430 lines
15 KiB
Plaintext
430 lines
15 KiB
Plaintext
|
=================================
|
||
|
Red-black Trees (rbtree) in Linux
|
||
|
=================================
|
||
|
|
||
|
|
||
|
:Date: January 18, 2007
|
||
|
:Author: Rob Landley <rob@landley.net>
|
||
|
|
||
|
What are red-black trees, and what are they for?
|
||
|
------------------------------------------------
|
||
|
|
||
|
Red-black trees are a type of self-balancing binary search tree, used for
|
||
|
storing sortable key/value data pairs. This differs from radix trees (which
|
||
|
are used to efficiently store sparse arrays and thus use long integer indexes
|
||
|
to insert/access/delete nodes) and hash tables (which are not kept sorted to
|
||
|
be easily traversed in order, and must be tuned for a specific size and
|
||
|
hash function where rbtrees scale gracefully storing arbitrary keys).
|
||
|
|
||
|
Red-black trees are similar to AVL trees, but provide faster real-time bounded
|
||
|
worst case performance for insertion and deletion (at most two rotations and
|
||
|
three rotations, respectively, to balance the tree), with slightly slower
|
||
|
(but still O(log n)) lookup time.
|
||
|
|
||
|
To quote Linux Weekly News:
|
||
|
|
||
|
There are a number of red-black trees in use in the kernel.
|
||
|
The deadline and CFQ I/O schedulers employ rbtrees to
|
||
|
track requests; the packet CD/DVD driver does the same.
|
||
|
The high-resolution timer code uses an rbtree to organize outstanding
|
||
|
timer requests. The ext3 filesystem tracks directory entries in a
|
||
|
red-black tree. Virtual memory areas (VMAs) are tracked with red-black
|
||
|
trees, as are epoll file descriptors, cryptographic keys, and network
|
||
|
packets in the "hierarchical token bucket" scheduler.
|
||
|
|
||
|
This document covers use of the Linux rbtree implementation. For more
|
||
|
information on the nature and implementation of Red Black Trees, see:
|
||
|
|
||
|
Linux Weekly News article on red-black trees
|
||
|
http://lwn.net/Articles/184495/
|
||
|
|
||
|
Wikipedia entry on red-black trees
|
||
|
http://en.wikipedia.org/wiki/Red-black_tree
|
||
|
|
||
|
Linux implementation of red-black trees
|
||
|
---------------------------------------
|
||
|
|
||
|
Linux's rbtree implementation lives in the file "lib/rbtree.c". To use it,
|
||
|
"#include <linux/rbtree.h>".
|
||
|
|
||
|
The Linux rbtree implementation is optimized for speed, and thus has one
|
||
|
less layer of indirection (and better cache locality) than more traditional
|
||
|
tree implementations. Instead of using pointers to separate rb_node and data
|
||
|
structures, each instance of struct rb_node is embedded in the data structure
|
||
|
it organizes. And instead of using a comparison callback function pointer,
|
||
|
users are expected to write their own tree search and insert functions
|
||
|
which call the provided rbtree functions. Locking is also left up to the
|
||
|
user of the rbtree code.
|
||
|
|
||
|
Creating a new rbtree
|
||
|
---------------------
|
||
|
|
||
|
Data nodes in an rbtree tree are structures containing a struct rb_node member::
|
||
|
|
||
|
struct mytype {
|
||
|
struct rb_node node;
|
||
|
char *keystring;
|
||
|
};
|
||
|
|
||
|
When dealing with a pointer to the embedded struct rb_node, the containing data
|
||
|
structure may be accessed with the standard container_of() macro. In addition,
|
||
|
individual members may be accessed directly via rb_entry(node, type, member).
|
||
|
|
||
|
At the root of each rbtree is an rb_root structure, which is initialized to be
|
||
|
empty via:
|
||
|
|
||
|
struct rb_root mytree = RB_ROOT;
|
||
|
|
||
|
Searching for a value in an rbtree
|
||
|
----------------------------------
|
||
|
|
||
|
Writing a search function for your tree is fairly straightforward: start at the
|
||
|
root, compare each value, and follow the left or right branch as necessary.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
struct mytype *my_search(struct rb_root *root, char *string)
|
||
|
{
|
||
|
struct rb_node *node = root->rb_node;
|
||
|
|
||
|
while (node) {
|
||
|
struct mytype *data = container_of(node, struct mytype, node);
|
||
|
int result;
|
||
|
|
||
|
result = strcmp(string, data->keystring);
|
||
|
|
||
|
if (result < 0)
|
||
|
node = node->rb_left;
|
||
|
else if (result > 0)
|
||
|
node = node->rb_right;
|
||
|
else
|
||
|
return data;
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
Inserting data into an rbtree
|
||
|
-----------------------------
|
||
|
|
||
|
Inserting data in the tree involves first searching for the place to insert the
|
||
|
new node, then inserting the node and rebalancing ("recoloring") the tree.
|
||
|
|
||
|
The search for insertion differs from the previous search by finding the
|
||
|
location of the pointer on which to graft the new node. The new node also
|
||
|
needs a link to its parent node for rebalancing purposes.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
int my_insert(struct rb_root *root, struct mytype *data)
|
||
|
{
|
||
|
struct rb_node **new = &(root->rb_node), *parent = NULL;
|
||
|
|
||
|
/* Figure out where to put new node */
|
||
|
while (*new) {
|
||
|
struct mytype *this = container_of(*new, struct mytype, node);
|
||
|
int result = strcmp(data->keystring, this->keystring);
|
||
|
|
||
|
parent = *new;
|
||
|
if (result < 0)
|
||
|
new = &((*new)->rb_left);
|
||
|
else if (result > 0)
|
||
|
new = &((*new)->rb_right);
|
||
|
else
|
||
|
return FALSE;
|
||
|
}
|
||
|
|
||
|
/* Add new node and rebalance tree. */
|
||
|
rb_link_node(&data->node, parent, new);
|
||
|
rb_insert_color(&data->node, root);
|
||
|
|
||
|
return TRUE;
|
||
|
}
|
||
|
|
||
|
Removing or replacing existing data in an rbtree
|
||
|
------------------------------------------------
|
||
|
|
||
|
To remove an existing node from a tree, call::
|
||
|
|
||
|
void rb_erase(struct rb_node *victim, struct rb_root *tree);
|
||
|
|
||
|
Example::
|
||
|
|
||
|
struct mytype *data = mysearch(&mytree, "walrus");
|
||
|
|
||
|
if (data) {
|
||
|
rb_erase(&data->node, &mytree);
|
||
|
myfree(data);
|
||
|
}
|
||
|
|
||
|
To replace an existing node in a tree with a new one with the same key, call::
|
||
|
|
||
|
void rb_replace_node(struct rb_node *old, struct rb_node *new,
|
||
|
struct rb_root *tree);
|
||
|
|
||
|
Replacing a node this way does not re-sort the tree: If the new node doesn't
|
||
|
have the same key as the old node, the rbtree will probably become corrupted.
|
||
|
|
||
|
Iterating through the elements stored in an rbtree (in sort order)
|
||
|
------------------------------------------------------------------
|
||
|
|
||
|
Four functions are provided for iterating through an rbtree's contents in
|
||
|
sorted order. These work on arbitrary trees, and should not need to be
|
||
|
modified or wrapped (except for locking purposes)::
|
||
|
|
||
|
struct rb_node *rb_first(struct rb_root *tree);
|
||
|
struct rb_node *rb_last(struct rb_root *tree);
|
||
|
struct rb_node *rb_next(struct rb_node *node);
|
||
|
struct rb_node *rb_prev(struct rb_node *node);
|
||
|
|
||
|
To start iterating, call rb_first() or rb_last() with a pointer to the root
|
||
|
of the tree, which will return a pointer to the node structure contained in
|
||
|
the first or last element in the tree. To continue, fetch the next or previous
|
||
|
node by calling rb_next() or rb_prev() on the current node. This will return
|
||
|
NULL when there are no more nodes left.
|
||
|
|
||
|
The iterator functions return a pointer to the embedded struct rb_node, from
|
||
|
which the containing data structure may be accessed with the container_of()
|
||
|
macro, and individual members may be accessed directly via
|
||
|
rb_entry(node, type, member).
|
||
|
|
||
|
Example::
|
||
|
|
||
|
struct rb_node *node;
|
||
|
for (node = rb_first(&mytree); node; node = rb_next(node))
|
||
|
printk("key=%s\n", rb_entry(node, struct mytype, node)->keystring);
|
||
|
|
||
|
Cached rbtrees
|
||
|
--------------
|
||
|
|
||
|
Computing the leftmost (smallest) node is quite a common task for binary
|
||
|
search trees, such as for traversals or users relying on a the particular
|
||
|
order for their own logic. To this end, users can use 'struct rb_root_cached'
|
||
|
to optimize O(logN) rb_first() calls to a simple pointer fetch avoiding
|
||
|
potentially expensive tree iterations. This is done at negligible runtime
|
||
|
overhead for maintanence; albeit larger memory footprint.
|
||
|
|
||
|
Similar to the rb_root structure, cached rbtrees are initialized to be
|
||
|
empty via:
|
||
|
|
||
|
struct rb_root_cached mytree = RB_ROOT_CACHED;
|
||
|
|
||
|
Cached rbtree is simply a regular rb_root with an extra pointer to cache the
|
||
|
leftmost node. This allows rb_root_cached to exist wherever rb_root does,
|
||
|
which permits augmented trees to be supported as well as only a few extra
|
||
|
interfaces:
|
||
|
|
||
|
struct rb_node *rb_first_cached(struct rb_root_cached *tree);
|
||
|
void rb_insert_color_cached(struct rb_node *, struct rb_root_cached *, bool);
|
||
|
void rb_erase_cached(struct rb_node *node, struct rb_root_cached *);
|
||
|
|
||
|
Both insert and erase calls have their respective counterpart of augmented
|
||
|
trees:
|
||
|
|
||
|
void rb_insert_augmented_cached(struct rb_node *node, struct rb_root_cached *,
|
||
|
bool, struct rb_augment_callbacks *);
|
||
|
void rb_erase_augmented_cached(struct rb_node *, struct rb_root_cached *,
|
||
|
struct rb_augment_callbacks *);
|
||
|
|
||
|
|
||
|
Support for Augmented rbtrees
|
||
|
-----------------------------
|
||
|
|
||
|
Augmented rbtree is an rbtree with "some" additional data stored in
|
||
|
each node, where the additional data for node N must be a function of
|
||
|
the contents of all nodes in the subtree rooted at N. This data can
|
||
|
be used to augment some new functionality to rbtree. Augmented rbtree
|
||
|
is an optional feature built on top of basic rbtree infrastructure.
|
||
|
An rbtree user who wants this feature will have to call the augmentation
|
||
|
functions with the user provided augmentation callback when inserting
|
||
|
and erasing nodes.
|
||
|
|
||
|
C files implementing augmented rbtree manipulation must include
|
||
|
<linux/rbtree_augmented.h> instead of <linux/rbtree.h>. Note that
|
||
|
linux/rbtree_augmented.h exposes some rbtree implementations details
|
||
|
you are not expected to rely on; please stick to the documented APIs
|
||
|
there and do not include <linux/rbtree_augmented.h> from header files
|
||
|
either so as to minimize chances of your users accidentally relying on
|
||
|
such implementation details.
|
||
|
|
||
|
On insertion, the user must update the augmented information on the path
|
||
|
leading to the inserted node, then call rb_link_node() as usual and
|
||
|
rb_augment_inserted() instead of the usual rb_insert_color() call.
|
||
|
If rb_augment_inserted() rebalances the rbtree, it will callback into
|
||
|
a user provided function to update the augmented information on the
|
||
|
affected subtrees.
|
||
|
|
||
|
When erasing a node, the user must call rb_erase_augmented() instead of
|
||
|
rb_erase(). rb_erase_augmented() calls back into user provided functions
|
||
|
to updated the augmented information on affected subtrees.
|
||
|
|
||
|
In both cases, the callbacks are provided through struct rb_augment_callbacks.
|
||
|
3 callbacks must be defined:
|
||
|
|
||
|
- A propagation callback, which updates the augmented value for a given
|
||
|
node and its ancestors, up to a given stop point (or NULL to update
|
||
|
all the way to the root).
|
||
|
|
||
|
- A copy callback, which copies the augmented value for a given subtree
|
||
|
to a newly assigned subtree root.
|
||
|
|
||
|
- A tree rotation callback, which copies the augmented value for a given
|
||
|
subtree to a newly assigned subtree root AND recomputes the augmented
|
||
|
information for the former subtree root.
|
||
|
|
||
|
The compiled code for rb_erase_augmented() may inline the propagation and
|
||
|
copy callbacks, which results in a large function, so each augmented rbtree
|
||
|
user should have a single rb_erase_augmented() call site in order to limit
|
||
|
compiled code size.
|
||
|
|
||
|
|
||
|
Sample usage
|
||
|
^^^^^^^^^^^^
|
||
|
|
||
|
Interval tree is an example of augmented rb tree. Reference -
|
||
|
"Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein.
|
||
|
More details about interval trees:
|
||
|
|
||
|
Classical rbtree has a single key and it cannot be directly used to store
|
||
|
interval ranges like [lo:hi] and do a quick lookup for any overlap with a new
|
||
|
lo:hi or to find whether there is an exact match for a new lo:hi.
|
||
|
|
||
|
However, rbtree can be augmented to store such interval ranges in a structured
|
||
|
way making it possible to do efficient lookup and exact match.
|
||
|
|
||
|
This "extra information" stored in each node is the maximum hi
|
||
|
(max_hi) value among all the nodes that are its descendants. This
|
||
|
information can be maintained at each node just be looking at the node
|
||
|
and its immediate children. And this will be used in O(log n) lookup
|
||
|
for lowest match (lowest start address among all possible matches)
|
||
|
with something like::
|
||
|
|
||
|
struct interval_tree_node *
|
||
|
interval_tree_first_match(struct rb_root *root,
|
||
|
unsigned long start, unsigned long last)
|
||
|
{
|
||
|
struct interval_tree_node *node;
|
||
|
|
||
|
if (!root->rb_node)
|
||
|
return NULL;
|
||
|
node = rb_entry(root->rb_node, struct interval_tree_node, rb);
|
||
|
|
||
|
while (true) {
|
||
|
if (node->rb.rb_left) {
|
||
|
struct interval_tree_node *left =
|
||
|
rb_entry(node->rb.rb_left,
|
||
|
struct interval_tree_node, rb);
|
||
|
if (left->__subtree_last >= start) {
|
||
|
/*
|
||
|
* Some nodes in left subtree satisfy Cond2.
|
||
|
* Iterate to find the leftmost such node N.
|
||
|
* If it also satisfies Cond1, that's the match
|
||
|
* we are looking for. Otherwise, there is no
|
||
|
* matching interval as nodes to the right of N
|
||
|
* can't satisfy Cond1 either.
|
||
|
*/
|
||
|
node = left;
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
if (node->start <= last) { /* Cond1 */
|
||
|
if (node->last >= start) /* Cond2 */
|
||
|
return node; /* node is leftmost match */
|
||
|
if (node->rb.rb_right) {
|
||
|
node = rb_entry(node->rb.rb_right,
|
||
|
struct interval_tree_node, rb);
|
||
|
if (node->__subtree_last >= start)
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
return NULL; /* No match */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Insertion/removal are defined using the following augmented callbacks::
|
||
|
|
||
|
static inline unsigned long
|
||
|
compute_subtree_last(struct interval_tree_node *node)
|
||
|
{
|
||
|
unsigned long max = node->last, subtree_last;
|
||
|
if (node->rb.rb_left) {
|
||
|
subtree_last = rb_entry(node->rb.rb_left,
|
||
|
struct interval_tree_node, rb)->__subtree_last;
|
||
|
if (max < subtree_last)
|
||
|
max = subtree_last;
|
||
|
}
|
||
|
if (node->rb.rb_right) {
|
||
|
subtree_last = rb_entry(node->rb.rb_right,
|
||
|
struct interval_tree_node, rb)->__subtree_last;
|
||
|
if (max < subtree_last)
|
||
|
max = subtree_last;
|
||
|
}
|
||
|
return max;
|
||
|
}
|
||
|
|
||
|
static void augment_propagate(struct rb_node *rb, struct rb_node *stop)
|
||
|
{
|
||
|
while (rb != stop) {
|
||
|
struct interval_tree_node *node =
|
||
|
rb_entry(rb, struct interval_tree_node, rb);
|
||
|
unsigned long subtree_last = compute_subtree_last(node);
|
||
|
if (node->__subtree_last == subtree_last)
|
||
|
break;
|
||
|
node->__subtree_last = subtree_last;
|
||
|
rb = rb_parent(&node->rb);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void augment_copy(struct rb_node *rb_old, struct rb_node *rb_new)
|
||
|
{
|
||
|
struct interval_tree_node *old =
|
||
|
rb_entry(rb_old, struct interval_tree_node, rb);
|
||
|
struct interval_tree_node *new =
|
||
|
rb_entry(rb_new, struct interval_tree_node, rb);
|
||
|
|
||
|
new->__subtree_last = old->__subtree_last;
|
||
|
}
|
||
|
|
||
|
static void augment_rotate(struct rb_node *rb_old, struct rb_node *rb_new)
|
||
|
{
|
||
|
struct interval_tree_node *old =
|
||
|
rb_entry(rb_old, struct interval_tree_node, rb);
|
||
|
struct interval_tree_node *new =
|
||
|
rb_entry(rb_new, struct interval_tree_node, rb);
|
||
|
|
||
|
new->__subtree_last = old->__subtree_last;
|
||
|
old->__subtree_last = compute_subtree_last(old);
|
||
|
}
|
||
|
|
||
|
static const struct rb_augment_callbacks augment_callbacks = {
|
||
|
augment_propagate, augment_copy, augment_rotate
|
||
|
};
|
||
|
|
||
|
void interval_tree_insert(struct interval_tree_node *node,
|
||
|
struct rb_root *root)
|
||
|
{
|
||
|
struct rb_node **link = &root->rb_node, *rb_parent = NULL;
|
||
|
unsigned long start = node->start, last = node->last;
|
||
|
struct interval_tree_node *parent;
|
||
|
|
||
|
while (*link) {
|
||
|
rb_parent = *link;
|
||
|
parent = rb_entry(rb_parent, struct interval_tree_node, rb);
|
||
|
if (parent->__subtree_last < last)
|
||
|
parent->__subtree_last = last;
|
||
|
if (start < parent->start)
|
||
|
link = &parent->rb.rb_left;
|
||
|
else
|
||
|
link = &parent->rb.rb_right;
|
||
|
}
|
||
|
|
||
|
node->__subtree_last = last;
|
||
|
rb_link_node(&node->rb, rb_parent, link);
|
||
|
rb_insert_augmented(&node->rb, root, &augment_callbacks);
|
||
|
}
|
||
|
|
||
|
void interval_tree_remove(struct interval_tree_node *node,
|
||
|
struct rb_root *root)
|
||
|
{
|
||
|
rb_erase_augmented(&node->rb, root, &augment_callbacks);
|
||
|
}
|