2];
static struct page *mtk_capture2_pcm_page(struct snd_pcm_substream *substream,
unsigned long offset)
{
return virt_to_page(dummy_page[substream->stream]); /* the same page */
}
static struct snd_pcm_ops mtk_afe_capture2_ops = {
.open = mtk_capture2_pcm_open,
.close = mtk_capture2_pcm_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = mtk_capture2_pcm_hw_params,
.hw_free = mtk_capture2_pcm_hw_free,
.prepare = mtk_capture2_pcm_prepare,
.trigger = mtk_capture2_pcm_trigger,
.pointer = mtk_capture2_pcm_pointer,
.copy_user = mtk_capture2_pcm_copy,
.fill_silence = mtk_capture2_pcm_silence,
.page = mtk_capture2_pcm_page,
};
static struct snd_soc_component_driver mtk_soc_component = {
.name = AFE_PCM_NAME,
.ops = &mtk_afe_capture2_ops,
.probe = mtk_afe_capture2_component_probe,
};
static int mtk_capture2_probe(struct platform_device *pdev)
{
pr_debug("mtk_capture2_probe\n");
pdev->dev.coherent_dma_mask = DMA_BIT_MASK(32);
if (pdev->dev.dma_mask == NULL)
pdev->dev.dma_mask = &pdev->dev.coherent_dma_mask;
if (pdev->dev.of_node)
dev_set_name(&pdev->dev, "%s", MT_SOC_UL2_PCM);
pdev->name = pdev->dev.kobj.name;
pr_debug("%s: dev name %s\n", __func__, dev_name(&pdev->dev));
return snd_soc_register_component(&pdev->dev,
&mtk_soc_component,
NULL,
0);
}
static int mtk_afe_capture2_component_probe(struct snd_soc_component *component)
{
pr_debug("mtk_afe_capture2_component_probe\n");
AudDrv_Allocate_mem_Buffer(component->dev,
Soc_Aud_Digital_Block_MEM_VUL_DATA2,
UL2_MAX_BUFFER_SIZE);
Capture2_dma_buf = Get_Mem_Buffer(Soc_Aud_Digital_Block_MEM_VUL_DATA2);
return 0;
}
static int mtk_capture2_remove(struct platform_device *pdev)
{
snd_soc_unregister_component(&pdev->dev);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id mt_soc_pcm_capture2_of_ids[] = {
{
.compatible = "mediatek,mt_soc_pcm_capture2",
},
{} };
#endif
static struct platform_driver mtk_afe_capture2_driver = {
.driver = {
.name = MT_SOC_UL2_PCM,
.owner = THIS_MODULE,
#ifdef CONFIG_OF
.of_match_table = mt_soc_pcm_capture2_of_ids,
#endif
},
.probe = mtk_capture2_probe,
.remove = mtk_capture2_remove,
};
#ifndef CONFIG_OF
static struct platform_device *soc_mtkafe_capture2_dev;
#endif
static int __init mtk_soc_capture2_platform_init(void)
{
int ret = 0;
pr_debug("%s\n", __func__);
#ifndef CONFIG_OF
soc_mtkafe_capture2_dev = platform_device_alloc(MT_SOC_UL2_PCM, -1);
if (!soc_mtkafe_capture2_dev)
return -ENOMEM;
ret = platform_device_add(soc_mtkafe_capture2_dev);
if (ret != 0) {
platform_device_put(soc_mtkafe_capture2_dev);
return ret;
}
#endif
ret = platform_driver_register(&mtk_afe_capture2_driver);
return ret;
}
module_init(mtk_soc_capture2_platform_init);
static void __exit mtk_soc_capture2_platform_exit(void)
{
platform_driver_unregister(&mtk_afe_capture2_driver);
}
module_exit(mtk_soc_capture2_platform_exit);
MODULE_DESCRIPTION("AFE Capture2 module platform driver");
MODULE_LICENSE("GPL");