819 lines
20 KiB
C
819 lines
20 KiB
C
|
/*
|
||
|
* linux/arch/arm/vfp/vfpmodule.c
|
||
|
*
|
||
|
* Copyright (C) 2004 ARM Limited.
|
||
|
* Written by Deep Blue Solutions Limited.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*/
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/cpu.h>
|
||
|
#include <linux/cpu_pm.h>
|
||
|
#include <linux/hardirq.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/notifier.h>
|
||
|
#include <linux/signal.h>
|
||
|
#include <linux/sched/signal.h>
|
||
|
#include <linux/smp.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <linux/user.h>
|
||
|
#include <linux/export.h>
|
||
|
|
||
|
#include <asm/cp15.h>
|
||
|
#include <asm/cputype.h>
|
||
|
#include <asm/system_info.h>
|
||
|
#include <asm/thread_notify.h>
|
||
|
#include <asm/vfp.h>
|
||
|
|
||
|
#include "vfpinstr.h"
|
||
|
#include "vfp.h"
|
||
|
|
||
|
/*
|
||
|
* Our undef handlers (in entry.S)
|
||
|
*/
|
||
|
asmlinkage void vfp_testing_entry(void);
|
||
|
asmlinkage void vfp_support_entry(void);
|
||
|
asmlinkage void vfp_null_entry(void);
|
||
|
|
||
|
asmlinkage void (*vfp_vector)(void) = vfp_null_entry;
|
||
|
|
||
|
/*
|
||
|
* Dual-use variable.
|
||
|
* Used in startup: set to non-zero if VFP checks fail
|
||
|
* After startup, holds VFP architecture
|
||
|
*/
|
||
|
unsigned int VFP_arch;
|
||
|
|
||
|
/*
|
||
|
* The pointer to the vfpstate structure of the thread which currently
|
||
|
* owns the context held in the VFP hardware, or NULL if the hardware
|
||
|
* context is invalid.
|
||
|
*
|
||
|
* For UP, this is sufficient to tell which thread owns the VFP context.
|
||
|
* However, for SMP, we also need to check the CPU number stored in the
|
||
|
* saved state too to catch migrations.
|
||
|
*/
|
||
|
union vfp_state *vfp_current_hw_state[NR_CPUS];
|
||
|
|
||
|
/*
|
||
|
* Is 'thread's most up to date state stored in this CPUs hardware?
|
||
|
* Must be called from non-preemptible context.
|
||
|
*/
|
||
|
static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
|
||
|
{
|
||
|
#ifdef CONFIG_SMP
|
||
|
if (thread->vfpstate.hard.cpu != cpu)
|
||
|
return false;
|
||
|
#endif
|
||
|
return vfp_current_hw_state[cpu] == &thread->vfpstate;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Force a reload of the VFP context from the thread structure. We do
|
||
|
* this by ensuring that access to the VFP hardware is disabled, and
|
||
|
* clear vfp_current_hw_state. Must be called from non-preemptible context.
|
||
|
*/
|
||
|
static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
|
||
|
{
|
||
|
if (vfp_state_in_hw(cpu, thread)) {
|
||
|
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
|
||
|
vfp_current_hw_state[cpu] = NULL;
|
||
|
}
|
||
|
#ifdef CONFIG_SMP
|
||
|
thread->vfpstate.hard.cpu = NR_CPUS;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Per-thread VFP initialization.
|
||
|
*/
|
||
|
static void vfp_thread_flush(struct thread_info *thread)
|
||
|
{
|
||
|
union vfp_state *vfp = &thread->vfpstate;
|
||
|
unsigned int cpu;
|
||
|
|
||
|
/*
|
||
|
* Disable VFP to ensure we initialize it first. We must ensure
|
||
|
* that the modification of vfp_current_hw_state[] and hardware
|
||
|
* disable are done for the same CPU and without preemption.
|
||
|
*
|
||
|
* Do this first to ensure that preemption won't overwrite our
|
||
|
* state saving should access to the VFP be enabled at this point.
|
||
|
*/
|
||
|
cpu = get_cpu();
|
||
|
if (vfp_current_hw_state[cpu] == vfp)
|
||
|
vfp_current_hw_state[cpu] = NULL;
|
||
|
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
|
||
|
put_cpu();
|
||
|
|
||
|
memset(vfp, 0, sizeof(union vfp_state));
|
||
|
|
||
|
vfp->hard.fpexc = FPEXC_EN;
|
||
|
vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
|
||
|
#ifdef CONFIG_SMP
|
||
|
vfp->hard.cpu = NR_CPUS;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static void vfp_thread_exit(struct thread_info *thread)
|
||
|
{
|
||
|
/* release case: Per-thread VFP cleanup. */
|
||
|
union vfp_state *vfp = &thread->vfpstate;
|
||
|
unsigned int cpu = get_cpu();
|
||
|
|
||
|
if (vfp_current_hw_state[cpu] == vfp)
|
||
|
vfp_current_hw_state[cpu] = NULL;
|
||
|
put_cpu();
|
||
|
}
|
||
|
|
||
|
static void vfp_thread_copy(struct thread_info *thread)
|
||
|
{
|
||
|
struct thread_info *parent = current_thread_info();
|
||
|
|
||
|
vfp_sync_hwstate(parent);
|
||
|
thread->vfpstate = parent->vfpstate;
|
||
|
#ifdef CONFIG_SMP
|
||
|
thread->vfpstate.hard.cpu = NR_CPUS;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* When this function is called with the following 'cmd's, the following
|
||
|
* is true while this function is being run:
|
||
|
* THREAD_NOFTIFY_SWTICH:
|
||
|
* - the previously running thread will not be scheduled onto another CPU.
|
||
|
* - the next thread to be run (v) will not be running on another CPU.
|
||
|
* - thread->cpu is the local CPU number
|
||
|
* - not preemptible as we're called in the middle of a thread switch
|
||
|
* THREAD_NOTIFY_FLUSH:
|
||
|
* - the thread (v) will be running on the local CPU, so
|
||
|
* v === current_thread_info()
|
||
|
* - thread->cpu is the local CPU number at the time it is accessed,
|
||
|
* but may change at any time.
|
||
|
* - we could be preempted if tree preempt rcu is enabled, so
|
||
|
* it is unsafe to use thread->cpu.
|
||
|
* THREAD_NOTIFY_EXIT
|
||
|
* - we could be preempted if tree preempt rcu is enabled, so
|
||
|
* it is unsafe to use thread->cpu.
|
||
|
*/
|
||
|
static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
|
||
|
{
|
||
|
struct thread_info *thread = v;
|
||
|
u32 fpexc;
|
||
|
#ifdef CONFIG_SMP
|
||
|
unsigned int cpu;
|
||
|
#endif
|
||
|
|
||
|
switch (cmd) {
|
||
|
case THREAD_NOTIFY_SWITCH:
|
||
|
fpexc = fmrx(FPEXC);
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
cpu = thread->cpu;
|
||
|
|
||
|
/*
|
||
|
* On SMP, if VFP is enabled, save the old state in
|
||
|
* case the thread migrates to a different CPU. The
|
||
|
* restoring is done lazily.
|
||
|
*/
|
||
|
if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
|
||
|
vfp_save_state(vfp_current_hw_state[cpu], fpexc);
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Always disable VFP so we can lazily save/restore the
|
||
|
* old state.
|
||
|
*/
|
||
|
fmxr(FPEXC, fpexc & ~FPEXC_EN);
|
||
|
break;
|
||
|
|
||
|
case THREAD_NOTIFY_FLUSH:
|
||
|
vfp_thread_flush(thread);
|
||
|
break;
|
||
|
|
||
|
case THREAD_NOTIFY_EXIT:
|
||
|
vfp_thread_exit(thread);
|
||
|
break;
|
||
|
|
||
|
case THREAD_NOTIFY_COPY:
|
||
|
vfp_thread_copy(thread);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return NOTIFY_DONE;
|
||
|
}
|
||
|
|
||
|
static struct notifier_block vfp_notifier_block = {
|
||
|
.notifier_call = vfp_notifier,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Raise a SIGFPE for the current process.
|
||
|
* sicode describes the signal being raised.
|
||
|
*/
|
||
|
static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
|
||
|
{
|
||
|
siginfo_t info;
|
||
|
|
||
|
clear_siginfo(&info);
|
||
|
info.si_signo = SIGFPE;
|
||
|
info.si_code = sicode;
|
||
|
info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
|
||
|
|
||
|
/*
|
||
|
* This is the same as NWFPE, because it's not clear what
|
||
|
* this is used for
|
||
|
*/
|
||
|
current->thread.error_code = 0;
|
||
|
current->thread.trap_no = 6;
|
||
|
|
||
|
send_sig_info(SIGFPE, &info, current);
|
||
|
}
|
||
|
|
||
|
static void vfp_panic(char *reason, u32 inst)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
pr_err("VFP: Error: %s\n", reason);
|
||
|
pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
|
||
|
fmrx(FPEXC), fmrx(FPSCR), inst);
|
||
|
for (i = 0; i < 32; i += 2)
|
||
|
pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
|
||
|
i, vfp_get_float(i), i+1, vfp_get_float(i+1));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Process bitmask of exception conditions.
|
||
|
*/
|
||
|
static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
|
||
|
{
|
||
|
int si_code = 0;
|
||
|
|
||
|
pr_debug("VFP: raising exceptions %08x\n", exceptions);
|
||
|
|
||
|
if (exceptions == VFP_EXCEPTION_ERROR) {
|
||
|
vfp_panic("unhandled bounce", inst);
|
||
|
vfp_raise_sigfpe(FPE_FLTINV, regs);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If any of the status flags are set, update the FPSCR.
|
||
|
* Comparison instructions always return at least one of
|
||
|
* these flags set.
|
||
|
*/
|
||
|
if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
|
||
|
fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
|
||
|
|
||
|
fpscr |= exceptions;
|
||
|
|
||
|
fmxr(FPSCR, fpscr);
|
||
|
|
||
|
#define RAISE(stat,en,sig) \
|
||
|
if (exceptions & stat && fpscr & en) \
|
||
|
si_code = sig;
|
||
|
|
||
|
/*
|
||
|
* These are arranged in priority order, least to highest.
|
||
|
*/
|
||
|
RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
|
||
|
RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
|
||
|
RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
|
||
|
RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
|
||
|
RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
|
||
|
|
||
|
if (si_code)
|
||
|
vfp_raise_sigfpe(si_code, regs);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Emulate a VFP instruction.
|
||
|
*/
|
||
|
static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
|
||
|
{
|
||
|
u32 exceptions = VFP_EXCEPTION_ERROR;
|
||
|
|
||
|
pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
|
||
|
|
||
|
if (INST_CPRTDO(inst)) {
|
||
|
if (!INST_CPRT(inst)) {
|
||
|
/*
|
||
|
* CPDO
|
||
|
*/
|
||
|
if (vfp_single(inst)) {
|
||
|
exceptions = vfp_single_cpdo(inst, fpscr);
|
||
|
} else {
|
||
|
exceptions = vfp_double_cpdo(inst, fpscr);
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
* A CPRT instruction can not appear in FPINST2, nor
|
||
|
* can it cause an exception. Therefore, we do not
|
||
|
* have to emulate it.
|
||
|
*/
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
* A CPDT instruction can not appear in FPINST2, nor can
|
||
|
* it cause an exception. Therefore, we do not have to
|
||
|
* emulate it.
|
||
|
*/
|
||
|
}
|
||
|
return exceptions & ~VFP_NAN_FLAG;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Package up a bounce condition.
|
||
|
*/
|
||
|
void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
|
||
|
{
|
||
|
u32 fpscr, orig_fpscr, fpsid, exceptions;
|
||
|
|
||
|
pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
|
||
|
|
||
|
/*
|
||
|
* At this point, FPEXC can have the following configuration:
|
||
|
*
|
||
|
* EX DEX IXE
|
||
|
* 0 1 x - synchronous exception
|
||
|
* 1 x 0 - asynchronous exception
|
||
|
* 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
|
||
|
* 0 0 1 - synchronous on VFP9 (non-standard subarch 1
|
||
|
* implementation), undefined otherwise
|
||
|
*
|
||
|
* Clear various bits and enable access to the VFP so we can
|
||
|
* handle the bounce.
|
||
|
*/
|
||
|
fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
|
||
|
|
||
|
fpsid = fmrx(FPSID);
|
||
|
orig_fpscr = fpscr = fmrx(FPSCR);
|
||
|
|
||
|
/*
|
||
|
* Check for the special VFP subarch 1 and FPSCR.IXE bit case
|
||
|
*/
|
||
|
if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
|
||
|
&& (fpscr & FPSCR_IXE)) {
|
||
|
/*
|
||
|
* Synchronous exception, emulate the trigger instruction
|
||
|
*/
|
||
|
goto emulate;
|
||
|
}
|
||
|
|
||
|
if (fpexc & FPEXC_EX) {
|
||
|
#ifndef CONFIG_CPU_FEROCEON
|
||
|
/*
|
||
|
* Asynchronous exception. The instruction is read from FPINST
|
||
|
* and the interrupted instruction has to be restarted.
|
||
|
*/
|
||
|
trigger = fmrx(FPINST);
|
||
|
regs->ARM_pc -= 4;
|
||
|
#endif
|
||
|
} else if (!(fpexc & FPEXC_DEX)) {
|
||
|
/*
|
||
|
* Illegal combination of bits. It can be caused by an
|
||
|
* unallocated VFP instruction but with FPSCR.IXE set and not
|
||
|
* on VFP subarch 1.
|
||
|
*/
|
||
|
vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
|
||
|
goto exit;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Modify fpscr to indicate the number of iterations remaining.
|
||
|
* If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
|
||
|
* whether FPEXC.VECITR or FPSCR.LEN is used.
|
||
|
*/
|
||
|
if (fpexc & (FPEXC_EX | FPEXC_VV)) {
|
||
|
u32 len;
|
||
|
|
||
|
len = fpexc + (1 << FPEXC_LENGTH_BIT);
|
||
|
|
||
|
fpscr &= ~FPSCR_LENGTH_MASK;
|
||
|
fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Handle the first FP instruction. We used to take note of the
|
||
|
* FPEXC bounce reason, but this appears to be unreliable.
|
||
|
* Emulate the bounced instruction instead.
|
||
|
*/
|
||
|
exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
|
||
|
if (exceptions)
|
||
|
vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
|
||
|
|
||
|
/*
|
||
|
* If there isn't a second FP instruction, exit now. Note that
|
||
|
* the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
|
||
|
*/
|
||
|
if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
|
||
|
goto exit;
|
||
|
|
||
|
/*
|
||
|
* The barrier() here prevents fpinst2 being read
|
||
|
* before the condition above.
|
||
|
*/
|
||
|
barrier();
|
||
|
trigger = fmrx(FPINST2);
|
||
|
|
||
|
emulate:
|
||
|
exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
|
||
|
if (exceptions)
|
||
|
vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
|
||
|
exit:
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
static void vfp_enable(void *unused)
|
||
|
{
|
||
|
u32 access;
|
||
|
|
||
|
BUG_ON(preemptible());
|
||
|
access = get_copro_access();
|
||
|
|
||
|
/*
|
||
|
* Enable full access to VFP (cp10 and cp11)
|
||
|
*/
|
||
|
set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
|
||
|
}
|
||
|
|
||
|
/* Called by platforms on which we want to disable VFP because it may not be
|
||
|
* present on all CPUs within a SMP complex. Needs to be called prior to
|
||
|
* vfp_init().
|
||
|
*/
|
||
|
void vfp_disable(void)
|
||
|
{
|
||
|
if (VFP_arch) {
|
||
|
pr_debug("%s: should be called prior to vfp_init\n", __func__);
|
||
|
return;
|
||
|
}
|
||
|
VFP_arch = 1;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_CPU_PM
|
||
|
static int vfp_pm_suspend(void)
|
||
|
{
|
||
|
struct thread_info *ti = current_thread_info();
|
||
|
u32 fpexc = fmrx(FPEXC);
|
||
|
|
||
|
/* if vfp is on, then save state for resumption */
|
||
|
if (fpexc & FPEXC_EN) {
|
||
|
pr_debug("%s: saving vfp state\n", __func__);
|
||
|
vfp_save_state(&ti->vfpstate, fpexc);
|
||
|
|
||
|
/* disable, just in case */
|
||
|
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
|
||
|
} else if (vfp_current_hw_state[ti->cpu]) {
|
||
|
#ifndef CONFIG_SMP
|
||
|
fmxr(FPEXC, fpexc | FPEXC_EN);
|
||
|
vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
|
||
|
fmxr(FPEXC, fpexc);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/* clear any information we had about last context state */
|
||
|
vfp_current_hw_state[ti->cpu] = NULL;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void vfp_pm_resume(void)
|
||
|
{
|
||
|
/* ensure we have access to the vfp */
|
||
|
vfp_enable(NULL);
|
||
|
|
||
|
/* and disable it to ensure the next usage restores the state */
|
||
|
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
|
||
|
}
|
||
|
|
||
|
static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
|
||
|
void *v)
|
||
|
{
|
||
|
switch (cmd) {
|
||
|
case CPU_PM_ENTER:
|
||
|
vfp_pm_suspend();
|
||
|
break;
|
||
|
case CPU_PM_ENTER_FAILED:
|
||
|
case CPU_PM_EXIT:
|
||
|
vfp_pm_resume();
|
||
|
break;
|
||
|
}
|
||
|
return NOTIFY_OK;
|
||
|
}
|
||
|
|
||
|
static struct notifier_block vfp_cpu_pm_notifier_block = {
|
||
|
.notifier_call = vfp_cpu_pm_notifier,
|
||
|
};
|
||
|
|
||
|
static void vfp_pm_init(void)
|
||
|
{
|
||
|
cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
static inline void vfp_pm_init(void) { }
|
||
|
#endif /* CONFIG_CPU_PM */
|
||
|
|
||
|
/*
|
||
|
* Ensure that the VFP state stored in 'thread->vfpstate' is up to date
|
||
|
* with the hardware state.
|
||
|
*/
|
||
|
void vfp_sync_hwstate(struct thread_info *thread)
|
||
|
{
|
||
|
unsigned int cpu = get_cpu();
|
||
|
|
||
|
if (vfp_state_in_hw(cpu, thread)) {
|
||
|
u32 fpexc = fmrx(FPEXC);
|
||
|
|
||
|
/*
|
||
|
* Save the last VFP state on this CPU.
|
||
|
*/
|
||
|
fmxr(FPEXC, fpexc | FPEXC_EN);
|
||
|
vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
|
||
|
fmxr(FPEXC, fpexc);
|
||
|
}
|
||
|
|
||
|
put_cpu();
|
||
|
}
|
||
|
|
||
|
/* Ensure that the thread reloads the hardware VFP state on the next use. */
|
||
|
void vfp_flush_hwstate(struct thread_info *thread)
|
||
|
{
|
||
|
unsigned int cpu = get_cpu();
|
||
|
|
||
|
vfp_force_reload(cpu, thread);
|
||
|
|
||
|
put_cpu();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Save the current VFP state into the provided structures and prepare
|
||
|
* for entry into a new function (signal handler).
|
||
|
*/
|
||
|
int vfp_preserve_user_clear_hwstate(struct user_vfp *ufp,
|
||
|
struct user_vfp_exc *ufp_exc)
|
||
|
{
|
||
|
struct thread_info *thread = current_thread_info();
|
||
|
struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
|
||
|
|
||
|
/* Ensure that the saved hwstate is up-to-date. */
|
||
|
vfp_sync_hwstate(thread);
|
||
|
|
||
|
/*
|
||
|
* Copy the floating point registers. There can be unused
|
||
|
* registers see asm/hwcap.h for details.
|
||
|
*/
|
||
|
memcpy(&ufp->fpregs, &hwstate->fpregs, sizeof(hwstate->fpregs));
|
||
|
|
||
|
/*
|
||
|
* Copy the status and control register.
|
||
|
*/
|
||
|
ufp->fpscr = hwstate->fpscr;
|
||
|
|
||
|
/*
|
||
|
* Copy the exception registers.
|
||
|
*/
|
||
|
ufp_exc->fpexc = hwstate->fpexc;
|
||
|
ufp_exc->fpinst = hwstate->fpinst;
|
||
|
ufp_exc->fpinst2 = hwstate->fpinst2;
|
||
|
|
||
|
/* Ensure that VFP is disabled. */
|
||
|
vfp_flush_hwstate(thread);
|
||
|
|
||
|
/*
|
||
|
* As per the PCS, clear the length and stride bits for function
|
||
|
* entry.
|
||
|
*/
|
||
|
hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Sanitise and restore the current VFP state from the provided structures. */
|
||
|
int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc)
|
||
|
{
|
||
|
struct thread_info *thread = current_thread_info();
|
||
|
struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
|
||
|
unsigned long fpexc;
|
||
|
|
||
|
/* Disable VFP to avoid corrupting the new thread state. */
|
||
|
vfp_flush_hwstate(thread);
|
||
|
|
||
|
/*
|
||
|
* Copy the floating point registers. There can be unused
|
||
|
* registers see asm/hwcap.h for details.
|
||
|
*/
|
||
|
memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs));
|
||
|
/*
|
||
|
* Copy the status and control register.
|
||
|
*/
|
||
|
hwstate->fpscr = ufp->fpscr;
|
||
|
|
||
|
/*
|
||
|
* Sanitise and restore the exception registers.
|
||
|
*/
|
||
|
fpexc = ufp_exc->fpexc;
|
||
|
|
||
|
/* Ensure the VFP is enabled. */
|
||
|
fpexc |= FPEXC_EN;
|
||
|
|
||
|
/* Ensure FPINST2 is invalid and the exception flag is cleared. */
|
||
|
fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
|
||
|
hwstate->fpexc = fpexc;
|
||
|
|
||
|
hwstate->fpinst = ufp_exc->fpinst;
|
||
|
hwstate->fpinst2 = ufp_exc->fpinst2;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* VFP hardware can lose all context when a CPU goes offline.
|
||
|
* As we will be running in SMP mode with CPU hotplug, we will save the
|
||
|
* hardware state at every thread switch. We clear our held state when
|
||
|
* a CPU has been killed, indicating that the VFP hardware doesn't contain
|
||
|
* a threads VFP state. When a CPU starts up, we re-enable access to the
|
||
|
* VFP hardware. The callbacks below are called on the CPU which
|
||
|
* is being offlined/onlined.
|
||
|
*/
|
||
|
static int vfp_dying_cpu(unsigned int cpu)
|
||
|
{
|
||
|
vfp_current_hw_state[cpu] = NULL;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int vfp_starting_cpu(unsigned int unused)
|
||
|
{
|
||
|
vfp_enable(NULL);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void vfp_kmode_exception(void)
|
||
|
{
|
||
|
/*
|
||
|
* If we reach this point, a floating point exception has been raised
|
||
|
* while running in kernel mode. If the NEON/VFP unit was enabled at the
|
||
|
* time, it means a VFP instruction has been issued that requires
|
||
|
* software assistance to complete, something which is not currently
|
||
|
* supported in kernel mode.
|
||
|
* If the NEON/VFP unit was disabled, and the location pointed to below
|
||
|
* is properly preceded by a call to kernel_neon_begin(), something has
|
||
|
* caused the task to be scheduled out and back in again. In this case,
|
||
|
* rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
|
||
|
* be helpful in localizing the problem.
|
||
|
*/
|
||
|
if (fmrx(FPEXC) & FPEXC_EN)
|
||
|
pr_crit("BUG: unsupported FP instruction in kernel mode\n");
|
||
|
else
|
||
|
pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_KERNEL_MODE_NEON
|
||
|
|
||
|
/*
|
||
|
* Kernel-side NEON support functions
|
||
|
*/
|
||
|
void kernel_neon_begin(void)
|
||
|
{
|
||
|
struct thread_info *thread = current_thread_info();
|
||
|
unsigned int cpu;
|
||
|
u32 fpexc;
|
||
|
|
||
|
/*
|
||
|
* Kernel mode NEON is only allowed outside of interrupt context
|
||
|
* with preemption disabled. This will make sure that the kernel
|
||
|
* mode NEON register contents never need to be preserved.
|
||
|
*/
|
||
|
BUG_ON(in_interrupt());
|
||
|
cpu = get_cpu();
|
||
|
|
||
|
fpexc = fmrx(FPEXC) | FPEXC_EN;
|
||
|
fmxr(FPEXC, fpexc);
|
||
|
|
||
|
/*
|
||
|
* Save the userland NEON/VFP state. Under UP,
|
||
|
* the owner could be a task other than 'current'
|
||
|
*/
|
||
|
if (vfp_state_in_hw(cpu, thread))
|
||
|
vfp_save_state(&thread->vfpstate, fpexc);
|
||
|
#ifndef CONFIG_SMP
|
||
|
else if (vfp_current_hw_state[cpu] != NULL)
|
||
|
vfp_save_state(vfp_current_hw_state[cpu], fpexc);
|
||
|
#endif
|
||
|
vfp_current_hw_state[cpu] = NULL;
|
||
|
}
|
||
|
EXPORT_SYMBOL(kernel_neon_begin);
|
||
|
|
||
|
void kernel_neon_end(void)
|
||
|
{
|
||
|
/* Disable the NEON/VFP unit. */
|
||
|
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
|
||
|
put_cpu();
|
||
|
}
|
||
|
EXPORT_SYMBOL(kernel_neon_end);
|
||
|
|
||
|
#endif /* CONFIG_KERNEL_MODE_NEON */
|
||
|
|
||
|
/*
|
||
|
* VFP support code initialisation.
|
||
|
*/
|
||
|
static int __init vfp_init(void)
|
||
|
{
|
||
|
unsigned int vfpsid;
|
||
|
unsigned int cpu_arch = cpu_architecture();
|
||
|
|
||
|
/*
|
||
|
* Enable the access to the VFP on all online CPUs so the
|
||
|
* following test on FPSID will succeed.
|
||
|
*/
|
||
|
if (cpu_arch >= CPU_ARCH_ARMv6)
|
||
|
on_each_cpu(vfp_enable, NULL, 1);
|
||
|
|
||
|
/*
|
||
|
* First check that there is a VFP that we can use.
|
||
|
* The handler is already setup to just log calls, so
|
||
|
* we just need to read the VFPSID register.
|
||
|
*/
|
||
|
vfp_vector = vfp_testing_entry;
|
||
|
barrier();
|
||
|
vfpsid = fmrx(FPSID);
|
||
|
barrier();
|
||
|
vfp_vector = vfp_null_entry;
|
||
|
|
||
|
pr_info("VFP support v0.3: ");
|
||
|
if (VFP_arch) {
|
||
|
pr_cont("not present\n");
|
||
|
return 0;
|
||
|
/* Extract the architecture on CPUID scheme */
|
||
|
} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
|
||
|
VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
|
||
|
VFP_arch >>= FPSID_ARCH_BIT;
|
||
|
/*
|
||
|
* Check for the presence of the Advanced SIMD
|
||
|
* load/store instructions, integer and single
|
||
|
* precision floating point operations. Only check
|
||
|
* for NEON if the hardware has the MVFR registers.
|
||
|
*/
|
||
|
if (IS_ENABLED(CONFIG_NEON) &&
|
||
|
(fmrx(MVFR1) & 0x000fff00) == 0x00011100)
|
||
|
elf_hwcap |= HWCAP_NEON;
|
||
|
|
||
|
if (IS_ENABLED(CONFIG_VFPv3)) {
|
||
|
u32 mvfr0 = fmrx(MVFR0);
|
||
|
if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
|
||
|
((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
|
||
|
elf_hwcap |= HWCAP_VFPv3;
|
||
|
/*
|
||
|
* Check for VFPv3 D16 and VFPv4 D16. CPUs in
|
||
|
* this configuration only have 16 x 64bit
|
||
|
* registers.
|
||
|
*/
|
||
|
if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
|
||
|
/* also v4-D16 */
|
||
|
elf_hwcap |= HWCAP_VFPv3D16;
|
||
|
else
|
||
|
elf_hwcap |= HWCAP_VFPD32;
|
||
|
}
|
||
|
|
||
|
if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
|
||
|
elf_hwcap |= HWCAP_VFPv4;
|
||
|
}
|
||
|
/* Extract the architecture version on pre-cpuid scheme */
|
||
|
} else {
|
||
|
if (vfpsid & FPSID_NODOUBLE) {
|
||
|
pr_cont("no double precision support\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
|
||
|
}
|
||
|
|
||
|
cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING,
|
||
|
"arm/vfp:starting", vfp_starting_cpu,
|
||
|
vfp_dying_cpu);
|
||
|
|
||
|
vfp_vector = vfp_support_entry;
|
||
|
|
||
|
thread_register_notifier(&vfp_notifier_block);
|
||
|
vfp_pm_init();
|
||
|
|
||
|
/*
|
||
|
* We detected VFP, and the support code is
|
||
|
* in place; report VFP support to userspace.
|
||
|
*/
|
||
|
elf_hwcap |= HWCAP_VFP;
|
||
|
|
||
|
pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
|
||
|
(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
|
||
|
VFP_arch,
|
||
|
(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
|
||
|
(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
|
||
|
(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
core_initcall(vfp_init);
|