kernel_samsung_a34x-permissive/include/linux/dma-mapping.h

967 lines
29 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_DMA_MAPPING_H
#define _LINUX_DMA_MAPPING_H
#include <linux/sizes.h>
#include <linux/string.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/dma-debug.h>
#include <linux/dma-direction.h>
#include <linux/scatterlist.h>
#include <linux/bug.h>
#include <linux/mem_encrypt.h>
#include <linux/android_kabi.h>
/**
* List of possible attributes associated with a DMA mapping. The semantics
* of each attribute should be defined in Documentation/DMA-attributes.txt.
*
* DMA_ATTR_WRITE_BARRIER: DMA to a memory region with this attribute
* forces all pending DMA writes to complete.
*/
#define DMA_ATTR_WRITE_BARRIER (1UL << 0)
/*
* DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping
* may be weakly ordered, that is that reads and writes may pass each other.
*/
#define DMA_ATTR_WEAK_ORDERING (1UL << 1)
/*
* DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be
* buffered to improve performance.
*/
#define DMA_ATTR_WRITE_COMBINE (1UL << 2)
/*
* DMA_ATTR_NON_CONSISTENT: Lets the platform to choose to return either
* consistent or non-consistent memory as it sees fit.
*/
#define DMA_ATTR_NON_CONSISTENT (1UL << 3)
/*
* DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel
* virtual mapping for the allocated buffer.
*/
#define DMA_ATTR_NO_KERNEL_MAPPING (1UL << 4)
/*
* DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of
* the CPU cache for the given buffer assuming that it has been already
* transferred to 'device' domain.
*/
#define DMA_ATTR_SKIP_CPU_SYNC (1UL << 5)
/*
* DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer
* in physical memory.
*/
#define DMA_ATTR_FORCE_CONTIGUOUS (1UL << 6)
/*
* DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem
* that it's probably not worth the time to try to allocate memory to in a way
* that gives better TLB efficiency.
*/
#define DMA_ATTR_ALLOC_SINGLE_PAGES (1UL << 7)
/*
* DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress
* allocation failure reports (similarly to __GFP_NOWARN).
*/
#define DMA_ATTR_NO_WARN (1UL << 8)
/*
* DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully
* accessible at an elevated privilege level (and ideally inaccessible or
* at least read-only at lesser-privileged levels).
*/
#define DMA_ATTR_PRIVILEGED (1UL << 9)
/*
* DMA_ATTR_STRONGLY_ORDERED: Specifies that accesses to the mapping must
* not be buffered, reordered, merged with other accesses, or unaligned.
* No speculative access may occur in this mapping.
*/
#define DMA_ATTR_STRONGLY_ORDERED (1UL << 10)
/*
* DMA_ATTR_SKIP_ZEROING: Do not zero mapping.
*/
#define DMA_ATTR_SKIP_ZEROING (1UL << 11)
/*
* DMA_ATTR_NO_DELAYED_UNMAP: Used by msm specific lazy mapping to indicate
* that the mapping can be freed on unmap, rather than when the ion_buffer
* is freed.
*/
#define DMA_ATTR_NO_DELAYED_UNMAP (1UL << 12)
/*
* DMA_ATTR_EXEC_MAPPING: The mapping has executable permissions.
*/
#define DMA_ATTR_EXEC_MAPPING (1UL << 13)
/*
* DMA_ATTR_IOMMU_USE_UPSTREAM_HINT: Normally an smmu will override any bus
* attributes (i.e cacheablilty) provided by the client device. Some hardware
* may be designed to use the original attributes instead.
*/
#define DMA_ATTR_IOMMU_USE_UPSTREAM_HINT (1UL << 14)
/*
* When passed to a DMA map call the DMA_ATTR_FORCE_COHERENT DMA
* attribute can be used to force a buffer to be mapped as IO coherent.
*/
#define DMA_ATTR_FORCE_COHERENT (1UL << 15)
/*
* When passed to a DMA map call the DMA_ATTR_FORCE_NON_COHERENT DMA
* attribute can be used to force a buffer to not be mapped as IO
* coherent.
*/
#define DMA_ATTR_FORCE_NON_COHERENT (1UL << 16)
/*
* DMA_ATTR_DELAYED_UNMAP: Used by ION, it will ensure that mappings are not
* removed on unmap but instead are removed when the ion_buffer is freed.
*/
#define DMA_ATTR_DELAYED_UNMAP (1UL << 17)
/*
* DMA_ATTR_IOMMU_USE_LLC_NWA: Overrides the bus attributes to use the System
* Cache(LLC) with allocation policy as Inner Non-Cacheable, Outer Cacheable:
* Write-Back, Read-Allocate, No Write-Allocate policy.
*/
#define DMA_ATTR_IOMMU_USE_LLC_NWA (1UL << 18)
#define DMA_ERROR_CODE (~(dma_addr_t)0)
/*
* A dma_addr_t can hold any valid DMA or bus address for the platform.
* It can be given to a device to use as a DMA source or target. A CPU cannot
* reference a dma_addr_t directly because there may be translation between
* its physical address space and the bus address space.
*/
struct dma_map_ops {
void* (*alloc)(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp,
unsigned long attrs);
void (*free)(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle,
unsigned long attrs);
int (*mmap)(struct device *, struct vm_area_struct *,
void *, dma_addr_t, size_t,
unsigned long attrs);
int (*get_sgtable)(struct device *dev, struct sg_table *sgt, void *,
dma_addr_t, size_t, unsigned long attrs);
dma_addr_t (*map_page)(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
unsigned long attrs);
void (*unmap_page)(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction dir,
unsigned long attrs);
/*
* map_sg returns 0 on error and a value > 0 on success.
* It should never return a value < 0.
*/
int (*map_sg)(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir,
unsigned long attrs);
void (*unmap_sg)(struct device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction dir,
unsigned long attrs);
dma_addr_t (*map_resource)(struct device *dev, phys_addr_t phys_addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs);
void (*unmap_resource)(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction dir,
unsigned long attrs);
void (*sync_single_for_cpu)(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction dir);
void (*sync_single_for_device)(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction dir);
void (*sync_sg_for_cpu)(struct device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction dir);
void (*sync_sg_for_device)(struct device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction dir);
void (*cache_sync)(struct device *dev, void *vaddr, size_t size,
enum dma_data_direction direction);
int (*mapping_error)(struct device *dev, dma_addr_t dma_addr);
int (*dma_supported)(struct device *dev, u64 mask);
int (*set_dma_mask)(struct device *dev, u64 mask);
void *(*remap)(struct device *dev, void *cpu_addr, dma_addr_t handle,
size_t size, unsigned long attrs);
void (*unremap)(struct device *dev, void *remapped_address,
size_t size);
#ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
u64 (*get_required_mask)(struct device *dev);
#endif
ANDROID_KABI_RESERVE(1);
ANDROID_KABI_RESERVE(2);
ANDROID_KABI_RESERVE(3);
ANDROID_KABI_RESERVE(4);
};
extern const struct dma_map_ops dma_direct_ops;
extern const struct dma_map_ops dma_noncoherent_ops;
extern const struct dma_map_ops dma_virt_ops;
#define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
#define DMA_MASK_NONE 0x0ULL
static inline int valid_dma_direction(int dma_direction)
{
return ((dma_direction == DMA_BIDIRECTIONAL) ||
(dma_direction == DMA_TO_DEVICE) ||
(dma_direction == DMA_FROM_DEVICE));
}
static inline int is_device_dma_capable(struct device *dev)
{
return dev->dma_mask != NULL && *dev->dma_mask != DMA_MASK_NONE;
}
#ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
/*
* These three functions are only for dma allocator.
* Don't use them in device drivers.
*/
int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
dma_addr_t *dma_handle, void **ret);
int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr);
int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, size_t size, int *ret);
void *dma_alloc_from_global_coherent(ssize_t size, dma_addr_t *dma_handle);
int dma_release_from_global_coherent(int order, void *vaddr);
int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *cpu_addr,
size_t size, int *ret);
#else
#define dma_alloc_from_dev_coherent(dev, size, handle, ret) (0)
#define dma_release_from_dev_coherent(dev, order, vaddr) (0)
#define dma_mmap_from_dev_coherent(dev, vma, vaddr, order, ret) (0)
static inline void *dma_alloc_from_global_coherent(ssize_t size,
dma_addr_t *dma_handle)
{
return NULL;
}
static inline int dma_release_from_global_coherent(int order, void *vaddr)
{
return 0;
}
static inline int dma_mmap_from_global_coherent(struct vm_area_struct *vma,
void *cpu_addr, size_t size,
int *ret)
{
return 0;
}
#endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */
#ifdef CONFIG_HAS_DMA
#include <asm/dma-mapping.h>
static inline const struct dma_map_ops *get_dma_ops(struct device *dev)
{
if (dev && dev->dma_ops)
return dev->dma_ops;
return get_arch_dma_ops(dev ? dev->bus : NULL);
}
static inline void set_dma_ops(struct device *dev,
const struct dma_map_ops *dma_ops)
{
dev->dma_ops = dma_ops;
}
#else
/*
* Define the dma api to allow compilation of dma dependent code.
* Code that depends on the dma-mapping API needs to set 'depends on HAS_DMA'
* in its Kconfig, unless it already depends on <something> || COMPILE_TEST,
* where <something> guarantuees the availability of the dma-mapping API.
*/
static inline const struct dma_map_ops *get_dma_ops(struct device *dev)
{
return NULL;
}
#endif
static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr,
size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
dma_addr_t addr;
BUG_ON(!valid_dma_direction(dir));
addr = ops->map_page(dev, virt_to_page(ptr),
offset_in_page(ptr), size,
dir, attrs);
debug_dma_map_page(dev, virt_to_page(ptr),
offset_in_page(ptr), size,
dir, addr, true);
return addr;
}
static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr,
size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(dir));
if (ops->unmap_page)
ops->unmap_page(dev, addr, size, dir, attrs);
debug_dma_unmap_page(dev, addr, size, dir, true);
}
/*
* dma_maps_sg_attrs returns 0 on error and > 0 on success.
* It should never return a value < 0.
*/
static inline int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir,
unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
int ents;
BUG_ON(!valid_dma_direction(dir));
ents = ops->map_sg(dev, sg, nents, dir, attrs);
BUG_ON(ents < 0);
debug_dma_map_sg(dev, sg, nents, ents, dir);
return ents;
}
static inline void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir,
unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(dir));
debug_dma_unmap_sg(dev, sg, nents, dir);
if (ops->unmap_sg)
ops->unmap_sg(dev, sg, nents, dir, attrs);
}
static inline dma_addr_t dma_map_page_attrs(struct device *dev,
struct page *page,
size_t offset, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
dma_addr_t addr;
BUG_ON(!valid_dma_direction(dir));
addr = ops->map_page(dev, page, offset, size, dir, attrs);
debug_dma_map_page(dev, page, offset, size, dir, addr, false);
return addr;
}
static inline void dma_unmap_page_attrs(struct device *dev,
dma_addr_t addr, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(dir));
if (ops->unmap_page)
ops->unmap_page(dev, addr, size, dir, attrs);
debug_dma_unmap_page(dev, addr, size, dir, false);
}
static inline dma_addr_t dma_map_resource(struct device *dev,
phys_addr_t phys_addr,
size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
dma_addr_t addr;
BUG_ON(!valid_dma_direction(dir));
/* Don't allow RAM to be mapped */
BUG_ON(pfn_valid(PHYS_PFN(phys_addr)));
addr = phys_addr;
if (ops->map_resource)
addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
debug_dma_map_resource(dev, phys_addr, size, dir, addr);
return addr;
}
static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(dir));
if (ops->unmap_resource)
ops->unmap_resource(dev, addr, size, dir, attrs);
debug_dma_unmap_resource(dev, addr, size, dir);
}
static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
size_t size,
enum dma_data_direction dir)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(dir));
if (ops->sync_single_for_cpu)
ops->sync_single_for_cpu(dev, addr, size, dir);
debug_dma_sync_single_for_cpu(dev, addr, size, dir);
}
static inline void dma_sync_single_for_device(struct device *dev,
dma_addr_t addr, size_t size,
enum dma_data_direction dir)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(dir));
if (ops->sync_single_for_device)
ops->sync_single_for_device(dev, addr, size, dir);
debug_dma_sync_single_for_device(dev, addr, size, dir);
}
static inline void dma_sync_single_range_for_cpu(struct device *dev,
dma_addr_t addr,
unsigned long offset,
size_t size,
enum dma_data_direction dir)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(dir));
if (ops->sync_single_for_cpu)
ops->sync_single_for_cpu(dev, addr + offset, size, dir);
debug_dma_sync_single_range_for_cpu(dev, addr, offset, size, dir);
}
static inline void dma_sync_single_range_for_device(struct device *dev,
dma_addr_t addr,
unsigned long offset,
size_t size,
enum dma_data_direction dir)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(dir));
if (ops->sync_single_for_device)
ops->sync_single_for_device(dev, addr + offset, size, dir);
debug_dma_sync_single_range_for_device(dev, addr, offset, size, dir);
}
static inline void
dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
int nelems, enum dma_data_direction dir)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(dir));
if (ops->sync_sg_for_cpu)
ops->sync_sg_for_cpu(dev, sg, nelems, dir);
debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
}
static inline void
dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
int nelems, enum dma_data_direction dir)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(dir));
if (ops->sync_sg_for_device)
ops->sync_sg_for_device(dev, sg, nelems, dir);
debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
}
#define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0)
#define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0)
#define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0)
#define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0)
#define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0)
#define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0)
static inline void
dma_cache_sync(struct device *dev, void *vaddr, size_t size,
enum dma_data_direction dir)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(dir));
if (ops->cache_sync)
ops->cache_sync(dev, vaddr, size, dir);
}
extern int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size);
void *dma_common_contiguous_remap(struct page *page, size_t size,
unsigned long vm_flags,
pgprot_t prot, const void *caller);
void *dma_common_pages_remap(struct page **pages, size_t size,
unsigned long vm_flags, pgprot_t prot,
const void *caller);
void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags,
bool nowarn);
/**
* dma_mmap_attrs - map a coherent DMA allocation into user space
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
* @vma: vm_area_struct describing requested user mapping
* @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
* @handle: device-view address returned from dma_alloc_attrs
* @size: size of memory originally requested in dma_alloc_attrs
* @attrs: attributes of mapping properties requested in dma_alloc_attrs
*
* Map a coherent DMA buffer previously allocated by dma_alloc_attrs
* into user space. The coherent DMA buffer must not be freed by the
* driver until the user space mapping has been released.
*/
static inline int
dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, void *cpu_addr,
dma_addr_t dma_addr, size_t size, unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!ops);
if (ops->mmap)
return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
}
#define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0)
int
dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t dma_addr, size_t size);
static inline int
dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, void *cpu_addr,
dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!ops);
if (ops->get_sgtable)
return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size,
attrs);
return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, size);
}
#define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0)
#ifndef arch_dma_alloc_attrs
#define arch_dma_alloc_attrs(dev) (true)
#endif
static inline void *dma_alloc_attrs(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag,
unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
void *cpu_addr;
BUG_ON(!ops);
WARN_ON_ONCE(dev && !dev->coherent_dma_mask);
if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
return cpu_addr;
/* let the implementation decide on the zone to allocate from: */
flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
if (!arch_dma_alloc_attrs(&dev))
return NULL;
if (!ops->alloc)
return NULL;
cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
return cpu_addr;
}
static inline void dma_free_attrs(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_handle,
unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!ops);
if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
return;
/*
* On non-coherent platforms which implement DMA-coherent buffers via
* non-cacheable remaps, ops->free() may call vunmap(). Thus getting
* this far in IRQ context is a) at risk of a BUG_ON() or trying to
* sleep on some machines, and b) an indication that the driver is
* probably misusing the coherent API anyway.
*/
WARN_ON(irqs_disabled());
if (!ops->free || !cpu_addr)
return;
debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
ops->free(dev, size, cpu_addr, dma_handle, attrs);
}
static inline void *dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag)
{
return dma_alloc_attrs(dev, size, dma_handle, flag, 0);
}
static inline void dma_free_coherent(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_handle)
{
return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0);
}
static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
debug_dma_mapping_error(dev, dma_addr);
if (ops->mapping_error)
return ops->mapping_error(dev, dma_addr);
return 0;
}
static inline void dma_check_mask(struct device *dev, u64 mask)
{
if (sme_active() && (mask < (((u64)sme_get_me_mask() << 1) - 1)))
dev_warn(dev, "SME is active, device will require DMA bounce buffers\n");
}
static inline int dma_supported(struct device *dev, u64 mask)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
if (!ops)
return 0;
if (!ops->dma_supported)
return 1;
return ops->dma_supported(dev, mask);
}
#ifndef HAVE_ARCH_DMA_SET_MASK
static inline int dma_set_mask(struct device *dev, u64 mask)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
if (ops->set_dma_mask)
return ops->set_dma_mask(dev, mask);
if (!dev->dma_mask || !dma_supported(dev, mask))
return -EIO;
dma_check_mask(dev, mask);
*dev->dma_mask = mask;
return 0;
}
#endif
static inline void *dma_remap(struct device *dev, void *cpu_addr,
dma_addr_t dma_handle, size_t size, unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
if (!ops->remap) {
WARN_ONCE(1, "Remap function not implemented for %pS\n",
ops->remap);
return NULL;
}
return ops->remap(dev, cpu_addr, dma_handle, size, attrs);
}
static inline void dma_unremap(struct device *dev, void *remapped_addr,
size_t size)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
if (!ops->unremap) {
WARN_ONCE(1, "unremap function not implemented for %pS\n",
ops->unremap);
return;
}
return ops->unremap(dev, remapped_addr, size);
}
static inline u64 dma_get_mask(struct device *dev)
{
if (dev && dev->dma_mask && *dev->dma_mask)
return *dev->dma_mask;
return DMA_BIT_MASK(32);
}
#ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
int dma_set_coherent_mask(struct device *dev, u64 mask);
#else
static inline int dma_set_coherent_mask(struct device *dev, u64 mask)
{
if (!dma_supported(dev, mask))
return -EIO;
dma_check_mask(dev, mask);
dev->coherent_dma_mask = mask;
return 0;
}
#endif
/*
* Set both the DMA mask and the coherent DMA mask to the same thing.
* Note that we don't check the return value from dma_set_coherent_mask()
* as the DMA API guarantees that the coherent DMA mask can be set to
* the same or smaller than the streaming DMA mask.
*/
static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask)
{
int rc = dma_set_mask(dev, mask);
if (rc == 0)
dma_set_coherent_mask(dev, mask);
return rc;
}
/*
* Similar to the above, except it deals with the case where the device
* does not have dev->dma_mask appropriately setup.
*/
static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask)
{
dev->dma_mask = &dev->coherent_dma_mask;
return dma_set_mask_and_coherent(dev, mask);
}
extern u64 dma_get_required_mask(struct device *dev);
#ifndef arch_setup_dma_ops
static inline void arch_setup_dma_ops(struct device *dev, u64 dma_base,
u64 size, const struct iommu_ops *iommu,
bool coherent) { }
#endif
#ifndef arch_teardown_dma_ops
static inline void arch_teardown_dma_ops(struct device *dev) { }
#endif
static inline unsigned int dma_get_max_seg_size(struct device *dev)
{
if (dev->dma_parms && dev->dma_parms->max_segment_size)
return dev->dma_parms->max_segment_size;
return SZ_64K;
}
static inline int dma_set_max_seg_size(struct device *dev, unsigned int size)
{
if (dev->dma_parms) {
dev->dma_parms->max_segment_size = size;
return 0;
}
return -EIO;
}
static inline unsigned long dma_get_seg_boundary(struct device *dev)
{
if (dev->dma_parms && dev->dma_parms->segment_boundary_mask)
return dev->dma_parms->segment_boundary_mask;
return DMA_BIT_MASK(32);
}
static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask)
{
if (dev->dma_parms) {
dev->dma_parms->segment_boundary_mask = mask;
return 0;
}
return -EIO;
}
#ifndef dma_max_pfn
static inline unsigned long dma_max_pfn(struct device *dev)
{
return (*dev->dma_mask >> PAGE_SHIFT) + dev->dma_pfn_offset;
}
#endif
static inline void *dma_zalloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag)
{
void *ret = dma_alloc_coherent(dev, size, dma_handle,
flag | __GFP_ZERO);
return ret;
}
static inline int dma_get_cache_alignment(void)
{
#ifdef ARCH_DMA_MINALIGN
return ARCH_DMA_MINALIGN;
#endif
return 1;
}
/* flags for the coherent memory api */
#define DMA_MEMORY_EXCLUSIVE 0x01
#ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
dma_addr_t device_addr, size_t size, int flags);
void dma_release_declared_memory(struct device *dev);
void *dma_mark_declared_memory_occupied(struct device *dev,
dma_addr_t device_addr, size_t size);
dma_addr_t dma_get_device_base(struct device *dev,
struct dma_coherent_mem *mem);
unsigned long dma_get_size(struct dma_coherent_mem *mem);
#else
static inline int
dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
dma_addr_t device_addr, size_t size, int flags)
{
return -ENOSYS;
}
static inline void
dma_release_declared_memory(struct device *dev)
{
}
static inline void *
dma_mark_declared_memory_occupied(struct device *dev,
dma_addr_t device_addr, size_t size)
{
return ERR_PTR(-EBUSY);
}
static inline dma_addr_t
dma_get_device_base(struct device *dev, struct dma_coherent_mem *mem)
{
return 0;
}
static inline unsigned long dma_get_size(struct dma_coherent_mem *mem)
{
return 0;
}
#endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */
#ifdef CONFIG_HAS_DMA
int dma_configure(struct device *dev);
void dma_deconfigure(struct device *dev);
#else
static inline int dma_configure(struct device *dev)
{
return 0;
}
static inline void dma_deconfigure(struct device *dev) {}
#endif
/*
* Managed DMA API
*/
#ifdef CONFIG_HAS_DMA
extern void *dmam_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp);
extern void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle);
#else /* !CONFIG_HAS_DMA */
static inline void *dmam_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp)
{ return NULL; }
static inline void dmam_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle) { }
#endif /* !CONFIG_HAS_DMA */
extern void *dmam_alloc_attrs(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp,
unsigned long attrs);
#ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
extern int dmam_declare_coherent_memory(struct device *dev,
phys_addr_t phys_addr,
dma_addr_t device_addr, size_t size,
int flags);
extern void dmam_release_declared_memory(struct device *dev);
#else /* CONFIG_HAVE_GENERIC_DMA_COHERENT */
static inline int dmam_declare_coherent_memory(struct device *dev,
phys_addr_t phys_addr, dma_addr_t device_addr,
size_t size, gfp_t gfp)
{
return 0;
}
static inline void dmam_release_declared_memory(struct device *dev)
{
}
#endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */
static inline void *dma_alloc_wc(struct device *dev, size_t size,
dma_addr_t *dma_addr, gfp_t gfp)
{
return dma_alloc_attrs(dev, size, dma_addr, gfp,
DMA_ATTR_WRITE_COMBINE);
}
#ifndef dma_alloc_writecombine
#define dma_alloc_writecombine dma_alloc_wc
#endif
static inline void dma_free_wc(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_addr)
{
return dma_free_attrs(dev, size, cpu_addr, dma_addr,
DMA_ATTR_WRITE_COMBINE);
}
#ifndef dma_free_writecombine
#define dma_free_writecombine dma_free_wc
#endif
static inline int dma_mmap_wc(struct device *dev,
struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr,
size_t size)
{
return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size,
DMA_ATTR_WRITE_COMBINE);
}
#ifndef dma_mmap_writecombine
#define dma_mmap_writecombine dma_mmap_wc
#endif
#ifdef CONFIG_NEED_DMA_MAP_STATE
#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME
#define DEFINE_DMA_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME
#define dma_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME)
#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL))
#define dma_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME)
#define dma_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL))
#else
#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)
#define DEFINE_DMA_UNMAP_LEN(LEN_NAME)
#define dma_unmap_addr(PTR, ADDR_NAME) (0)
#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) do { } while (0)
#define dma_unmap_len(PTR, LEN_NAME) (0)
#define dma_unmap_len_set(PTR, LEN_NAME, VAL) do { } while (0)
#endif
#endif