336 lines
9.7 KiB
ArmAsm
336 lines
9.7 KiB
ArmAsm
|
/*
|
||
|
* Low-level SLB routines
|
||
|
*
|
||
|
* Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
|
||
|
*
|
||
|
* Based on earlier C version:
|
||
|
* Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
|
||
|
* Copyright (c) 2001 Dave Engebretsen
|
||
|
* Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License
|
||
|
* as published by the Free Software Foundation; either version
|
||
|
* 2 of the License, or (at your option) any later version.
|
||
|
*/
|
||
|
|
||
|
#include <asm/processor.h>
|
||
|
#include <asm/ppc_asm.h>
|
||
|
#include <asm/asm-offsets.h>
|
||
|
#include <asm/cputable.h>
|
||
|
#include <asm/page.h>
|
||
|
#include <asm/mmu.h>
|
||
|
#include <asm/pgtable.h>
|
||
|
#include <asm/firmware.h>
|
||
|
#include <asm/feature-fixups.h>
|
||
|
|
||
|
/*
|
||
|
* This macro generates asm code to compute the VSID scramble
|
||
|
* function. Used in slb_allocate() and do_stab_bolted. The function
|
||
|
* computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
|
||
|
*
|
||
|
* rt = register containing the proto-VSID and into which the
|
||
|
* VSID will be stored
|
||
|
* rx = scratch register (clobbered)
|
||
|
* rf = flags
|
||
|
*
|
||
|
* - rt and rx must be different registers
|
||
|
* - The answer will end up in the low VSID_BITS bits of rt. The higher
|
||
|
* bits may contain other garbage, so you may need to mask the
|
||
|
* result.
|
||
|
*/
|
||
|
#define ASM_VSID_SCRAMBLE(rt, rx, rf, size) \
|
||
|
lis rx,VSID_MULTIPLIER_##size@h; \
|
||
|
ori rx,rx,VSID_MULTIPLIER_##size@l; \
|
||
|
mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
|
||
|
/* \
|
||
|
* powermac get slb fault before feature fixup, so make 65 bit part \
|
||
|
* the default part of feature fixup \
|
||
|
*/ \
|
||
|
BEGIN_MMU_FTR_SECTION \
|
||
|
srdi rx,rt,VSID_BITS_65_##size; \
|
||
|
clrldi rt,rt,(64-VSID_BITS_65_##size); \
|
||
|
add rt,rt,rx; \
|
||
|
addi rx,rt,1; \
|
||
|
srdi rx,rx,VSID_BITS_65_##size; \
|
||
|
add rt,rt,rx; \
|
||
|
rldimi rf,rt,SLB_VSID_SHIFT_##size,(64 - (SLB_VSID_SHIFT_##size + VSID_BITS_65_##size)); \
|
||
|
MMU_FTR_SECTION_ELSE \
|
||
|
srdi rx,rt,VSID_BITS_##size; \
|
||
|
clrldi rt,rt,(64-VSID_BITS_##size); \
|
||
|
add rt,rt,rx; /* add high and low bits */ \
|
||
|
addi rx,rt,1; \
|
||
|
srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
|
||
|
add rt,rt,rx; \
|
||
|
rldimi rf,rt,SLB_VSID_SHIFT_##size,(64 - (SLB_VSID_SHIFT_##size + VSID_BITS_##size)); \
|
||
|
ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_68_BIT_VA)
|
||
|
|
||
|
|
||
|
/* void slb_allocate(unsigned long ea);
|
||
|
*
|
||
|
* Create an SLB entry for the given EA (user or kernel).
|
||
|
* r3 = faulting address, r13 = PACA
|
||
|
* r9, r10, r11 are clobbered by this function
|
||
|
* r3 is preserved.
|
||
|
* No other registers are examined or changed.
|
||
|
*/
|
||
|
_GLOBAL(slb_allocate)
|
||
|
/*
|
||
|
* Check if the address falls within the range of the first context, or
|
||
|
* if we may need to handle multi context. For the first context we
|
||
|
* allocate the slb entry via the fast path below. For large address we
|
||
|
* branch out to C-code and see if additional contexts have been
|
||
|
* allocated.
|
||
|
* The test here is:
|
||
|
* (ea & ~REGION_MASK) >= (1ull << MAX_EA_BITS_PER_CONTEXT)
|
||
|
*/
|
||
|
rldicr. r9,r3,4,(63 - MAX_EA_BITS_PER_CONTEXT - 4)
|
||
|
bne- 8f
|
||
|
|
||
|
srdi r9,r3,60 /* get region */
|
||
|
srdi r10,r3,SID_SHIFT /* get esid */
|
||
|
cmpldi cr7,r9,0xc /* cmp PAGE_OFFSET for later use */
|
||
|
|
||
|
/* r3 = address, r10 = esid, cr7 = <> PAGE_OFFSET */
|
||
|
blt cr7,0f /* user or kernel? */
|
||
|
|
||
|
/* Check if hitting the linear mapping or some other kernel space
|
||
|
*/
|
||
|
bne cr7,1f
|
||
|
|
||
|
/* Linear mapping encoding bits, the "li" instruction below will
|
||
|
* be patched by the kernel at boot
|
||
|
*/
|
||
|
.globl slb_miss_kernel_load_linear
|
||
|
slb_miss_kernel_load_linear:
|
||
|
li r11,0
|
||
|
/*
|
||
|
* context = (ea >> 60) - (0xc - 1)
|
||
|
* r9 = region id.
|
||
|
*/
|
||
|
subi r9,r9,KERNEL_REGION_CONTEXT_OFFSET
|
||
|
|
||
|
BEGIN_FTR_SECTION
|
||
|
b .Lslb_finish_load
|
||
|
END_MMU_FTR_SECTION_IFCLR(MMU_FTR_1T_SEGMENT)
|
||
|
b .Lslb_finish_load_1T
|
||
|
|
||
|
1:
|
||
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
||
|
cmpldi cr0,r9,0xf
|
||
|
bne 1f
|
||
|
/* Check virtual memmap region. To be patched at kernel boot */
|
||
|
.globl slb_miss_kernel_load_vmemmap
|
||
|
slb_miss_kernel_load_vmemmap:
|
||
|
li r11,0
|
||
|
b 6f
|
||
|
1:
|
||
|
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
|
||
|
|
||
|
/*
|
||
|
* r10 contains the ESID, which is the original faulting EA shifted
|
||
|
* right by 28 bits. We need to compare that with (H_VMALLOC_END >> 28)
|
||
|
* which is 0xd00038000. That can't be used as an immediate, even if we
|
||
|
* ignored the 0xd, so we have to load it into a register, and we only
|
||
|
* have one register free. So we must load all of (H_VMALLOC_END >> 28)
|
||
|
* into a register and compare ESID against that.
|
||
|
*/
|
||
|
lis r11,(H_VMALLOC_END >> 32)@h // r11 = 0xffffffffd0000000
|
||
|
ori r11,r11,(H_VMALLOC_END >> 32)@l // r11 = 0xffffffffd0003800
|
||
|
// Rotate left 4, then mask with 0xffffffff0
|
||
|
rldic r11,r11,4,28 // r11 = 0xd00038000
|
||
|
cmpld r10,r11 // if r10 >= r11
|
||
|
bge 5f // goto io_mapping
|
||
|
|
||
|
/*
|
||
|
* vmalloc mapping gets the encoding from the PACA as the mapping
|
||
|
* can be demoted from 64K -> 4K dynamically on some machines.
|
||
|
*/
|
||
|
lhz r11,PACAVMALLOCSLLP(r13)
|
||
|
b 6f
|
||
|
5:
|
||
|
/* IO mapping */
|
||
|
.globl slb_miss_kernel_load_io
|
||
|
slb_miss_kernel_load_io:
|
||
|
li r11,0
|
||
|
6:
|
||
|
/*
|
||
|
* context = (ea >> 60) - (0xc - 1)
|
||
|
* r9 = region id.
|
||
|
*/
|
||
|
subi r9,r9,KERNEL_REGION_CONTEXT_OFFSET
|
||
|
|
||
|
BEGIN_FTR_SECTION
|
||
|
b .Lslb_finish_load
|
||
|
END_MMU_FTR_SECTION_IFCLR(MMU_FTR_1T_SEGMENT)
|
||
|
b .Lslb_finish_load_1T
|
||
|
|
||
|
0: /*
|
||
|
* For userspace addresses, make sure this is region 0.
|
||
|
*/
|
||
|
cmpdi r9, 0
|
||
|
bne- 8f
|
||
|
/*
|
||
|
* user space make sure we are within the allowed limit
|
||
|
*/
|
||
|
ld r11,PACA_SLB_ADDR_LIMIT(r13)
|
||
|
cmpld r3,r11
|
||
|
bge- 8f
|
||
|
|
||
|
/* when using slices, we extract the psize off the slice bitmaps
|
||
|
* and then we need to get the sllp encoding off the mmu_psize_defs
|
||
|
* array.
|
||
|
*
|
||
|
* XXX This is a bit inefficient especially for the normal case,
|
||
|
* so we should try to implement a fast path for the standard page
|
||
|
* size using the old sllp value so we avoid the array. We cannot
|
||
|
* really do dynamic patching unfortunately as processes might flip
|
||
|
* between 4k and 64k standard page size
|
||
|
*/
|
||
|
#ifdef CONFIG_PPC_MM_SLICES
|
||
|
/* r10 have esid */
|
||
|
cmpldi r10,16
|
||
|
/* below SLICE_LOW_TOP */
|
||
|
blt 5f
|
||
|
/*
|
||
|
* Handle hpsizes,
|
||
|
* r9 is get_paca()->context.high_slices_psize[index], r11 is mask_index
|
||
|
*/
|
||
|
srdi r11,r10,(SLICE_HIGH_SHIFT - SLICE_LOW_SHIFT + 1) /* index */
|
||
|
addi r9,r11,PACAHIGHSLICEPSIZE
|
||
|
lbzx r9,r13,r9 /* r9 is hpsizes[r11] */
|
||
|
/* r11 = (r10 >> (SLICE_HIGH_SHIFT - SLICE_LOW_SHIFT)) & 0x1 */
|
||
|
rldicl r11,r10,(64 - (SLICE_HIGH_SHIFT - SLICE_LOW_SHIFT)),63
|
||
|
b 6f
|
||
|
|
||
|
5:
|
||
|
/*
|
||
|
* Handle lpsizes
|
||
|
* r9 is get_paca()->context.low_slices_psize[index], r11 is mask_index
|
||
|
*/
|
||
|
srdi r11,r10,1 /* index */
|
||
|
addi r9,r11,PACALOWSLICESPSIZE
|
||
|
lbzx r9,r13,r9 /* r9 is lpsizes[r11] */
|
||
|
rldicl r11,r10,0,63 /* r11 = r10 & 0x1 */
|
||
|
6:
|
||
|
sldi r11,r11,2 /* index * 4 */
|
||
|
/* Extract the psize and multiply to get an array offset */
|
||
|
srd r9,r9,r11
|
||
|
andi. r9,r9,0xf
|
||
|
mulli r9,r9,MMUPSIZEDEFSIZE
|
||
|
|
||
|
/* Now get to the array and obtain the sllp
|
||
|
*/
|
||
|
ld r11,PACATOC(r13)
|
||
|
ld r11,mmu_psize_defs@got(r11)
|
||
|
add r11,r11,r9
|
||
|
ld r11,MMUPSIZESLLP(r11)
|
||
|
ori r11,r11,SLB_VSID_USER
|
||
|
#else
|
||
|
/* paca context sllp already contains the SLB_VSID_USER bits */
|
||
|
lhz r11,PACACONTEXTSLLP(r13)
|
||
|
#endif /* CONFIG_PPC_MM_SLICES */
|
||
|
|
||
|
ld r9,PACACONTEXTID(r13)
|
||
|
BEGIN_FTR_SECTION
|
||
|
cmpldi r10,0x1000
|
||
|
bge .Lslb_finish_load_1T
|
||
|
END_MMU_FTR_SECTION_IFSET(MMU_FTR_1T_SEGMENT)
|
||
|
b .Lslb_finish_load
|
||
|
|
||
|
8: /* invalid EA - return an error indication */
|
||
|
crset 4*cr0+eq /* indicate failure */
|
||
|
blr
|
||
|
|
||
|
/*
|
||
|
* Finish loading of an SLB entry and return
|
||
|
*
|
||
|
* r3 = EA, r9 = context, r10 = ESID, r11 = flags, clobbers r9, cr7 = <> PAGE_OFFSET
|
||
|
*/
|
||
|
.Lslb_finish_load:
|
||
|
rldimi r10,r9,ESID_BITS,0
|
||
|
ASM_VSID_SCRAMBLE(r10,r9,r11,256M)
|
||
|
/* r3 = EA, r11 = VSID data */
|
||
|
/*
|
||
|
* Find a slot, round robin. Previously we tried to find a
|
||
|
* free slot first but that took too long. Unfortunately we
|
||
|
* dont have any LRU information to help us choose a slot.
|
||
|
*/
|
||
|
|
||
|
mr r9,r3
|
||
|
|
||
|
/* slb_finish_load_1T continues here. r9=EA with non-ESID bits clear */
|
||
|
7: ld r10,PACASTABRR(r13)
|
||
|
addi r10,r10,1
|
||
|
/* This gets soft patched on boot. */
|
||
|
.globl slb_compare_rr_to_size
|
||
|
slb_compare_rr_to_size:
|
||
|
cmpldi r10,0
|
||
|
|
||
|
blt+ 4f
|
||
|
li r10,SLB_NUM_BOLTED
|
||
|
|
||
|
4:
|
||
|
std r10,PACASTABRR(r13)
|
||
|
|
||
|
3:
|
||
|
rldimi r9,r10,0,36 /* r9 = EA[0:35] | entry */
|
||
|
oris r10,r9,SLB_ESID_V@h /* r10 = r9 | SLB_ESID_V */
|
||
|
|
||
|
/* r9 = ESID data, r11 = VSID data */
|
||
|
|
||
|
/*
|
||
|
* No need for an isync before or after this slbmte. The exception
|
||
|
* we enter with and the rfid we exit with are context synchronizing.
|
||
|
*/
|
||
|
slbmte r11,r10
|
||
|
|
||
|
/* we're done for kernel addresses */
|
||
|
crclr 4*cr0+eq /* set result to "success" */
|
||
|
bgelr cr7
|
||
|
|
||
|
/* Update the slb cache */
|
||
|
lhz r9,PACASLBCACHEPTR(r13) /* offset = paca->slb_cache_ptr */
|
||
|
cmpldi r9,SLB_CACHE_ENTRIES
|
||
|
bge 1f
|
||
|
|
||
|
/* still room in the slb cache */
|
||
|
sldi r11,r9,2 /* r11 = offset * sizeof(u32) */
|
||
|
srdi r10,r10,28 /* get the 36 bits of the ESID */
|
||
|
add r11,r11,r13 /* r11 = (u32 *)paca + offset */
|
||
|
stw r10,PACASLBCACHE(r11) /* paca->slb_cache[offset] = esid */
|
||
|
addi r9,r9,1 /* offset++ */
|
||
|
b 2f
|
||
|
1: /* offset >= SLB_CACHE_ENTRIES */
|
||
|
li r9,SLB_CACHE_ENTRIES+1
|
||
|
2:
|
||
|
sth r9,PACASLBCACHEPTR(r13) /* paca->slb_cache_ptr = offset */
|
||
|
crclr 4*cr0+eq /* set result to "success" */
|
||
|
blr
|
||
|
|
||
|
/*
|
||
|
* Finish loading of a 1T SLB entry (for the kernel linear mapping) and return.
|
||
|
*
|
||
|
* r3 = EA, r9 = context, r10 = ESID(256MB), r11 = flags, clobbers r9
|
||
|
*/
|
||
|
.Lslb_finish_load_1T:
|
||
|
srdi r10,r10,(SID_SHIFT_1T - SID_SHIFT) /* get 1T ESID */
|
||
|
rldimi r10,r9,ESID_BITS_1T,0
|
||
|
ASM_VSID_SCRAMBLE(r10,r9,r11,1T)
|
||
|
|
||
|
li r10,MMU_SEGSIZE_1T
|
||
|
rldimi r11,r10,SLB_VSID_SSIZE_SHIFT,0 /* insert segment size */
|
||
|
|
||
|
/* r3 = EA, r11 = VSID data */
|
||
|
clrrdi r9,r3,SID_SHIFT_1T /* clear out non-ESID bits */
|
||
|
b 7b
|
||
|
|
||
|
|
||
|
_ASM_NOKPROBE_SYMBOL(slb_allocate)
|
||
|
_ASM_NOKPROBE_SYMBOL(slb_miss_kernel_load_linear)
|
||
|
_ASM_NOKPROBE_SYMBOL(slb_miss_kernel_load_io)
|
||
|
_ASM_NOKPROBE_SYMBOL(slb_compare_rr_to_size)
|
||
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
||
|
_ASM_NOKPROBE_SYMBOL(slb_miss_kernel_load_vmemmap)
|
||
|
#endif
|