kernel_samsung_a34x-permissive/arch/mips/include/asm/mips-cm.h

464 lines
16 KiB
C
Raw Normal View History

/*
* Copyright (C) 2013 Imagination Technologies
* Author: Paul Burton <paul.burton@mips.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#ifndef __MIPS_ASM_MIPS_CPS_H__
# error Please include asm/mips-cps.h rather than asm/mips-cm.h
#endif
#ifndef __MIPS_ASM_MIPS_CM_H__
#define __MIPS_ASM_MIPS_CM_H__
#include <linux/bitops.h>
#include <linux/errno.h>
/* The base address of the CM GCR block */
extern void __iomem *mips_gcr_base;
/* The base address of the CM L2-only sync region */
extern void __iomem *mips_cm_l2sync_base;
/**
* __mips_cm_phys_base - retrieve the physical base address of the CM
*
* This function returns the physical base address of the Coherence Manager
* global control block, or 0 if no Coherence Manager is present. It provides
* a default implementation which reads the CMGCRBase register where available,
* and may be overridden by platforms which determine this address in a
* different way by defining a function with the same prototype except for the
* name mips_cm_phys_base (without underscores).
*/
extern phys_addr_t __mips_cm_phys_base(void);
/*
* mips_cm_is64 - determine CM register width
*
* The CM register width is determined by the version of the CM, with CM3
* introducing 64 bit GCRs and all prior CM versions having 32 bit GCRs.
* However we may run a kernel built for MIPS32 on a system with 64 bit GCRs,
* or vice-versa. This variable indicates the width of the memory accesses
* that the kernel will perform to GCRs, which may differ from the actual
* width of the GCRs.
*
* It's set to 0 for 32-bit accesses and 1 for 64-bit accesses.
*/
extern int mips_cm_is64;
/**
* mips_cm_error_report - Report CM cache errors
*/
#ifdef CONFIG_MIPS_CM
extern void mips_cm_error_report(void);
#else
static inline void mips_cm_error_report(void) {}
#endif
/**
* mips_cm_probe - probe for a Coherence Manager
*
* Attempt to detect the presence of a Coherence Manager. Returns 0 if a CM
* is successfully detected, else -errno.
*/
#ifdef CONFIG_MIPS_CM
extern int mips_cm_probe(void);
#else
static inline int mips_cm_probe(void)
{
return -ENODEV;
}
#endif
/**
* mips_cm_present - determine whether a Coherence Manager is present
*
* Returns true if a CM is present in the system, else false.
*/
static inline bool mips_cm_present(void)
{
#ifdef CONFIG_MIPS_CM
return mips_gcr_base != NULL;
#else
return false;
#endif
}
/**
* mips_cm_has_l2sync - determine whether an L2-only sync region is present
*
* Returns true if the system implements an L2-only sync region, else false.
*/
static inline bool mips_cm_has_l2sync(void)
{
#ifdef CONFIG_MIPS_CM
return mips_cm_l2sync_base != NULL;
#else
return false;
#endif
}
/* Offsets to register blocks from the CM base address */
#define MIPS_CM_GCB_OFS 0x0000 /* Global Control Block */
#define MIPS_CM_CLCB_OFS 0x2000 /* Core Local Control Block */
#define MIPS_CM_COCB_OFS 0x4000 /* Core Other Control Block */
#define MIPS_CM_GDB_OFS 0x6000 /* Global Debug Block */
/* Total size of the CM memory mapped registers */
#define MIPS_CM_GCR_SIZE 0x8000
/* Size of the L2-only sync region */
#define MIPS_CM_L2SYNC_SIZE 0x1000
#define GCR_ACCESSOR_RO(sz, off, name) \
CPS_ACCESSOR_RO(gcr, sz, MIPS_CM_GCB_OFS + off, name) \
CPS_ACCESSOR_RO(gcr, sz, MIPS_CM_COCB_OFS + off, redir_##name)
#define GCR_ACCESSOR_RW(sz, off, name) \
CPS_ACCESSOR_RW(gcr, sz, MIPS_CM_GCB_OFS + off, name) \
CPS_ACCESSOR_RW(gcr, sz, MIPS_CM_COCB_OFS + off, redir_##name)
#define GCR_CX_ACCESSOR_RO(sz, off, name) \
CPS_ACCESSOR_RO(gcr, sz, MIPS_CM_CLCB_OFS + off, cl_##name) \
CPS_ACCESSOR_RO(gcr, sz, MIPS_CM_COCB_OFS + off, co_##name)
#define GCR_CX_ACCESSOR_RW(sz, off, name) \
CPS_ACCESSOR_RW(gcr, sz, MIPS_CM_CLCB_OFS + off, cl_##name) \
CPS_ACCESSOR_RW(gcr, sz, MIPS_CM_COCB_OFS + off, co_##name)
/* GCR_CONFIG - Information about the system */
GCR_ACCESSOR_RO(64, 0x000, config)
#define CM_GCR_CONFIG_CLUSTER_COH_CAPABLE BIT_ULL(43)
#define CM_GCR_CONFIG_CLUSTER_ID GENMASK_ULL(39, 32)
#define CM_GCR_CONFIG_NUM_CLUSTERS GENMASK(29, 23)
#define CM_GCR_CONFIG_NUMIOCU GENMASK(15, 8)
#define CM_GCR_CONFIG_PCORES GENMASK(7, 0)
/* GCR_BASE - Base address of the Global Configuration Registers (GCRs) */
GCR_ACCESSOR_RW(64, 0x008, base)
#define CM_GCR_BASE_GCRBASE GENMASK_ULL(47, 15)
#define CM_GCR_BASE_CMDEFTGT GENMASK(1, 0)
#define CM_GCR_BASE_CMDEFTGT_MEM 0
#define CM_GCR_BASE_CMDEFTGT_RESERVED 1
#define CM_GCR_BASE_CMDEFTGT_IOCU0 2
#define CM_GCR_BASE_CMDEFTGT_IOCU1 3
/* GCR_ACCESS - Controls core/IOCU access to GCRs */
GCR_ACCESSOR_RW(32, 0x020, access)
#define CM_GCR_ACCESS_ACCESSEN GENMASK(7, 0)
/* GCR_REV - Indicates the Coherence Manager revision */
GCR_ACCESSOR_RO(32, 0x030, rev)
#define CM_GCR_REV_MAJOR GENMASK(15, 8)
#define CM_GCR_REV_MINOR GENMASK(7, 0)
#define CM_ENCODE_REV(major, minor) \
(((major) << __ffs(CM_GCR_REV_MAJOR)) | \
((minor) << __ffs(CM_GCR_REV_MINOR)))
#define CM_REV_CM2 CM_ENCODE_REV(6, 0)
#define CM_REV_CM2_5 CM_ENCODE_REV(7, 0)
#define CM_REV_CM3 CM_ENCODE_REV(8, 0)
#define CM_REV_CM3_5 CM_ENCODE_REV(9, 0)
/* GCR_ERR_CONTROL - Control error checking logic */
GCR_ACCESSOR_RW(32, 0x038, err_control)
#define CM_GCR_ERR_CONTROL_L2_ECC_EN BIT(1)
#define CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT BIT(0)
/* GCR_ERR_MASK - Control which errors are reported as interrupts */
GCR_ACCESSOR_RW(64, 0x040, error_mask)
/* GCR_ERR_CAUSE - Indicates the type of error that occurred */
GCR_ACCESSOR_RW(64, 0x048, error_cause)
#define CM_GCR_ERROR_CAUSE_ERRTYPE GENMASK(31, 27)
#define CM3_GCR_ERROR_CAUSE_ERRTYPE GENMASK_ULL(63, 58)
#define CM_GCR_ERROR_CAUSE_ERRINFO GENMASK(26, 0)
/* GCR_ERR_ADDR - Indicates the address associated with an error */
GCR_ACCESSOR_RW(64, 0x050, error_addr)
/* GCR_ERR_MULT - Indicates when multiple errors have occurred */
GCR_ACCESSOR_RW(64, 0x058, error_mult)
#define CM_GCR_ERROR_MULT_ERR2ND GENMASK(4, 0)
/* GCR_L2_ONLY_SYNC_BASE - Base address of the L2 cache-only sync region */
GCR_ACCESSOR_RW(64, 0x070, l2_only_sync_base)
#define CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE GENMASK(31, 12)
#define CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN BIT(0)
/* GCR_GIC_BASE - Base address of the Global Interrupt Controller (GIC) */
GCR_ACCESSOR_RW(64, 0x080, gic_base)
#define CM_GCR_GIC_BASE_GICBASE GENMASK(31, 17)
#define CM_GCR_GIC_BASE_GICEN BIT(0)
/* GCR_CPC_BASE - Base address of the Cluster Power Controller (CPC) */
GCR_ACCESSOR_RW(64, 0x088, cpc_base)
#define CM_GCR_CPC_BASE_CPCBASE GENMASK(31, 15)
#define CM_GCR_CPC_BASE_CPCEN BIT(0)
/* GCR_REGn_BASE - Base addresses of CM address regions */
GCR_ACCESSOR_RW(64, 0x090, reg0_base)
GCR_ACCESSOR_RW(64, 0x0a0, reg1_base)
GCR_ACCESSOR_RW(64, 0x0b0, reg2_base)
GCR_ACCESSOR_RW(64, 0x0c0, reg3_base)
#define CM_GCR_REGn_BASE_BASEADDR GENMASK(31, 16)
/* GCR_REGn_MASK - Size & destination of CM address regions */
GCR_ACCESSOR_RW(64, 0x098, reg0_mask)
GCR_ACCESSOR_RW(64, 0x0a8, reg1_mask)
GCR_ACCESSOR_RW(64, 0x0b8, reg2_mask)
GCR_ACCESSOR_RW(64, 0x0c8, reg3_mask)
#define CM_GCR_REGn_MASK_ADDRMASK GENMASK(31, 16)
#define CM_GCR_REGn_MASK_CCAOVR GENMASK(7, 5)
#define CM_GCR_REGn_MASK_CCAOVREN BIT(4)
#define CM_GCR_REGn_MASK_DROPL2 BIT(2)
#define CM_GCR_REGn_MASK_CMTGT GENMASK(1, 0)
#define CM_GCR_REGn_MASK_CMTGT_DISABLED 0x0
#define CM_GCR_REGn_MASK_CMTGT_MEM 0x1
#define CM_GCR_REGn_MASK_CMTGT_IOCU0 0x2
#define CM_GCR_REGn_MASK_CMTGT_IOCU1 0x3
/* GCR_GIC_STATUS - Indicates presence of a Global Interrupt Controller (GIC) */
GCR_ACCESSOR_RO(32, 0x0d0, gic_status)
#define CM_GCR_GIC_STATUS_EX BIT(0)
/* GCR_CPC_STATUS - Indicates presence of a Cluster Power Controller (CPC) */
GCR_ACCESSOR_RO(32, 0x0f0, cpc_status)
#define CM_GCR_CPC_STATUS_EX BIT(0)
/* GCR_L2_CONFIG - Indicates L2 cache configuration when Config5.L2C=1 */
GCR_ACCESSOR_RW(32, 0x130, l2_config)
#define CM_GCR_L2_CONFIG_BYPASS BIT(20)
#define CM_GCR_L2_CONFIG_SET_SIZE GENMASK(15, 12)
#define CM_GCR_L2_CONFIG_LINE_SIZE GENMASK(11, 8)
#define CM_GCR_L2_CONFIG_ASSOC GENMASK(7, 0)
/* GCR_SYS_CONFIG2 - Further information about the system */
GCR_ACCESSOR_RO(32, 0x150, sys_config2)
#define CM_GCR_SYS_CONFIG2_MAXVPW GENMASK(3, 0)
/* GCR_L2_PFT_CONTROL - Controls hardware L2 prefetching */
GCR_ACCESSOR_RW(32, 0x300, l2_pft_control)
#define CM_GCR_L2_PFT_CONTROL_PAGEMASK GENMASK(31, 12)
#define CM_GCR_L2_PFT_CONTROL_PFTEN BIT(8)
#define CM_GCR_L2_PFT_CONTROL_NPFT GENMASK(7, 0)
/* GCR_L2_PFT_CONTROL_B - Controls hardware L2 prefetching */
GCR_ACCESSOR_RW(32, 0x308, l2_pft_control_b)
#define CM_GCR_L2_PFT_CONTROL_B_CEN BIT(8)
#define CM_GCR_L2_PFT_CONTROL_B_PORTID GENMASK(7, 0)
/* GCR_L2SM_COP - L2 cache op state machine control */
GCR_ACCESSOR_RW(32, 0x620, l2sm_cop)
#define CM_GCR_L2SM_COP_PRESENT BIT(31)
#define CM_GCR_L2SM_COP_RESULT GENMASK(8, 6)
#define CM_GCR_L2SM_COP_RESULT_DONTCARE 0
#define CM_GCR_L2SM_COP_RESULT_DONE_OK 1
#define CM_GCR_L2SM_COP_RESULT_DONE_ERROR 2
#define CM_GCR_L2SM_COP_RESULT_ABORT_OK 3
#define CM_GCR_L2SM_COP_RESULT_ABORT_ERROR 4
#define CM_GCR_L2SM_COP_RUNNING BIT(5)
#define CM_GCR_L2SM_COP_TYPE GENMASK(4, 2)
#define CM_GCR_L2SM_COP_TYPE_IDX_WBINV 0
#define CM_GCR_L2SM_COP_TYPE_IDX_STORETAG 1
#define CM_GCR_L2SM_COP_TYPE_IDX_STORETAGDATA 2
#define CM_GCR_L2SM_COP_TYPE_HIT_INV 4
#define CM_GCR_L2SM_COP_TYPE_HIT_WBINV 5
#define CM_GCR_L2SM_COP_TYPE_HIT_WB 6
#define CM_GCR_L2SM_COP_TYPE_FETCHLOCK 7
#define CM_GCR_L2SM_COP_CMD GENMASK(1, 0)
#define CM_GCR_L2SM_COP_CMD_START 1 /* only when idle */
#define CM_GCR_L2SM_COP_CMD_ABORT 3 /* only when running */
/* GCR_L2SM_TAG_ADDR_COP - L2 cache op state machine address control */
GCR_ACCESSOR_RW(64, 0x628, l2sm_tag_addr_cop)
#define CM_GCR_L2SM_TAG_ADDR_COP_NUM_LINES GENMASK_ULL(63, 48)
#define CM_GCR_L2SM_TAG_ADDR_COP_START_TAG GENMASK_ULL(47, 6)
/* GCR_BEV_BASE - Controls the location of the BEV for powered up cores */
GCR_ACCESSOR_RW(64, 0x680, bev_base)
/* GCR_Cx_RESET_RELEASE - Controls core reset for CM 1.x */
GCR_CX_ACCESSOR_RW(32, 0x000, reset_release)
/* GCR_Cx_COHERENCE - Controls core coherence */
GCR_CX_ACCESSOR_RW(32, 0x008, coherence)
#define CM_GCR_Cx_COHERENCE_COHDOMAINEN GENMASK(7, 0)
#define CM3_GCR_Cx_COHERENCE_COHEN BIT(0)
/* GCR_Cx_CONFIG - Information about a core's configuration */
GCR_CX_ACCESSOR_RO(32, 0x010, config)
#define CM_GCR_Cx_CONFIG_IOCUTYPE GENMASK(11, 10)
#define CM_GCR_Cx_CONFIG_PVPE GENMASK(9, 0)
/* GCR_Cx_OTHER - Configure the core-other/redirect GCR block */
GCR_CX_ACCESSOR_RW(32, 0x018, other)
#define CM_GCR_Cx_OTHER_CORENUM GENMASK(31, 16) /* CM < 3 */
#define CM_GCR_Cx_OTHER_CLUSTER_EN BIT(31) /* CM >= 3.5 */
#define CM_GCR_Cx_OTHER_GIC_EN BIT(30) /* CM >= 3.5 */
#define CM_GCR_Cx_OTHER_BLOCK GENMASK(25, 24) /* CM >= 3.5 */
#define CM_GCR_Cx_OTHER_BLOCK_LOCAL 0
#define CM_GCR_Cx_OTHER_BLOCK_GLOBAL 1
#define CM_GCR_Cx_OTHER_BLOCK_USER 2
#define CM_GCR_Cx_OTHER_BLOCK_GLOBAL_HIGH 3
#define CM_GCR_Cx_OTHER_CLUSTER GENMASK(21, 16) /* CM >= 3.5 */
#define CM3_GCR_Cx_OTHER_CORE GENMASK(13, 8) /* CM >= 3 */
#define CM_GCR_Cx_OTHER_CORE_CM 32
#define CM3_GCR_Cx_OTHER_VP GENMASK(2, 0) /* CM >= 3 */
/* GCR_Cx_RESET_BASE - Configure where powered up cores will fetch from */
GCR_CX_ACCESSOR_RW(32, 0x020, reset_base)
#define CM_GCR_Cx_RESET_BASE_BEVEXCBASE GENMASK(31, 12)
/* GCR_Cx_ID - Identify the current core */
GCR_CX_ACCESSOR_RO(32, 0x028, id)
#define CM_GCR_Cx_ID_CLUSTER GENMASK(15, 8)
#define CM_GCR_Cx_ID_CORE GENMASK(7, 0)
/* GCR_Cx_RESET_EXT_BASE - Configure behaviour when cores reset or power up */
GCR_CX_ACCESSOR_RW(32, 0x030, reset_ext_base)
#define CM_GCR_Cx_RESET_EXT_BASE_EVARESET BIT(31)
#define CM_GCR_Cx_RESET_EXT_BASE_UEB BIT(30)
#define CM_GCR_Cx_RESET_EXT_BASE_BEVEXCMASK GENMASK(27, 20)
#define CM_GCR_Cx_RESET_EXT_BASE_BEVEXCPA GENMASK(7, 1)
#define CM_GCR_Cx_RESET_EXT_BASE_PRESENT BIT(0)
/**
* mips_cm_l2sync - perform an L2-only sync operation
*
* If an L2-only sync region is present in the system then this function
* performs and L2-only sync and returns zero. Otherwise it returns -ENODEV.
*/
static inline int mips_cm_l2sync(void)
{
if (!mips_cm_has_l2sync())
return -ENODEV;
writel(0, mips_cm_l2sync_base);
return 0;
}
/**
* mips_cm_revision() - return CM revision
*
* Return: The revision of the CM, from GCR_REV, or 0 if no CM is present. The
* return value should be checked against the CM_REV_* macros.
*/
static inline int mips_cm_revision(void)
{
if (!mips_cm_present())
return 0;
return read_gcr_rev();
}
/**
* mips_cm_max_vp_width() - return the width in bits of VP indices
*
* Return: the width, in bits, of VP indices in fields that combine core & VP
* indices.
*/
static inline unsigned int mips_cm_max_vp_width(void)
{
extern int smp_num_siblings;
uint32_t cfg;
if (mips_cm_revision() >= CM_REV_CM3)
return read_gcr_sys_config2() & CM_GCR_SYS_CONFIG2_MAXVPW;
if (mips_cm_present()) {
/*
* We presume that all cores in the system will have the same
* number of VP(E)s, and if that ever changes then this will
* need revisiting.
*/
cfg = read_gcr_cl_config() & CM_GCR_Cx_CONFIG_PVPE;
return (cfg >> __ffs(CM_GCR_Cx_CONFIG_PVPE)) + 1;
}
if (IS_ENABLED(CONFIG_SMP))
return smp_num_siblings;
return 1;
}
/**
* mips_cm_vp_id() - calculate the hardware VP ID for a CPU
* @cpu: the CPU whose VP ID to calculate
*
* Hardware such as the GIC uses identifiers for VPs which may not match the
* CPU numbers used by Linux. This function calculates the hardware VP
* identifier corresponding to a given CPU.
*
* Return: the VP ID for the CPU.
*/
static inline unsigned int mips_cm_vp_id(unsigned int cpu)
{
unsigned int core = cpu_core(&cpu_data[cpu]);
unsigned int vp = cpu_vpe_id(&cpu_data[cpu]);
return (core * mips_cm_max_vp_width()) + vp;
}
#ifdef CONFIG_MIPS_CM
/**
* mips_cm_lock_other - lock access to redirect/other region
* @cluster: the other cluster to be accessed
* @core: the other core to be accessed
* @vp: the VP within the other core to be accessed
* @block: the register block to be accessed
*
* Configure the redirect/other region for the local core/VP (depending upon
* the CM revision) to target the specified @cluster, @core, @vp & register
* @block. Must be called before using the redirect/other region, and followed
* by a call to mips_cm_unlock_other() when access to the redirect/other region
* is complete.
*
* This function acquires a spinlock such that code between it &
* mips_cm_unlock_other() calls cannot be pre-empted by anything which may
* reconfigure the redirect/other region, and cannot be interfered with by
* another VP in the core. As such calls to this function should not be nested.
*/
extern void mips_cm_lock_other(unsigned int cluster, unsigned int core,
unsigned int vp, unsigned int block);
/**
* mips_cm_unlock_other - unlock access to redirect/other region
*
* Must be called after mips_cm_lock_other() once all required access to the
* redirect/other region has been completed.
*/
extern void mips_cm_unlock_other(void);
#else /* !CONFIG_MIPS_CM */
static inline void mips_cm_lock_other(unsigned int cluster, unsigned int core,
unsigned int vp, unsigned int block) { }
static inline void mips_cm_unlock_other(void) { }
#endif /* !CONFIG_MIPS_CM */
/**
* mips_cm_lock_other_cpu - lock access to redirect/other region
* @cpu: the other CPU whose register we want to access
*
* Configure the redirect/other region for the local core/VP (depending upon
* the CM revision) to target the specified @cpu & register @block. This is
* equivalent to calling mips_cm_lock_other() but accepts a Linux CPU number
* for convenience.
*/
static inline void mips_cm_lock_other_cpu(unsigned int cpu, unsigned int block)
{
struct cpuinfo_mips *d = &cpu_data[cpu];
mips_cm_lock_other(cpu_cluster(d), cpu_core(d), cpu_vpe_id(d), block);
}
#endif /* __MIPS_ASM_MIPS_CM_H__ */