kernel_samsung_a34x-permissive/sound/soc/mediatek/common_int/mtk-soc-pcm-dl1-i2s0.c

755 lines
21 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2019 MediaTek Inc.
* Author: Michael Hsiao <michael.hsiao@mediatek.com>
*/
/*******************************************************************************
*
* Filename:
* ---------
* mt_soc_pcm_i2s0.c
*
* Project:
* --------
* Audio Driver Kernel Function
*
* Description:
* ------------
* Audio i2s0 playback
*
* Author:
* -------
* Chipeng Chang
*
*------------------------------------------------------------------------------
*
*
******************************************************************************
*/
/*****************************************************************************
* C O M P I L E R F L A G S
*****************************************************************************/
/*****************************************************************************
* E X T E R N A L R E F E R E N C E S
*****************************************************************************/
#include "mtk-auddrv-afe.h"
#include "mtk-auddrv-ana.h"
#include "mtk-auddrv-clk.h"
#include "mtk-auddrv-common.h"
#include "mtk-auddrv-def.h"
#include "mtk-auddrv-kernel.h"
#include "mtk-soc-afe-control.h"
#include "mtk-soc-pcm-common.h"
#include "mtk-soc-pcm-platform.h"
#include "mtk-auddrv-gpio.h"
#include <linux/dma-mapping.h>
static struct afe_mem_control_t *pI2s0MemControl;
static struct device *mDev;
/*
* function implementation
*/
static int mtk_i2s0_probe(struct platform_device *pdev);
static int mtk_pcm_i2s0_close(struct snd_pcm_substream *substream);
static int mtk_afe_i2s0_component_probe(struct snd_soc_component *component);
int mtk_soc_always_hd;
int extcodec_echoref_control;
static int mi2s0_sidegen_control;
static int hdoutput_control;
const char *const i2s0_SIDEGEN[] = {"Off", "On8000", "On16000",
"On32000", "On44100", "On48000",
"On96000", "On192000"};
const char *const i2s0_HD_output[] = {"Off", "On"};
const char *const ExtCodec_EchoRef_Routing[] = {"Off", "MD1", "MD3", "SCP"};
static const struct soc_enum Audio_i2s0_Enum[] = {
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(i2s0_SIDEGEN), i2s0_SIDEGEN),
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(i2s0_HD_output), i2s0_HD_output),
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(ExtCodec_EchoRef_Routing),
ExtCodec_EchoRef_Routing),
};
static int Audio_i2s0_SideGen_Get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.integer.value[0] = mi2s0_sidegen_control;
return 0;
}
static int Audio_i2s0_SideGen_Set(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
bool ret = false;
static int samplerate;
unsigned int u32AudioI2sOut = 0;
unsigned int u32Audio2ndI2sIn = 0;
AudDrv_Clk_On();
if (ucontrol->value.enumerated.item[0] > ARRAY_SIZE(i2s0_SIDEGEN)) {
pr_err("return -EINVAL\n");
return -EINVAL;
}
mi2s0_sidegen_control = ucontrol->value.integer.value[0];
/* Config smart pa I2S pin */
AudDrv_GPIO_SMARTPA_Select(mi2s0_sidegen_control > 0 ? 1 : 0);
pr_debug(
"%s(), sidegen = %d, hdoutput = %d, extcodec_echoref = %d, always_hd = %d\n",
__func__, mi2s0_sidegen_control, hdoutput_control,
extcodec_echoref_control, mtk_soc_always_hd);
/* Set SmartPa i2s by platform. Return false if no platform implement,
* then use default i2s3/0.
*/
if (get_afe_platform_ops()->set_smartpa_i2s != NULL) {
ret = get_afe_platform_ops()->set_smartpa_i2s(
mi2s0_sidegen_control, hdoutput_control,
extcodec_echoref_control, mtk_soc_always_hd);
goto i2s_config_done;
}
if (mi2s0_sidegen_control) {
/* Phone call echo ref, speaker mode connection*/
switch (extcodec_echoref_control) {
case 1:
/* MD1 connection */
SetIntfConnection(
Soc_Aud_InterCon_Connection,
Soc_Aud_AFE_IO_Block_MODEM_PCM_2_I_CH1,
Soc_Aud_AFE_IO_Block_I2S3);
SetIntfConnection(
Soc_Aud_InterCon_Connection,
Soc_Aud_AFE_IO_Block_I2S0_CH1,
Soc_Aud_AFE_IO_Block_MODEM_PCM_2_O_CH4);
break;
case 2:
/* MD3 connection */
SetIntfConnection(
Soc_Aud_InterCon_Connection,
Soc_Aud_AFE_IO_Block_MODEM_PCM_1_I_CH1,
Soc_Aud_AFE_IO_Block_I2S3);
SetIntfConnection(
Soc_Aud_InterCon_Connection,
Soc_Aud_AFE_IO_Block_I2S0_CH1,
Soc_Aud_AFE_IO_Block_MODEM_PCM_1_O_CH4);
break;
case 3:
/* SCP IV data */
SetIntfConnection(Soc_Aud_InterCon_Connection,
Soc_Aud_AFE_IO_Block_I2S0,
get_usage_digital_block_io
(AUDIO_USAGE_SCP_SPK_IV_DATA));
break;
default:
break;
}
switch (mi2s0_sidegen_control) {
case 1:
samplerate = 8000;
break;
case 2:
samplerate = 16000;
break;
case 3:
samplerate = 32000;
break;
case 4:
samplerate = 44100;
break;
case 5:
samplerate = 48000;
break;
case 6:
samplerate = 96000;
break;
case 7:
samplerate = 192000;
break;
default:
pr_err("%s, sidegen_control error, return -EINVAL\n",
__func__);
return false;
}
AudDrv_Clk_On();
if (!mtk_soc_always_hd) {
EnableALLbySampleRate(samplerate);
EnableAPLLTunerbySampleRate(samplerate);
}
/* I2S0 clock-gated */
Afe_Set_Reg(AUDIO_TOP_CON1, 0x1 << 4, 0x1 << 4);
/* I2S sample rate Control */
SetSampleRate(Soc_Aud_Digital_Block_MEM_I2S,
samplerate);
/* I2S0 Input Control */
SetMemoryPathEnable(Soc_Aud_Digital_Block_I2S_IN_2,
true);
u32Audio2ndI2sIn |= (Soc_Aud_LR_SWAP_NO_SWAP << 31);
u32Audio2ndI2sIn |=
(hdoutput_control ? Soc_Aud_LOW_JITTER_CLOCK
: Soc_Aud_NORMAL_CLOCK)
<< 12;
u32Audio2ndI2sIn |=
(Soc_Aud_I2S_IN_PAD_SEL_I2S_IN_FROM_IO_MUX
<< 28);
u32Audio2ndI2sIn |= (Soc_Aud_INV_LRCK_NO_INVERSE << 5);
u32Audio2ndI2sIn |= (Soc_Aud_I2S_FORMAT_I2S << 3);
u32Audio2ndI2sIn |= (Soc_Aud_I2S_WLEN_WLEN_16BITS << 1);
Afe_Set_Reg(AFE_I2S_CON, u32Audio2ndI2sIn, MASK_ALL);
/* I2S3 clock-gated */
Afe_Set_Reg(AUDIO_TOP_CON1, 0x1 << 7, 0x1 << 7);
/* I2S3 Input Control */
SetMemoryPathEnable(Soc_Aud_Digital_Block_I2S_OUT_2, true);
u32AudioI2sOut =
SampleRateTransform(samplerate,
Soc_Aud_Digital_Block_I2S_OUT_2)
<< 8;
u32AudioI2sOut |= Soc_Aud_I2S_FORMAT_I2S
<< 3; /* us3 I2s format */
u32AudioI2sOut |= Soc_Aud_I2S_WLEN_WLEN_16BITS
<< 1; /* 16 BITS */
u32AudioI2sOut |= (hdoutput_control ? Soc_Aud_LOW_JITTER_CLOCK
: Soc_Aud_NORMAL_CLOCK)
<< 12;
Afe_Set_Reg(AFE_I2S_CON3, u32AudioI2sOut,
AFE_MASK_ALL); /* set I2S3 configuration */
/* Clear I2S0 clock-gated */
Afe_Set_Reg(AUDIO_TOP_CON1, 0 << 4, 0x1 << 4);
/* Enable I2S0 */
Set2ndI2SEnable(true);
pr_debug(
"%s(), Turn on. AFE_I2S_CON0=0x%x, AFE_DAC_CON1=0x%x",
__func__, Afe_Get_Reg(AFE_I2S_CON),
Afe_Get_Reg(AFE_DAC_CON1));
/* Clear I2S3 clock-gated */
Afe_Set_Reg(AUDIO_TOP_CON1, 0 << 7, 0x1 << 7);
/* Enable I2S3 */
Set2ndI2SOutEnable(true);
/* pr_debug("%s(), Turn on. AFE_I2S_CON3=0x%x\n", __func__,
* Afe_Get_Reg(AFE_I2S_CON3));
*/
EnableAfe(true);
} else {
if (extcodec_echoref_control > 0) {
SetIntfConnection(
Soc_Aud_InterCon_DisConnect,
Soc_Aud_AFE_IO_Block_I2S0_CH1,
Soc_Aud_AFE_IO_Block_MODEM_PCM_1_O_CH4);
SetIntfConnection(
Soc_Aud_InterCon_DisConnect,
Soc_Aud_AFE_IO_Block_I2S0_CH1,
Soc_Aud_AFE_IO_Block_MODEM_PCM_2_O_CH4);
SetIntfConnection(Soc_Aud_InterCon_DisConnect,
Soc_Aud_AFE_IO_Block_I2S0,
get_usage_digital_block_io
(AUDIO_USAGE_SCP_SPK_IV_DATA));
}
SetMemoryPathEnable(Soc_Aud_Digital_Block_I2S_IN_2,
false);
SetMemoryPathEnable(Soc_Aud_Digital_Block_I2S_OUT_2, false);
if (GetMemoryPathEnable(Soc_Aud_Digital_Block_I2S_OUT_2) ==
false) {
Set2ndI2SOutEnable(false); /* Disable I2S3 */
udelay(20);
Afe_Set_Reg(AUDIO_TOP_CON1, 0x1 << 7,
0x1 << 7); /* I2S3 clock-gated */
if (GetMemoryPathEnable(
Soc_Aud_Digital_Block_I2S_IN_2) == false) {
Set2ndI2SEnable(false); /* Disable I2S0 */
udelay(20);
Afe_Set_Reg(AUDIO_TOP_CON1, 0x1 << 4,
0x1 << 4); /* I2S0 clock-gated */
}
SetIntfConnection(
Soc_Aud_InterCon_DisConnect,
Soc_Aud_AFE_IO_Block_MODEM_PCM_2_I_CH1,
Soc_Aud_AFE_IO_Block_I2S3);
SetIntfConnection(
Soc_Aud_InterCon_DisConnect,
Soc_Aud_AFE_IO_Block_MODEM_PCM_1_I_CH1,
Soc_Aud_AFE_IO_Block_I2S3);
pr_debug(
"%s(), Turn off. AFE_I2S_CON=0x%x, AFE_I2S_CON3=0x%x\n",
__func__, Afe_Get_Reg(AFE_I2S_CON),
Afe_Get_Reg(AFE_I2S_CON3));
}
if (!mtk_soc_always_hd) {
DisableAPLLTunerbySampleRate(samplerate);
DisableALLbySampleRate(samplerate);
}
EnableAfe(false);
AudDrv_Clk_Off();
}
i2s_config_done:
AudDrv_Clk_Off();
return 0;
}
static int audio_always_hd_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
pr_debug("%s(), mtk_soc_always_hd %d\n", __func__, mtk_soc_always_hd);
ucontrol->value.integer.value[0] = mtk_soc_always_hd;
return 0;
}
static int audio_always_hd_set(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
pr_debug("%s(), mtk_soc_always_hd %d\n", __func__, mtk_soc_always_hd);
if (ucontrol->value.enumerated.item[0] > ARRAY_SIZE(i2s0_HD_output)) {
pr_err("return -EINVAL\n");
return -EINVAL;
}
mtk_soc_always_hd = ucontrol->value.integer.value[0];
return 0;
}
static int Audio_i2s0_hdoutput_Get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
pr_debug("%s(), hdoutput_control = %d\n", __func__, hdoutput_control);
ucontrol->value.integer.value[0] = hdoutput_control;
return 0;
}
static int Audio_i2s0_hdoutput_Set(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
pr_debug("+%s()\n", __func__);
if (ucontrol->value.enumerated.item[0] > ARRAY_SIZE(i2s0_HD_output)) {
pr_err("return -EINVAL\n");
return -EINVAL;
}
hdoutput_control = ucontrol->value.integer.value[0];
/*
if (hdoutput_control) {
EnableApll1(true);
EnableApll2(true);
EnableI2SDivPower(AUDIO_APLL1_DIV0, true);
EnableI2SDivPower(AUDIO_APLL2_DIV0, true);
} else {
EnableApll1(false);
EnableApll2(false);
EnableI2SDivPower(AUDIO_APLL1_DIV0, false);
EnableI2SDivPower(AUDIO_APLL2_DIV0, false);
}
*/
return 0;
}
static int Audio_i2s0_ExtCodec_EchoRef_Get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
pr_debug("%s(), extcodec_echoref_control = %d\n",
__func__,
extcodec_echoref_control);
ucontrol->value.integer.value[0] = extcodec_echoref_control;
return 0;
}
static int Audio_i2s0_ExtCodec_EchoRef_Set(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
pr_debug("%s()\n", __func__);
if (ucontrol->value.enumerated.item[0] >
ARRAY_SIZE(ExtCodec_EchoRef_Routing)) {
pr_err("return -EINVAL\n");
return -EINVAL;
}
extcodec_echoref_control = ucontrol->value.integer.value[0];
return 0;
}
static const struct snd_kcontrol_new Audio_snd_i2s0_controls[] = {
SOC_ENUM_EXT("Audio_i2s0_SideGen_Switch", Audio_i2s0_Enum[0],
Audio_i2s0_SideGen_Get, Audio_i2s0_SideGen_Set),
SOC_ENUM_EXT("Audio_i2s0_hd_Switch", Audio_i2s0_Enum[1],
Audio_i2s0_hdoutput_Get, Audio_i2s0_hdoutput_Set),
SOC_ENUM_EXT("Audio_always_hd_Switch", Audio_i2s0_Enum[1],
audio_always_hd_get, audio_always_hd_set),
SOC_ENUM_EXT("Audio_ExtCodec_EchoRef_Switch", Audio_i2s0_Enum[2],
Audio_i2s0_ExtCodec_EchoRef_Get,
Audio_i2s0_ExtCodec_EchoRef_Set),
};
static struct snd_pcm_hardware mtk_i2s0_hardware = {
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
.formats = Dl1_MAX_BUFFER_SIZE,
.rates = SOC_HIGH_USE_RATE,
.rate_min = SOC_HIGH_USE_RATE_MIN,
.rate_max = SOC_HIGH_USE_RATE_MAX,
.channels_min = SOC_NORMAL_USE_CHANNELS_MIN,
.channels_max = SOC_NORMAL_USE_CHANNELS_MAX,
.buffer_bytes_max = Dl1_MAX_BUFFER_SIZE,
.period_bytes_max = Dl1_MAX_BUFFER_SIZE,
.periods_min = SOC_NORMAL_USE_PERIODS_MIN,
.periods_max = SOC_NORMAL_USE_PERIODS_MAX,
.fifo_size = 0,
};
static int mtk_pcm_i2s0_stop(struct snd_pcm_substream *substream)
{
struct afe_block_t *Afe_Block = &(pI2s0MemControl->rBlock);
pr_debug("%s()\n", __func__);
irq_remove_user(substream,
irq_request_number(Soc_Aud_Digital_Block_MEM_DL1));
/* here start digital part */
SetIntfConnection(Soc_Aud_InterCon_DisConnect,
Soc_Aud_AFE_IO_Block_MEM_DL1,
Soc_Aud_AFE_IO_Block_I2S3);
SetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_DL1, false);
/* stop I2S */
Afe_Set_Reg(AFE_I2S_CON3, 0x0, 0x1);
EnableAfe(false);
/* clean audio hardware buffer */
memset_io(Afe_Block->pucVirtBufAddr, 0, Afe_Block->u4BufferSize);
RemoveMemifSubStream(Soc_Aud_Digital_Block_MEM_DL1, substream);
return 0;
}
static snd_pcm_uframes_t
mtk_pcm_i2s0_pointer(struct snd_pcm_substream *substream)
{
return get_mem_frame_index(substream, pI2s0MemControl,
Soc_Aud_Digital_Block_MEM_DL1);
}
static int mtk_pcm_i2s0_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
int ret = 0;
#if defined(AUD_DEBUG_LOG)
pr_debug("mtk_pcm_hw_params\n");
#endif
/* runtime->dma_bytes has to be set manually to allow mmap */
substream->runtime->dma_bytes = params_buffer_bytes(hw_params);
/* here to allcoate sram to hardware --------------------------- */
AudDrv_Allocate_mem_Buffer(mDev, Soc_Aud_Digital_Block_MEM_DL1,
substream->runtime->dma_bytes);
substream->runtime->dma_area =
(unsigned char *)Get_Afe_SramBase_Pointer();
substream->runtime->dma_addr = AFE_INTERNAL_SRAM_PHY_BASE;
SetHighAddr(Soc_Aud_Digital_Block_MEM_DL1, false,
substream->runtime->dma_addr);
AudDrv_Emi_Clk_On();
/* ------------------------------------------------------- */
#if defined(AUD_DEBUG_LOG)
pr_debug("1 dma_bytes = %zu dma_area = %p dma_addr = 0x%lx\n",
substream->runtime->dma_bytes,
substream->runtime->dma_area,
(long)substream->runtime->dma_addr);
#endif
return ret;
}
static int mtk_pcm_i2s0_hw_free(struct snd_pcm_substream *substream)
{
AudDrv_Emi_Clk_Off();
return 0;
}
static struct snd_pcm_hw_constraint_list constraints_sample_rates = {
.count = ARRAY_SIZE(soc_high_supported_sample_rates),
.list = soc_high_supported_sample_rates,
.mask = 0,
};
static unsigned int mPlaybackDramState;
static int mtk_pcm_i2s0_open(struct snd_pcm_substream *substream)
{
int ret = 0;
struct snd_pcm_runtime *runtime = substream->runtime;
AfeControlSramLock();
if (GetSramState() == SRAM_STATE_FREE) {
mtk_i2s0_hardware.buffer_bytes_max = GetPLaybackSramFullSize();
mPlaybackDramState = SRAM_STATE_PLAYBACKFULL;
SetSramState(mPlaybackDramState);
} else {
mtk_i2s0_hardware.buffer_bytes_max = GetPLaybackSramPartial();
mPlaybackDramState = SRAM_STATE_PLAYBACKPARTIAL;
SetSramState(mPlaybackDramState);
}
AfeControlSramUnLock();
runtime->hw = mtk_i2s0_hardware;
AudDrv_Clk_On();
memcpy((void *)(&(runtime->hw)), (void *)&mtk_i2s0_hardware,
sizeof(struct snd_pcm_hardware));
pI2s0MemControl = Get_Mem_ControlT(Soc_Aud_Digital_Block_MEM_DL1);
ret = snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
&constraints_sample_rates);
ret = snd_pcm_hw_constraint_integer(runtime,
SNDRV_PCM_HW_PARAM_PERIODS);
/* print for hw pcm information */
pr_debug(
"%s(), runtime rate = %d, channels = %d, substream->pcm->device = %d\n",
__func__, runtime->rate, runtime->channels, substream->pcm->device);
if (ret < 0) {
pr_err("mtk_pcm_i2s0_close\n");
mtk_pcm_i2s0_close(substream);
return ret;
}
pr_debug("%s(), return\n", __func__);
return 0;
}
static int mtk_pcm_i2s0_close(struct snd_pcm_substream *substream)
{
pr_debug("%s\n", __func__);
AfeControlSramLock();
ClearSramState(mPlaybackDramState);
mPlaybackDramState = GetSramState();
AfeControlSramUnLock();
AudDrv_Clk_Off();
return 0;
}
static int mtk_pcm_i2s0_prepare(struct snd_pcm_substream *substream)
{
return 0;
}
static int mtk_pcm_i2s0_start(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned int u32AudioI2S = 0;
SetMemifSubStream(Soc_Aud_Digital_Block_MEM_DL1, substream);
if (runtime->format == SNDRV_PCM_FORMAT_S32_LE ||
runtime->format == SNDRV_PCM_FORMAT_S32_LE) {
SetMemIfFetchFormatPerSample(
Soc_Aud_Digital_Block_MEM_DL1,
AFE_WLEN_32_BIT_ALIGN_8BIT_0_24BIT_DATA);
} else {
SetMemIfFetchFormatPerSample(Soc_Aud_Digital_Block_MEM_DL1,
AFE_WLEN_16_BIT);
}
SetConnectionFormat(OUTPUT_DATA_FORMAT_16BIT,
Soc_Aud_AFE_IO_Block_I2S3);
/* here start digital part */
SetIntfConnection(Soc_Aud_InterCon_Connection,
Soc_Aud_AFE_IO_Block_MEM_DL1,
Soc_Aud_AFE_IO_Block_I2S3);
u32AudioI2S = SampleRateTransform(runtime->rate,
Soc_Aud_Digital_Block_I2S_OUT_2)
<< 8;
u32AudioI2S |= Soc_Aud_I2S_FORMAT_I2S << 3; /* us3 I2s format */
u32AudioI2S |= Soc_Aud_I2S_WLEN_WLEN_16BITS << 1; /* 16 BITS */
if (hdoutput_control)
u32AudioI2S |= Soc_Aud_LOW_JITTER_CLOCK
<< 12; /* Low jitter mode */
Afe_Set_Reg(AFE_I2S_CON3, u32AudioI2S | 1, AFE_MASK_ALL);
SetSampleRate(Soc_Aud_Digital_Block_MEM_DL1, runtime->rate);
SetChannels(Soc_Aud_Digital_Block_MEM_DL1, runtime->channels);
SetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_DL1, true);
/* here to set interrupt */
irq_add_user(substream,
irq_request_number(Soc_Aud_Digital_Block_MEM_DL1),
substream->runtime->rate, substream->runtime->period_size);
EnableAfe(true);
return 0;
}
static int mtk_pcm_i2s0_trigger(struct snd_pcm_substream *substream, int cmd)
{
pr_debug("%s(), cmd = %d\n", __func__, cmd);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
return mtk_pcm_i2s0_start(substream);
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
return mtk_pcm_i2s0_stop(substream);
}
return -EINVAL;
}
static int mtk_pcm_i2s0_copy(struct snd_pcm_substream *substream, int channel,
unsigned long pos, void __user *dst,
unsigned long count)
{
return mtk_memblk_copy(substream, channel, pos, dst, count,
pI2s0MemControl, Soc_Aud_Digital_Block_MEM_DL1);
}
static int mtk_pcm_i2s0_silence(struct snd_pcm_substream *substream,
int channel,
unsigned long pos,
unsigned long bytes)
{
return 0; /* do nothing */
}
static void *dummy_page[2];
static struct page *mtk_i2s0_pcm_page(struct snd_pcm_substream *substream,
unsigned long offset)
{
return virt_to_page(dummy_page[substream->stream]); /* the same page */
}
static struct snd_pcm_ops mtk_i2s0_ops = {
.open = mtk_pcm_i2s0_open,
.close = mtk_pcm_i2s0_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = mtk_pcm_i2s0_hw_params,
.hw_free = mtk_pcm_i2s0_hw_free,
.prepare = mtk_pcm_i2s0_prepare,
.trigger = mtk_pcm_i2s0_trigger,
.pointer = mtk_pcm_i2s0_pointer,
.copy_user = mtk_pcm_i2s0_copy,
.fill_silence = mtk_pcm_i2s0_silence,
.page = mtk_i2s0_pcm_page,
};
static const struct snd_soc_component_driver mtk_i2s0_soc_component = {
.name = AFE_PCM_NAME,
.ops = &mtk_i2s0_ops,
.probe = mtk_afe_i2s0_component_probe,
};
static int mtk_i2s0_probe(struct platform_device *pdev)
{
pr_debug("%s\n", __func__);
pdev->dev.coherent_dma_mask = DMA_BIT_MASK(32);
if (!pdev->dev.dma_mask)
pdev->dev.dma_mask = &pdev->dev.coherent_dma_mask;
if (pdev->dev.of_node)
dev_set_name(&pdev->dev, "%s", MT_SOC_I2S0_PCM);
pdev->name = pdev->dev.kobj.name;
pr_debug("%s: dev name %s\n", __func__, dev_name(&pdev->dev));
mDev = &pdev->dev;
return snd_soc_register_component(&pdev->dev,
&mtk_i2s0_soc_component,
NULL,
0);
}
static int mtk_afe_i2s0_component_probe(struct snd_soc_component *component)
{
pr_debug("%s\n", __func__);
snd_soc_add_component_controls(component, Audio_snd_i2s0_controls,
ARRAY_SIZE(Audio_snd_i2s0_controls));
return 0;
}
static int mtk_i2s0_remove(struct platform_device *pdev)
{
snd_soc_unregister_component(&pdev->dev);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id mt_soc_pcm_dl1_i2s0_of_ids[] = {
{
.compatible = "mediatek,mt_soc_pcm_dl1_i2s0",
},
{} };
#endif
static struct platform_driver mtk_i2s0_driver = {
.driver = {
.name = MT_SOC_I2S0_PCM,
.owner = THIS_MODULE,
#ifdef CONFIG_OF
.of_match_table = mt_soc_pcm_dl1_i2s0_of_ids,
#endif
},
.probe = mtk_i2s0_probe,
.remove = mtk_i2s0_remove,
};
#ifndef CONFIG_OF
static struct platform_device *soc_mtki2s0_dev;
#endif
static int __init mtk_i2s0_soc_platform_init(void)
{
int ret;
pr_debug("%s\n", __func__);
#ifndef CONFIG_OF
soc_mtki2s0_dev = platform_device_alloc(MT_SOC_I2S0_PCM, -1);
if (!soc_mtki2s0_dev)
return -ENOMEM;
ret = platform_device_add(soc_mtki2s0_dev);
if (ret != 0) {
platform_device_put(soc_mtki2s0_dev);
return ret;
}
#endif
ret = platform_driver_register(&mtk_i2s0_driver);
return ret;
}
module_init(mtk_i2s0_soc_platform_init);
static void __exit mtk_i2s0_soc_platform_exit(void)
{
platform_driver_unregister(&mtk_i2s0_driver);
}
module_exit(mtk_i2s0_soc_platform_exit);
MODULE_DESCRIPTION("AFE PCM module platform driver");
MODULE_LICENSE("GPL");