kernel_samsung_a34x-permissive/drivers/rtc/rtc-mt6397.c

1813 lines
44 KiB
C
Raw Normal View History

/*
* Copyright (c) 2014-2015 MediaTek Inc.
* Author: Tianping.Fang <tianping.fang@mediatek.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/rtc.h>
#include <linux/irqdomain.h>
#include <linux/platform_device.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <linux/io.h>
#include <linux/mfd/mt6357/registers.h>
#include <linux/mfd/mt6358/registers.h>
#include <linux/mfd/mt6359/registers.h>
#include <linux/mfd/mt6397/core.h>
#include <linux/nvmem-provider.h>
#include <linux/debugfs.h>
/* For KPOC alarm */
#include <linux/notifier.h>
#include <linux/suspend.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/jiffies.h>
#include <linux/cpumask.h>
#include <linux/reboot.h>
#define RTC_BBPU 0x0000
#define RTC_BBPU_KEY 0x4300
#define RTC_BBPU_PWREN BIT(0)
#define RTC_BBPU_CLR BIT(1)
#define RTC_BBPU_RESET_AL BIT(3)
#define RTC_BBPU_RELOAD BIT(5)
#define RTC_BBPU_CBUSY BIT(6)
#define RTC_WRTGR_MT6358 0x3a
#define RTC_WRTGR_MT6397 0x3c
#define RTC_IRQ_STA 0x0002
#define RTC_IRQ_STA_AL BIT(0)
#define RTC_IRQ_STA_LP BIT(3)
#define RTC_IRQ_EN 0x0004
#define RTC_IRQ_EN_AL BIT(0)
#define RTC_IRQ_EN_ONESHOT BIT(2)
#define RTC_IRQ_EN_LP BIT(3)
#define RTC_IRQ_EN_ONESHOT_AL (RTC_IRQ_EN_ONESHOT | RTC_IRQ_EN_AL)
#define RTC_TC_SEC_MASK 0x3f
#define RTC_TC_MIN_MASK 0x3f
#define RTC_TC_HOU_MASK 0x1f
#define RTC_TC_DOM_MASK 0x1f
#define RTC_TC_DOW_MASK 0x7
#define RTC_TC_MTH_MASK 0xf
#define RTC_TC_YEA_MASK 0x7f
#define RTC_AL_SEC_MASK 0x003f
#define RTC_AL_MIN_MASK 0x003f
#define RTC_AL_HOU_MASK 0x001f
#define RTC_AL_DOM_MASK 0x001f
#define RTC_AL_DOW_MASK 0x0007
#define RTC_AL_MTH_MASK 0x000f
#define RTC_AL_YEA_MASK 0x007f
#define RTC_AL_MASK 0x0008
#define RTC_AL_MASK_DOW BIT(4)
#define RTC_TC_SEC 0x000a
/* Min, Hour, Dom... register offset to RTC_TC_SEC */
#define RTC_OFFSET_SEC 0
#define RTC_OFFSET_MIN 1
#define RTC_OFFSET_HOUR 2
#define RTC_OFFSET_DOM 3
#define RTC_OFFSET_DOW 4
#define RTC_OFFSET_MTH 5
#define RTC_OFFSET_YEAR 6
#define RTC_OFFSET_COUNT 7
#define RTC_AL_SEC 0x0018
#define RTC_BBPU_AUTO_PDN_SEL BIT(6)
#define RTC_BBPU_2SEC_EN BIT(8)
#define RTC_AL_HOU 0x001c
#define RTC_AL_MTH 0x0022
#define RTC_AL_YEA 0x0024
#define RTC_K_EOSC_RSV_0 BIT(8)
#define RTC_K_EOSC_RSV_1 BIT(9)
#define RTC_K_EOSC_RSV_2 BIT(10)
#define RTC_OSC32CON 0x0026
#define RTC_OSC32CON_UNLOCK1 0x1a57
#define RTC_OSC32CON_UNLOCK2 0x2b68
#define RTC_EMBCK_SRC_SEL BIT(8)
#define RTC_POWERKEY1 0x0028
#define RTC_POWERKEY2 0x002a
#define RTC_PDN1 0x002c
#define RTC_PDN1_PWRON_TIME BIT(7)
#define RTC_PDN2 0x002e
#define RTC_PDN2_PWRON_ALARM BIT(4)
#define RTC_PDN2_PWRON_LOGO BIT(15)
#define RTC_SPAR0 0x0030
#define RTC_SPAR1 0x0032
#define RTC_PROT 0x0034
#define RTC_CON 0x003c
#define RTC_SPAR0_BATT_REMOVAL BIT(15)
#define RTC_MIN_YEAR 1968
#define RTC_BASE_YEAR 1900
#define RTC_NUM_YEARS 128
#define RTC_MIN_YEAR_OFFSET (RTC_MIN_YEAR - RTC_BASE_YEAR)
#define SPARE_REG_WIDTH 1
#define RTC_PWRON_YEA RTC_PDN2
#define RTC_PWRON_YEA_MASK 0x7f00
#define RTC_PWRON_YEA_SHIFT 8
#define RTC_PWRON_MTH RTC_PDN2
#define RTC_PWRON_MTH_MASK 0x000f
#define RTC_PWRON_MTH_SHIFT 0
#define RTC_PWRON_SEC RTC_SPAR0
#define RTC_PWRON_SEC_MASK 0x003f
#define RTC_PWRON_SEC_SHIFT 0
#define RTC_PWRON_MIN RTC_SPAR1
#define RTC_PWRON_MIN_MASK 0x003f
#define RTC_PWRON_MIN_SHIFT 0
#define RTC_PWRON_HOU RTC_SPAR1
#define RTC_PWRON_HOU_MASK 0x07c0
#define RTC_PWRON_HOU_SHIFT 6
#define RTC_PWRON_DOM RTC_SPAR1
#define RTC_PWRON_DOM_MASK 0xf800
#define RTC_PWRON_DOM_SHIFT 11
#define RTC_POFF_ALM_SET _IOW('p', 0x15, struct rtc_time) /* Set alarm time */
enum mtk_rtc_spare_enum {
SPARE_AL_HOU,
SPARE_AL_MTH,
SPARE_SPAR0,
SPARE_KPOC,
SPARE_RG_MAX,
};
enum rtc_eosc_cali_td {
EOSC_CALI_TD_01_SEC = 0x3,
EOSC_CALI_TD_02_SEC,
EOSC_CALI_TD_04_SEC,
EOSC_CALI_TD_08_SEC,
EOSC_CALI_TD_16_SEC,
};
enum cali_field_enum {
RTC_EOSC32_CK_PDN,
EOSC_CALI_TD,
CALI_FILED_MAX
};
enum eosc_cali_version {
EOSC_CALI_NONE,
EOSC_CALI_MT6357_SERIES,
EOSC_CALI_MT6358_SERIES,
EOSC_CALI_MT6359_SERIES,
};
enum boot_mode_t {
NORMAL_BOOT = 0,
META_BOOT = 1,
RECOVERY_BOOT = 2,
SW_REBOOT = 3,
FACTORY_BOOT = 4,
ADVMETA_BOOT = 5,
ATE_FACTORY_BOOT = 6,
ALARM_BOOT = 7,
KERNEL_POWER_OFF_CHARGING_BOOT = 8,
LOW_POWER_OFF_CHARGING_BOOT = 9,
DONGLE_BOOT = 10,
UNKNOWN_BOOT
};
enum rtc_reg_set {
RTC_REG,
RTC_MASK,
RTC_SHIFT
};
struct mtk_rtc_compatible {
u32 wrtgr_addr;
const struct reg_field *spare_reg_fields;
const struct reg_field *cali_reg_fields;
u32 eosc_cali_version;
};
static u16 rtc_pwron_reg[RTC_OFFSET_COUNT][3] = {
{RTC_PWRON_SEC, RTC_PWRON_SEC_MASK, RTC_PWRON_SEC_SHIFT},
{RTC_PWRON_MIN, RTC_PWRON_MIN_MASK, RTC_PWRON_MIN_SHIFT},
{RTC_PWRON_HOU, RTC_PWRON_HOU_MASK, RTC_PWRON_HOU_SHIFT},
{RTC_PWRON_DOM, RTC_PWRON_DOM_MASK, RTC_PWRON_DOM_SHIFT},
{0, 0, 0},
{RTC_PWRON_MTH, RTC_PWRON_MTH_MASK, RTC_PWRON_MTH_SHIFT},
{RTC_PWRON_YEA, RTC_PWRON_YEA_MASK, RTC_PWRON_YEA_SHIFT},
};
struct mt6397_rtc {
struct device *dev;
struct rtc_device *rtc_dev;
struct mutex lock;
struct regmap *regmap;
int irq;
u32 addr_base;
struct work_struct work;
struct completion comp;
const struct mtk_rtc_compatible *dev_comp;
struct regmap_field *spare[SPARE_RG_MAX];
struct regmap_field *cali[CALI_FILED_MAX];
bool cali_is_supported;
#ifdef CONFIG_PM
struct notifier_block pm_nb;
#endif
};
struct tag_bootmode {
u32 size;
u32 tag;
u32 bootmode;
u32 boottype;
};
static const struct reg_field mt6357_cali_reg_fields[CALI_FILED_MAX] = {
[RTC_EOSC32_CK_PDN] = REG_FIELD(MT6357_SCK_TOP_CKPDN_CON0, 2, 2),
[EOSC_CALI_TD] = REG_FIELD(MT6357_EOSC_CALI_CON0, 5, 7),
};
static const struct reg_field mt6358_cali_reg_fields[CALI_FILED_MAX] = {
[RTC_EOSC32_CK_PDN] = REG_FIELD(MT6358_SCK_TOP_CKPDN_CON0, 2, 2),
[EOSC_CALI_TD] = REG_FIELD(MT6358_EOSC_CALI_CON0, 5, 7),
};
static const struct reg_field mt6359_cali_reg_fields[CALI_FILED_MAX] = {
[RTC_EOSC32_CK_PDN] = REG_FIELD(MT6359_SCK_TOP_CKPDN_CON0, 2, 2),
[EOSC_CALI_TD] = REG_FIELD(MT6359_EOSC_CALI_CON0, 5, 7),
};
static const struct reg_field mtk_rtc_spare_reg_fields[SPARE_RG_MAX] = {
[SPARE_AL_HOU] = REG_FIELD(RTC_AL_HOU, 8, 15),
[SPARE_AL_MTH] = REG_FIELD(RTC_AL_MTH, 8, 15),
[SPARE_SPAR0] = REG_FIELD(RTC_SPAR0, 0, 7),
[SPARE_KPOC] = REG_FIELD(RTC_PDN1, 14, 14),
};
static const struct mtk_rtc_compatible mt6359_rtc_compat = {
.wrtgr_addr = RTC_WRTGR_MT6358,
.spare_reg_fields = mtk_rtc_spare_reg_fields,
.cali_reg_fields = mt6359_cali_reg_fields,
.eosc_cali_version = EOSC_CALI_MT6359_SERIES,
};
static const struct mtk_rtc_compatible mt6358_rtc_compat = {
.wrtgr_addr = RTC_WRTGR_MT6358,
.spare_reg_fields = mtk_rtc_spare_reg_fields,
.cali_reg_fields = mt6358_cali_reg_fields,
.eosc_cali_version = EOSC_CALI_MT6358_SERIES,
};
static const struct mtk_rtc_compatible mt6357_rtc_compat = {
.wrtgr_addr = RTC_WRTGR_MT6358,
.spare_reg_fields = mtk_rtc_spare_reg_fields,
.cali_reg_fields = mt6357_cali_reg_fields,
.eosc_cali_version = EOSC_CALI_MT6357_SERIES,
};
static const struct mtk_rtc_compatible mt6397_rtc_compat = {
.wrtgr_addr = RTC_WRTGR_MT6397,
.eosc_cali_version = EOSC_CALI_NONE,
};
static const struct of_device_id mt6397_rtc_of_match[] = {
{ .compatible = "mediatek,mt6359-rtc",
.data = (void *)&mt6359_rtc_compat, },
{ .compatible = "mediatek,mt6358-rtc",
.data = (void *)&mt6358_rtc_compat, },
{ .compatible = "mediatek,mt6357-rtc",
.data = (void *)&mt6357_rtc_compat, },
{ .compatible = "mediatek,mt6397-rtc",
.data = (void *)&mt6397_rtc_compat, },
{}
};
MODULE_DEVICE_TABLE(of, mt6397_rtc_of_match);
static int rtc_eosc_cali_td;
module_param(rtc_eosc_cali_td, int, 0644);
static int rtc_show_time;
static int rtc_show_alarm = 1;
static int alarm1m15s;
static u32 bootmode;
static struct wakeup_source *mt6397_rtc_suspend_lock;
/*for KPOC alarm*/
static bool rtc_pm_notifier_registered;
static bool kpoc_alarm;
static unsigned long rtc_pm_status;
module_param(rtc_show_time, int, 0644);
module_param(rtc_show_alarm, int, 0644);
static int rtc_alarm_enabled = 1;
static ssize_t mtk_rtc_debug_write(struct file *file,
const char __user *buf, size_t size, loff_t *ppos)
{
char lbuf[128];
char option[16];
int setting;
ssize_t res;
struct mt6397_rtc *rtc = file->private_data;
if (*ppos != 0 || size >= sizeof(lbuf) || size == 0)
return -EINVAL;
res = simple_write_to_buffer(lbuf, sizeof(lbuf) - 1, ppos, buf, size);
if (res <= 0)
return -EFAULT;
lbuf[size] = '\0';
if (sscanf(lbuf, "%15s %d", option, &setting) != 2) {
pr_notice("Invalid para %s\n", lbuf);
return -EFAULT;
}
if (!strncmp(option, "alarm", strlen("alarm"))) {
pr_notice("alarm = %d\n", setting);
rtc_alarm_enabled = setting;
if (rtc_alarm_enabled)
enable_irq(rtc->irq);
else
disable_irq_nosync(rtc->irq);
}
return size;
}
static int mtk_rtc_debug_show(struct seq_file *s, void *unused)
{
seq_printf(s, "rtc alarm %s\n",
rtc_alarm_enabled ? "enabled" : "disabled");
return 0;
}
static int mtk_rtc_debug_open(struct inode *inode,
struct file *file)
{
return single_open(file, mtk_rtc_debug_show, NULL);
}
static const struct file_operations mtk_rtc_debug_ops = {
.open = mtk_rtc_debug_open,
.read = seq_read,
.write = mtk_rtc_debug_write,
.llseek = seq_lseek,
.release = single_release,
};
static int mtk_rtc_write_trigger(struct mt6397_rtc *rtc)
{
unsigned long timeout = jiffies + HZ;
int ret;
u32 data = 0;
ret = regmap_write(rtc->regmap,
rtc->addr_base + rtc->dev_comp->wrtgr_addr, 1);
if (ret < 0)
return ret;
while (1) {
ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_BBPU,
&data);
if (ret < 0)
break;
if (!(data & RTC_BBPU_CBUSY))
break;
if (time_after(jiffies, timeout)) {
ret = -ETIMEDOUT;
break;
}
cpu_relax();
}
return ret;
}
static int rtc_nvram_read(void *priv, unsigned int offset, void *val,
size_t bytes)
{
struct mt6397_rtc *rtc = dev_get_drvdata(priv);
unsigned int ival;
int ret;
u8 *buf = val;
mutex_lock(&rtc->lock);
for (; bytes; bytes--) {
ret = regmap_field_read(rtc->spare[offset++], &ival);
if (ret)
goto out;
*buf++ = (u8)ival;
}
out:
mutex_unlock(&rtc->lock);
return ret;
}
static int rtc_nvram_write(void *priv, unsigned int offset, void *val,
size_t bytes)
{
struct mt6397_rtc *rtc = dev_get_drvdata(priv);
unsigned int ival;
int ret;
u8 *buf = val;
mutex_lock(&rtc->lock);
for (; bytes; bytes--) {
ival = *buf++;
ret = regmap_field_write(rtc->spare[offset++], ival);
if (ret)
goto out;
}
mtk_rtc_write_trigger(rtc);
out:
mutex_unlock(&rtc->lock);
return ret;
}
#ifdef CONFIG_PM
#define PM_DUMMY 0xFFFF
static int rtc_pm_event(struct notifier_block *notifier, unsigned long pm_event,
void *unused)
{
struct mt6397_rtc *rtc = container_of(notifier,
struct mt6397_rtc, pm_nb);
pr_notice("%s = %lu\n", __func__, pm_event);
switch (pm_event) {
case PM_SUSPEND_PREPARE:
rtc_pm_status = PM_SUSPEND_PREPARE;
return NOTIFY_DONE;
case PM_POST_SUSPEND:
rtc_pm_status = PM_POST_SUSPEND;
break;
default:
rtc_pm_status = PM_DUMMY;
break;
}
if (kpoc_alarm) {
pr_notice("%s trigger reboot\n", __func__);
complete(&rtc->comp);
kpoc_alarm = false;
}
return NOTIFY_DONE;
}
#endif /* CONFIG_PM */
static void rtc_mark_kpoc(struct mt6397_rtc *rtc)
{
pr_notice("%s\n", __func__);
mutex_lock(&rtc->lock);
regmap_field_write(rtc->spare[SPARE_KPOC], 1);
mtk_rtc_write_trigger(rtc);
mutex_unlock(&rtc->lock);
}
static void mtk_rtc_work_queue(struct work_struct *work)
{
struct mt6397_rtc *rtc = container_of(work, struct mt6397_rtc, work);
unsigned long ret;
unsigned int msecs;
ret = wait_for_completion_timeout(&rtc->comp, msecs_to_jiffies(30000));
if (!ret) {
pr_notice("%s timeout\n", __func__);
BUG_ON(1);
} else {
msecs = jiffies_to_msecs(ret);
pr_notice("%s timeleft= %d\n", __func__, msecs);
rtc_mark_kpoc(rtc);
kernel_restart("kpoc");
}
}
static void mtk_rtc_reboot(struct mt6397_rtc *rtc)
{
__pm_stay_awake(mt6397_rtc_suspend_lock);
init_completion(&rtc->comp);
schedule_work_on(cpumask_first(cpu_online_mask), &rtc->work);
if (!rtc_pm_notifier_registered)
goto reboot;
if (rtc_pm_status != PM_SUSPEND_PREPARE)
goto reboot;
kpoc_alarm = true;
pr_notice("%s:wait\n", __func__);
return;
reboot:
pr_notice("%s:trigger\n", __func__);
complete(&rtc->comp);
}
#ifndef USER_BUILD_KERNEL
void mtk_rtc_lp_exception(struct mt6397_rtc *rtc)
{
u32 bbpu = 0, irqsta = 0, irqen = 0, osc32 = 0;
u32 pwrkey1 = 0, pwrkey2 = 0, prot = 0, con = 0, sec1 = 0, sec2 = 0;
regmap_read(rtc->regmap,
rtc->addr_base + RTC_BBPU, &bbpu);
regmap_read(rtc->regmap,
rtc->addr_base + RTC_IRQ_STA, &irqsta);
regmap_read(rtc->regmap,
rtc->addr_base + RTC_IRQ_EN, &irqen);
regmap_read(rtc->regmap,
rtc->addr_base + RTC_OSC32CON, &osc32);
regmap_read(rtc->regmap,
rtc->addr_base + RTC_POWERKEY1, &pwrkey1);
regmap_read(rtc->regmap,
rtc->addr_base + RTC_POWERKEY2, &pwrkey2);
regmap_read(rtc->regmap,
rtc->addr_base + RTC_PROT, &prot);
regmap_read(rtc->regmap,
rtc->addr_base + RTC_CON, &con);
regmap_read(rtc->regmap,
rtc->addr_base + RTC_TC_SEC, &sec1);
mdelay(2000);
regmap_read(rtc->regmap,
rtc->addr_base + RTC_TC_SEC, &sec2);
dev_emerg(rtc->dev, "!!! 32K WAS STOPPED !!!\n"
"RTC_BBPU = 0x%x\n"
"RTC_IRQ_STA = 0x%x\n"
"RTC_IRQ_EN = 0x%x\n"
"RTC_OSC32CON = 0x%x\n"
"RTC_POWERKEY1 = 0x%x\n"
"RTC_POWERKEY2 = 0x%x\n"
"RTC_PROT = 0x%x\n"
"RTC_CON = 0x%x\n"
"RTC_TC_SEC = %02d\n"
"RTC_TC_SEC = %02d\n",
bbpu, irqsta, irqen, osc32, pwrkey1, pwrkey2, prot, con, sec1,
sec2);
}
#endif
static bool mtk_rtc_is_alarm_irq(struct mt6397_rtc *rtc)
{
u32 irqsta = 0, bbpu;
int ret;
/* read clear */
ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_IRQ_STA, &irqsta);
if ((ret == 0) && (irqsta & RTC_IRQ_STA_AL)) {
bbpu = RTC_BBPU_KEY | RTC_BBPU_PWREN;
ret = regmap_write(rtc->regmap,
rtc->addr_base + RTC_BBPU, bbpu);
if (ret < 0)
dev_err(rtc->dev, "%s error\n", __func__);
mtk_rtc_write_trigger(rtc);
return true;
}
#ifndef USER_BUILD_KERNEL
if ((ret == 0) && (irqsta & RTC_IRQ_STA_LP))
mtk_rtc_lp_exception(rtc);
#endif
return false;
}
static void mtk_rtc_update_pwron_alarm_flag(struct mt6397_rtc *rtc)
{
int ret;
dev_notice(rtc->dev, "%s\n", __func__);
ret = regmap_update_bits(rtc->regmap,
rtc->addr_base + RTC_PDN1,
RTC_PDN1_PWRON_TIME, 0);
if (ret < 0)
goto exit;
ret = regmap_update_bits(rtc->regmap,
rtc->addr_base + RTC_PDN2,
RTC_PDN2_PWRON_ALARM, RTC_PDN2_PWRON_ALARM);
if (ret < 0)
goto exit;
mtk_rtc_write_trigger(rtc);
return;
exit:
dev_err(rtc->dev, "%s error\n", __func__);
}
static void mtk_rtc_reset_bbpu_alarm_status(struct mt6397_rtc *rtc)
{
u32 bbpu;
int ret;
if (rtc->dev_comp->eosc_cali_version == EOSC_CALI_MT6357_SERIES ||
rtc->dev_comp->eosc_cali_version == EOSC_CALI_MT6358_SERIES)
return;
bbpu = RTC_BBPU_KEY | RTC_BBPU_PWREN | RTC_BBPU_RESET_AL;
ret = regmap_write(rtc->regmap, rtc->addr_base + RTC_BBPU, bbpu);
if (ret < 0)
goto exit;
mtk_rtc_write_trigger(rtc);
return;
exit:
dev_err(rtc->dev, "%s error\n", __func__);
}
static int mtk_rtc_restore_alarm(struct mt6397_rtc *rtc, struct rtc_time *tm)
{
int ret;
u16 data[RTC_OFFSET_COUNT] = { 0 };
ret = regmap_bulk_read(rtc->regmap, rtc->addr_base + RTC_AL_SEC,
data, RTC_OFFSET_COUNT);
if (ret < 0)
goto exit;
data[RTC_OFFSET_SEC] = ((data[RTC_OFFSET_SEC] & ~(RTC_AL_SEC_MASK)) |
(tm->tm_sec & RTC_AL_SEC_MASK));
data[RTC_OFFSET_MIN] = ((data[RTC_OFFSET_MIN] & ~(RTC_AL_MIN_MASK)) |
(tm->tm_min & RTC_AL_MIN_MASK));
data[RTC_OFFSET_HOUR] = ((data[RTC_OFFSET_HOUR] & ~(RTC_AL_HOU_MASK)) |
(tm->tm_hour & RTC_AL_HOU_MASK));
data[RTC_OFFSET_DOM] = ((data[RTC_OFFSET_DOM] & ~(RTC_AL_DOM_MASK)) |
(tm->tm_mday & RTC_AL_DOM_MASK));
data[RTC_OFFSET_MTH] = ((data[RTC_OFFSET_MTH] & ~(RTC_AL_MTH_MASK)) |
(tm->tm_mon & RTC_AL_MTH_MASK));
data[RTC_OFFSET_YEAR] = ((data[RTC_OFFSET_YEAR] & ~(RTC_AL_YEA_MASK)) |
(tm->tm_year & RTC_AL_YEA_MASK));
dev_notice(rtc->dev,
"restore al time = %04d/%02d/%02d %02d:%02d:%02d\n",
tm->tm_year + RTC_MIN_YEAR, tm->tm_mon, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec);
ret = regmap_bulk_write(rtc->regmap, rtc->addr_base + RTC_AL_SEC,
data, RTC_OFFSET_COUNT);
if (ret < 0)
goto exit;
ret = regmap_write(rtc->regmap, rtc->addr_base + RTC_AL_MASK,
RTC_AL_MASK_DOW);
if (ret < 0)
goto exit;
ret = regmap_update_bits(rtc->regmap,
rtc->addr_base + RTC_IRQ_EN,
RTC_IRQ_EN_ONESHOT_AL,
RTC_IRQ_EN_ONESHOT_AL);
if (ret < 0)
goto exit;
mtk_rtc_write_trigger(rtc);
return ret;
exit:
dev_err(rtc->dev, "%s error\n", __func__);
return ret;
}
bool mtk_rtc_is_pwron_alarm(struct mt6397_rtc *rtc,
struct rtc_time *nowtm, struct rtc_time *tm)
{
u32 pdn1 = 0, spar1 = 0, pdn2 = 0, spar0 = 0;
int ret, sec = 0;
u16 data[RTC_OFFSET_COUNT] = { 0 };
ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_PDN1, &pdn1);
if (ret < 0)
goto exit;
dev_notice(rtc->dev, "pdn1 = 0x%x\n", pdn1);
if (pdn1 & RTC_PDN1_PWRON_TIME) { /* power-on time is available */
/*get current rtc time*/
do {
ret = regmap_bulk_read(rtc->regmap,
rtc->addr_base + RTC_TC_SEC,
data, RTC_OFFSET_COUNT);
if (ret < 0)
goto exit;
nowtm->tm_sec = data[RTC_OFFSET_SEC] & RTC_TC_SEC_MASK;
nowtm->tm_min = data[RTC_OFFSET_MIN] & RTC_TC_MIN_MASK;
nowtm->tm_hour =
data[RTC_OFFSET_HOUR] & RTC_TC_HOU_MASK;
nowtm->tm_mday = data[RTC_OFFSET_DOM] & RTC_TC_DOM_MASK;
nowtm->tm_mon = data[RTC_OFFSET_MTH] & RTC_TC_MTH_MASK;
nowtm->tm_year =
data[RTC_OFFSET_YEAR] & RTC_TC_YEA_MASK;
ret = regmap_read(rtc->regmap,
rtc->addr_base + RTC_TC_SEC, &sec);
if (ret < 0)
goto exit;
sec &= RTC_TC_SEC_MASK;
} while (sec < nowtm->tm_sec);
dev_notice(rtc->dev,
"get now time = %04d/%02d/%02d %02d:%02d:%02d\n",
nowtm->tm_year + RTC_MIN_YEAR, nowtm->tm_mon,
nowtm->tm_mday, nowtm->tm_hour,
nowtm->tm_min, nowtm->tm_sec);
/*get power on time from SPARE */
ret = regmap_read(rtc->regmap,
rtc->addr_base + RTC_SPAR0, &spar0);
if (ret < 0)
goto exit;
ret = regmap_read(rtc->regmap,
rtc->addr_base + RTC_SPAR1, &spar1);
if (ret < 0)
goto exit;
ret = regmap_read(rtc->regmap,
rtc->addr_base + RTC_PDN2, &pdn2);
if (ret < 0)
goto exit;
dev_notice(rtc->dev,
"spar0=0x%x, spar1=0x%x, pdn2=0x%x\n",
spar0, spar1, pdn2);
tm->tm_sec =
(spar0 & RTC_PWRON_SEC_MASK) >> RTC_PWRON_SEC_SHIFT;
tm->tm_min =
(spar1 & RTC_PWRON_MIN_MASK) >> RTC_PWRON_MIN_SHIFT;
tm->tm_hour =
(spar1 & RTC_PWRON_HOU_MASK) >> RTC_PWRON_HOU_SHIFT;
tm->tm_mday =
(spar1 & RTC_PWRON_DOM_MASK) >> RTC_PWRON_DOM_SHIFT;
tm->tm_mon =
(pdn2 & RTC_PWRON_MTH_MASK) >> RTC_PWRON_MTH_SHIFT;
tm->tm_year =
(pdn2 & RTC_PWRON_YEA_MASK) >> RTC_PWRON_YEA_SHIFT;
dev_notice(rtc->dev,
"get pwron time = %04d/%02d/%02d %02d:%02d:%02d\n",
tm->tm_year + RTC_MIN_YEAR, tm->tm_mon, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec);
return true;
}
return false;
exit:
dev_err(rtc->dev, "%s error\n", __func__);
return false;
}
static irqreturn_t mtk_rtc_irq_handler_thread(int irq, void *data)
{
struct mt6397_rtc *rtc = data;
bool pwron_alm = false, isAlarmIrq = false, pwron_alarm = false;
struct rtc_time nowtm, tm;
dev_notice(rtc->dev, "%s\n", __func__);
mutex_lock(&rtc->lock);
isAlarmIrq = mtk_rtc_is_alarm_irq(rtc);
if (!isAlarmIrq) {
mutex_unlock(&rtc->lock);
return IRQ_HANDLED;
}
mtk_rtc_reset_bbpu_alarm_status(rtc);
pwron_alarm = mtk_rtc_is_pwron_alarm(rtc, &nowtm, &tm);
nowtm.tm_year += RTC_MIN_YEAR;
tm.tm_year += RTC_MIN_YEAR;
if (pwron_alarm) {
time64_t now_time, time;
now_time =
mktime(nowtm.tm_year, nowtm.tm_mon, nowtm.tm_mday,
nowtm.tm_hour, nowtm.tm_min, nowtm.tm_sec);
if (now_time == -1) {
mutex_unlock(&rtc->lock);
goto out;
}
time =
mktime(tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour,
tm.tm_min, tm.tm_sec);
if (time == -1) {
mutex_unlock(&rtc->lock);
goto out;
}
/* power on */
if (now_time >= time - 1 && now_time <= time + 4) {
if (bootmode == KERNEL_POWER_OFF_CHARGING_BOOT ||
bootmode == LOW_POWER_OFF_CHARGING_BOOT) {
mtk_rtc_reboot(rtc);
mutex_unlock(&rtc->lock);
disable_irq_nosync(rtc->irq);
goto out;
} else {
mtk_rtc_update_pwron_alarm_flag(rtc);
pwron_alm = true;
}
} else if (now_time < time) { /* set power-on alarm */
time -= 1;
rtc_time64_to_tm(time, &tm);
tm.tm_year -= RTC_MIN_YEAR_OFFSET;
tm.tm_mon += 1;
mtk_rtc_restore_alarm(rtc, &tm);
}
}
mutex_unlock(&rtc->lock);
out:
if (rtc->rtc_dev != NULL)
rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
if (rtc_show_alarm)
dev_notice(rtc->dev, "%s time is up\n",
pwron_alm ? "power-on" : "alarm");
return IRQ_NONE;
}
static int __mtk_rtc_read_time(struct mt6397_rtc *rtc,
struct rtc_time *tm, int *sec)
{
int ret;
u16 data[RTC_OFFSET_COUNT] = { 0 };
mutex_lock(&rtc->lock);
ret = regmap_bulk_read(rtc->regmap, rtc->addr_base + RTC_TC_SEC,
data, RTC_OFFSET_COUNT);
if (ret < 0)
goto exit;
tm->tm_sec = data[RTC_OFFSET_SEC] & RTC_TC_SEC_MASK;
tm->tm_min = data[RTC_OFFSET_MIN] & RTC_TC_MIN_MASK;
tm->tm_hour = data[RTC_OFFSET_HOUR] & RTC_TC_HOU_MASK;
tm->tm_mday = data[RTC_OFFSET_DOM] & RTC_TC_DOM_MASK;
tm->tm_mon = data[RTC_OFFSET_MTH] & RTC_TC_MTH_MASK;
tm->tm_year = data[RTC_OFFSET_YEAR] & RTC_TC_YEA_MASK;
ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_TC_SEC, sec);
*sec &= RTC_TC_SEC_MASK;
exit:
mutex_unlock(&rtc->lock);
return ret;
}
static void mtk_rtc_set_pwron_time(struct mt6397_rtc *rtc, struct rtc_time *tm)
{
u32 data[RTC_OFFSET_COUNT];
int ret, i;
dev_notice(rtc->dev, "%s\n", __func__);
data[RTC_OFFSET_SEC] =
((tm->tm_sec << RTC_PWRON_SEC_SHIFT) & RTC_PWRON_SEC_MASK);
data[RTC_OFFSET_MIN] =
((tm->tm_min << RTC_PWRON_MIN_SHIFT) & RTC_PWRON_MIN_MASK);
data[RTC_OFFSET_HOUR] =
((tm->tm_hour << RTC_PWRON_HOU_SHIFT) & RTC_PWRON_HOU_MASK);
data[RTC_OFFSET_DOM] =
((tm->tm_mday << RTC_PWRON_DOM_SHIFT) & RTC_PWRON_DOM_MASK);
data[RTC_OFFSET_MTH] =
((tm->tm_mon << RTC_PWRON_MTH_SHIFT) & RTC_PWRON_MTH_MASK);
data[RTC_OFFSET_YEAR] =
((tm->tm_year << RTC_PWRON_YEA_SHIFT) & RTC_PWRON_YEA_MASK);
for (i = RTC_OFFSET_SEC; i < RTC_OFFSET_COUNT; i++) {
if (i == RTC_OFFSET_DOW)
continue;
ret = regmap_update_bits(rtc->regmap,
rtc->addr_base + rtc_pwron_reg[i][RTC_REG],
rtc_pwron_reg[i][RTC_MASK], data[i]);
if (ret < 0)
goto exit;
mtk_rtc_write_trigger(rtc);
}
return;
exit:
dev_err(rtc->dev, "%s error\n", __func__);
}
void mtk_rtc_save_pwron_time(struct mt6397_rtc *rtc,
bool enable, struct rtc_time *tm, bool logo)
{
u32 pdn1 = 0, pdn2 = 0;
int ret;
dev_notice(rtc->dev, "%s\n", __func__);
/* set power on time */
mtk_rtc_set_pwron_time(rtc, tm);
/* update power on alarm related flags */
if (enable)
pdn1 = RTC_PDN1_PWRON_TIME;
ret = regmap_update_bits(rtc->regmap,
rtc->addr_base + RTC_PDN1,
RTC_PDN1_PWRON_TIME, pdn1);
if (ret < 0)
goto exit;
if (logo)
pdn2 = RTC_PDN2_PWRON_LOGO;
ret = regmap_update_bits(rtc->regmap,
rtc->addr_base + RTC_PDN2,
RTC_PDN2_PWRON_LOGO, pdn2);
if (ret < 0)
goto exit;
mtk_rtc_write_trigger(rtc);
return;
exit:
dev_err(rtc->dev, "%s error\n", __func__);
}
static int mtk_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
time64_t time;
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
int days, sec, ret;
unsigned long long timeout = sched_clock() + 500000000;
do {
ret = __mtk_rtc_read_time(rtc, tm, &sec);
if (ret < 0)
goto exit;
if (sched_clock() > timeout) {
pr_notice("%s, time out\n", __func__);
break;
}
} while (sec < tm->tm_sec);
/* HW register use 7 bits to store year data, minus
* RTC_MIN_YEAR_OFFSET before write year data to register, and plus
* RTC_MIN_YEAR_OFFSET back after read year from register
*/
tm->tm_year += RTC_MIN_YEAR_OFFSET;
/* HW register start mon from one, but tm_mon start from zero. */
tm->tm_mon--;
time = rtc_tm_to_time64(tm);
/* rtc_tm_to_time64 covert Gregorian date to seconds since
* 01-01-1970 00:00:00, and this date is Thursday.
*/
days = div_s64(time, 86400);
tm->tm_wday = (days + 4) % 7;
if (rtc_show_time) {
dev_notice(rtc->dev,
"read tc time = %04d/%02d/%02d (%d) %02d:%02d:%02d\n",
tm->tm_year + RTC_BASE_YEAR, tm->tm_mon + 1,
tm->tm_mday, tm->tm_wday, tm->tm_hour,
tm->tm_min, tm->tm_sec);
}
exit:
return ret;
}
static int mtk_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
int ret;
u16 data[RTC_OFFSET_COUNT];
if (tm->tm_year > 195) {
dev_err(rtc->dev, "%s: invalid year %04d > 2095\n",
__func__, tm->tm_year + RTC_BASE_YEAR);
return -EINVAL;
}
dev_notice(rtc->dev, "set tc time = %04d/%02d/%02d %02d:%02d:%02d\n",
tm->tm_year + RTC_BASE_YEAR, tm->tm_mon + 1, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec);
tm->tm_year -= RTC_MIN_YEAR_OFFSET;
tm->tm_mon++;
data[RTC_OFFSET_SEC] = tm->tm_sec;
data[RTC_OFFSET_MIN] = tm->tm_min;
data[RTC_OFFSET_HOUR] = tm->tm_hour;
data[RTC_OFFSET_DOM] = tm->tm_mday;
data[RTC_OFFSET_MTH] = tm->tm_mon;
data[RTC_OFFSET_YEAR] = tm->tm_year;
mutex_lock(&rtc->lock);
ret = regmap_bulk_write(rtc->regmap, rtc->addr_base + RTC_TC_SEC,
data, RTC_OFFSET_COUNT);
if (ret < 0)
goto exit;
/* Time register write to hardware after call trigger function */
ret = mtk_rtc_write_trigger(rtc);
exit:
mutex_unlock(&rtc->lock);
return ret;
}
static int mtk_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
{
struct rtc_time *tm = &alm->time;
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
u32 irqen = 0, pdn2 = 0;
int ret;
u16 data[RTC_OFFSET_COUNT] = { 0 };
mutex_lock(&rtc->lock);
ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_IRQ_EN, &irqen);
if (ret < 0)
goto err_exit;
ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_PDN2, &pdn2);
if (ret < 0)
goto err_exit;
ret = regmap_bulk_read(rtc->regmap, rtc->addr_base + RTC_AL_SEC,
data, RTC_OFFSET_COUNT);
if (ret < 0)
goto err_exit;
alm->enabled = !!(irqen & RTC_IRQ_EN_AL);
alm->pending = !!(pdn2 & RTC_PDN2_PWRON_ALARM);
mutex_unlock(&rtc->lock);
tm->tm_sec = data[RTC_OFFSET_SEC] & RTC_AL_SEC_MASK;
tm->tm_min = data[RTC_OFFSET_MIN] & RTC_AL_MIN_MASK;
tm->tm_hour = data[RTC_OFFSET_HOUR] & RTC_AL_HOU_MASK;
tm->tm_mday = data[RTC_OFFSET_DOM] & RTC_AL_DOM_MASK;
tm->tm_mon = data[RTC_OFFSET_MTH] & RTC_AL_MTH_MASK;
tm->tm_year = data[RTC_OFFSET_YEAR] & RTC_AL_YEA_MASK;
tm->tm_year += RTC_MIN_YEAR_OFFSET;
tm->tm_mon--;
dev_notice(rtc->dev,
"read al time = %04d/%02d/%02d %02d:%02d:%02d (%d)\n",
tm->tm_year + RTC_BASE_YEAR, tm->tm_mon + 1, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec, alm->enabled);
return 0;
err_exit:
mutex_unlock(&rtc->lock);
return ret;
}
static int mtk_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
{
struct rtc_time *tm = &alm->time;
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
int ret;
u32 irqsta;
ktime_t target;
if (tm->tm_year > 195) {
dev_err(rtc->dev, "%s: invalid year %04d > 2095\n",
__func__, tm->tm_year + RTC_BASE_YEAR);
return -EINVAL;
}
if (alm->enabled == 1) {
/* Add one more second to postpone wake time. */
target = rtc_tm_to_ktime(*tm);
target = ktime_add_ns(target, NSEC_PER_SEC);
*tm = rtc_ktime_to_tm(target);
} else if (alm->enabled == 5) {
/* Power on system 1 minute earlier */
alarm1m15s = 1;
}
tm->tm_year -= RTC_MIN_YEAR_OFFSET;
tm->tm_mon++;
dev_notice(rtc->dev,
"set al time = %04d/%02d/%02d %02d:%02d:%02d (%d)\n",
tm->tm_year + RTC_MIN_YEAR, tm->tm_mon, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec, alm->enabled);
mutex_lock(&rtc->lock);
switch (alm->enabled) {
case 2:
/* enable power-on alarm */
mtk_rtc_save_pwron_time(rtc, true, tm, false);
break;
case 3:
case 5:
/* enable power-on alarm with logo */
mtk_rtc_save_pwron_time(rtc, true, tm, true);
break;
case 4:
/* disable power-on alarm */
mtk_rtc_save_pwron_time(rtc, false, tm, false);
alarm1m15s = 0;
break;
default:
break;
}
ret = regmap_update_bits(rtc->regmap,
rtc->addr_base + RTC_IRQ_EN, RTC_IRQ_EN_AL, 0);
if (ret < 0)
goto exit;
ret = regmap_update_bits(rtc->regmap,
rtc->addr_base + RTC_PDN2, RTC_PDN2_PWRON_ALARM, 0);
if (ret < 0)
goto exit;
mtk_rtc_write_trigger(rtc);
ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_IRQ_STA, &irqsta);
if (ret < 0)
goto exit;
if (alm->enabled) {
ret = mtk_rtc_restore_alarm(rtc, tm);
if (ret < 0)
goto exit;
} else {
ret = regmap_update_bits(rtc->regmap,
rtc->addr_base + RTC_IRQ_EN,
RTC_IRQ_EN_ONESHOT_AL, 0);
if (ret < 0)
goto exit;
}
/* All alarm time register write to hardware after calling
* mtk_rtc_write_trigger. This can avoid race condition if alarm
* occur happen during writing alarm time register.
*/
ret = mtk_rtc_write_trigger(rtc);
exit:
mutex_unlock(&rtc->lock);
return ret;
}
static int mtk_set_power_on(struct device *dev, struct rtc_wkalrm *alm)
{
int err = 0;
struct rtc_time tm;
time64_t now, scheduled;
err = rtc_valid_tm(&alm->time);
if (err != 0)
return err;
scheduled = rtc_tm_to_time64(&alm->time);
err = mtk_rtc_read_time(dev, &tm);
if (err != 0)
return err;
now = rtc_tm_to_time64(&tm);
if (scheduled <= now)
alm->enabled = 4;
else
alm->enabled = 3;
mtk_rtc_set_alarm(dev, alm);
return err;
}
static int mtk_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
{
void __user *uarg = (void __user *) arg;
int err = 0;
struct rtc_wkalrm alm;
switch (cmd) {
case RTC_POFF_ALM_SET:
if (copy_from_user(&alm.time, uarg, sizeof(alm.time)))
return -EFAULT;
err = mtk_set_power_on(dev, &alm);
break;
default:
err = -EINVAL;
break;
}
return err;
}
static const struct rtc_class_ops mtk_rtc_ops = {
.ioctl = mtk_rtc_ioctl,
.read_time = mtk_rtc_read_time,
.set_time = mtk_rtc_set_time,
.read_alarm = mtk_rtc_read_alarm,
.set_alarm = mtk_rtc_set_alarm,
};
#ifdef CONFIG_SEC_PM
static int poff_status;
static void rtc_reset_check(struct platform_device *pdev)
{
u32 spar0 = 0;
struct mt6397_rtc *rtc = platform_get_drvdata(pdev);
regmap_read(rtc->regmap, rtc->addr_base + RTC_SPAR0, &spar0);
if (!(spar0 & RTC_SPAR0_BATT_REMOVAL)) {
poff_status = 1;
pr_info("%s: BATTERY REMOVED\n", __func__);
mutex_lock(&rtc->lock);
regmap_update_bits(rtc->regmap, rtc->addr_base + RTC_SPAR0,
RTC_SPAR0_BATT_REMOVAL, RTC_SPAR0_BATT_REMOVAL);
mtk_rtc_write_trigger(rtc);
mutex_unlock(&rtc->lock);
}
}
static ssize_t rtc_status_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
int status = poff_status;
pr_info("%s: complete power off status(%d)\n", __func__, status);
poff_status = 0;
return sprintf(buf, "%d\n", status);
}
static struct kobj_attribute rtc_status_attr = {
.attr = {
.name = __stringify(rtc_status),
.mode = 0444,
},
.show = rtc_status_show,
};
#endif /* CONFIG_SEC_PM */
static int mtk_rtc_reload(struct mt6397_rtc *rtc)
{
int ret;
u32 bbpu = 0;
ret = regmap_read(rtc->regmap, rtc->addr_base +
RTC_BBPU, &bbpu);
if (ret == 0) {
bbpu = bbpu | RTC_BBPU_KEY | RTC_BBPU_RELOAD;
ret = regmap_write(rtc->regmap, rtc->addr_base +
RTC_BBPU, bbpu);
}
if (ret == 0)
ret = mtk_rtc_write_trigger(rtc);
return ret;
}
static int rtc_xosc_write(struct mt6397_rtc *rtc, u32 reg)
{
int ret;
ret = regmap_write(rtc->regmap, rtc->addr_base +
RTC_OSC32CON, RTC_OSC32CON_UNLOCK1);
if (ret == 0)
ret = mtk_rtc_write_trigger(rtc);
if (ret == 0)
ret = regmap_write(rtc->regmap, rtc->addr_base +
RTC_OSC32CON, RTC_OSC32CON_UNLOCK2);
if (ret == 0)
ret = mtk_rtc_write_trigger(rtc);
if (ret == 0)
ret = regmap_write(rtc->regmap, rtc->addr_base +
RTC_OSC32CON, reg);
if (ret == 0)
ret = mtk_rtc_write_trigger(rtc);
return ret;
}
static void mtk_rtc_disable_2sec_reboot(struct device *dev)
{
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
int ret;
u32 reg = 0;
ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_AL_SEC, &reg);
if (ret == 0) {
reg = (reg & ~RTC_BBPU_2SEC_EN) & ~RTC_BBPU_AUTO_PDN_SEL;
ret = regmap_write(rtc->regmap, rtc->addr_base +
RTC_AL_SEC, reg);
}
if (ret == 0)
ret = mtk_rtc_write_trigger(rtc);
}
static void mtk_rtc_enable_k_eosc(struct device *dev)
{
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
int ret;
u32 td;
u32 reg = 0;
if (!rtc->cali_is_supported)
return;
/* Truning on eosc cali mode clock */
regmap_field_write(rtc->cali[RTC_EOSC32_CK_PDN], 0);
if (rtc_eosc_cali_td) {
dev_notice(dev, "%s: rtc_eosc_cali_td = %d\n",
__func__, rtc_eosc_cali_td);
switch (rtc_eosc_cali_td) {
case 1:
td = EOSC_CALI_TD_01_SEC;
break;
case 2:
td = EOSC_CALI_TD_02_SEC;
break;
case 4:
td = EOSC_CALI_TD_04_SEC;
break;
case 16:
td = EOSC_CALI_TD_16_SEC;
break;
default:
td = EOSC_CALI_TD_08_SEC;
break;
}
regmap_field_write(rtc->cali[EOSC_CALI_TD], td);
}
if (rtc->dev_comp->eosc_cali_version ==
EOSC_CALI_MT6357_SERIES) {
struct reg_field r_field_xo_en32k_man =
REG_FIELD(MT6357_DCXO_CW02, 0, 0);
struct regmap_field *rm_field_xo_en32k_man =
devm_regmap_field_alloc(dev, rtc->regmap,
r_field_xo_en32k_man);
/*RTC mode will have only OFF mode and FPM */
ret = regmap_field_write(rm_field_xo_en32k_man, 0);
devm_regmap_field_free(dev, rm_field_xo_en32k_man);
if (ret == 0)
ret = mtk_rtc_reload(rtc);
/* Enable K EOSC mode for normal power
* off and then plug out battery
*/
if (ret == 0)
ret = regmap_read(rtc->regmap, rtc->addr_base +
RTC_AL_YEA, &reg);
if (ret == 0) {
reg = ((reg | RTC_K_EOSC_RSV_0) &
(~RTC_K_EOSC_RSV_1)) | RTC_K_EOSC_RSV_2;
ret = regmap_write(rtc->regmap, rtc->addr_base +
RTC_AL_YEA, reg);
}
if (ret == 0)
ret = mtk_rtc_write_trigger(rtc);
if (ret == 0)
ret = regmap_read(rtc->regmap, rtc->addr_base +
RTC_OSC32CON, &reg);
if (ret == 0) {
reg = reg | RTC_EMBCK_SRC_SEL;
rtc_xosc_write(rtc, reg);
}
}
}
static void mtk_rtc_spar_alarm_clear_wait(struct device *dev)
{
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
int ret;
u32 reg = 0;
unsigned long long timeout = sched_clock() + 500000000;
do {
ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_BBPU, &reg);
if (ret == 0 && (reg & RTC_BBPU_CLR) == 0)
break;
else if (sched_clock() > timeout) {
ret = regmap_read(rtc->regmap, rtc->addr_base +
RTC_BBPU, &reg);
pr_notice("%s, spar/alarm clear time out, %x,\n",
__func__, reg);
break;
}
} while (1);
}
static int rtc_lpsd_restore_al_mask(struct device *dev)
{
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
int ret;
u32 reg = 0;
pr_notice("%s\n", __func__);
ret = mtk_rtc_reload(rtc);
if (ret == 0)
ret = regmap_read(rtc->regmap, rtc->addr_base +
RTC_AL_MASK, &reg);
if (ret == 0) {
pr_notice("1st RTC_AL_MASK = 0x%x\n", reg);
/* mask DOW */
ret = regmap_write(rtc->regmap, rtc->addr_base +
RTC_AL_MASK, RTC_AL_MASK_DOW);
}
if (ret == 0)
ret = mtk_rtc_write_trigger(rtc);
if (ret == 0)
ret = regmap_read(rtc->regmap, rtc->addr_base +
RTC_AL_MASK, &reg);
if (ret == 0)
pr_notice("2nd RTC_AL_MASK = 0x%x\n", reg);
return ret;
}
static void mtk_rtc_lpsd(struct device *dev)
{
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
int ret;
u32 reg;
pr_notice("clear lpsd solution\n");
reg = RTC_BBPU_KEY | RTC_BBPU_CLR | RTC_BBPU_PWREN;
ret = regmap_write(rtc->regmap, rtc->addr_base + RTC_BBPU, reg);
if (ret == 0)
ret = mtk_rtc_write_trigger(rtc);
mtk_rtc_spar_alarm_clear_wait(dev);
ret = mtk_rtc_reload(rtc);
if (ret == 0)
ret = regmap_read(rtc->regmap, rtc->addr_base +
RTC_AL_MASK, &reg);
if (ret == 0) {
pr_notice("RTC_AL_MASK = 0x%x\n", reg);
ret = regmap_read(rtc->regmap, rtc->addr_base +
RTC_IRQ_EN, &reg);
}
if (ret == 0)
pr_notice("RTC_IRQ_EN = 0x%x\n", reg);
}
static void mtk_rtc_shutdown(struct platform_device *pdev)
{
struct mt6397_rtc *rtc = dev_get_drvdata(&pdev->dev);
struct rtc_time rtc_time_now = { 0 };
struct rtc_time rtc_time_alarm = { 0 };
ktime_t ktime_now;
ktime_t ktime_alarm;
bool is_pwron_alarm;
if (alarm1m15s == 1) {
is_pwron_alarm = mtk_rtc_is_pwron_alarm(rtc,
&rtc_time_now, &rtc_time_alarm);
if (is_pwron_alarm) {
rtc_time_now.tm_year += RTC_MIN_YEAR_OFFSET;
rtc_time_now.tm_mon--;
rtc_time_alarm.tm_year += RTC_MIN_YEAR_OFFSET;
rtc_time_alarm.tm_mon--;
pr_notice("now = %04d/%02d/%02d %02d:%02d:%02d\n",
rtc_time_now.tm_year + 1900,
rtc_time_now.tm_mon + 1,
rtc_time_now.tm_mday,
rtc_time_now.tm_hour,
rtc_time_now.tm_min,
rtc_time_now.tm_sec);
pr_notice("alarm = %04d/%02d/%02d %02d:%02d:%02d\n",
rtc_time_alarm.tm_year + 1900,
rtc_time_alarm.tm_mon + 1,
rtc_time_alarm.tm_mday,
rtc_time_alarm.tm_hour,
rtc_time_alarm.tm_min,
rtc_time_alarm.tm_sec);
ktime_now = rtc_tm_to_ktime(rtc_time_now);
ktime_alarm = rtc_tm_to_ktime(rtc_time_alarm);
if (ktime_after(ktime_alarm, ktime_now)) {
/* alarm has not happened */
ktime_alarm = ktime_sub_ms(ktime_alarm,
MSEC_PER_SEC * 60);
if (ktime_after(ktime_alarm, ktime_now))
pr_notice("Alarm will happen after 1 minute\n");
else {
ktime_alarm = ktime_add_ms(ktime_now,
MSEC_PER_SEC * 15);
pr_notice("Alarm will happen in 15 seconds\n");
}
rtc_time_alarm = rtc_ktime_to_tm(ktime_alarm);
pr_notice("new alarm = %04d/%02d/%02d %02d:%02d:%02d\n",
rtc_time_alarm.tm_year + 1900,
rtc_time_alarm.tm_mon + 1,
rtc_time_alarm.tm_mday,
rtc_time_alarm.tm_hour,
rtc_time_alarm.tm_min,
rtc_time_alarm.tm_sec);
rtc_time_alarm.tm_year -= RTC_MIN_YEAR_OFFSET;
rtc_time_alarm.tm_mon++;
mtk_rtc_set_pwron_time(rtc, &rtc_time_alarm);
mtk_rtc_restore_alarm(rtc, &rtc_time_alarm);
} else
pr_notice("Alarm has happened before\n");
} else
pr_notice("No power-off alarm is set\n");
}
if (rtc->dev_comp->eosc_cali_version == EOSC_CALI_MT6357_SERIES)
mtk_rtc_disable_2sec_reboot(&pdev->dev);
mtk_rtc_enable_k_eosc(&pdev->dev);
if (rtc->dev_comp->eosc_cali_version == EOSC_CALI_MT6357_SERIES ||
rtc->dev_comp->eosc_cali_version == EOSC_CALI_MT6358_SERIES)
mtk_rtc_lpsd(&pdev->dev);
}
static int mtk_rtc_config_eosc_cali(struct device *dev)
{
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
int i;
for (i = 0; i < CALI_FILED_MAX; i++) {
rtc->cali[i] = devm_regmap_field_alloc(dev, rtc->regmap,
rtc->dev_comp->cali_reg_fields[i]);
if (IS_ERR(rtc->cali[i])) {
dev_err(rtc->dev, "cali regmap field[%d] err= %ld\n",
i, PTR_ERR(rtc->cali[i]));
return PTR_ERR(rtc->cali[i]);
}
}
rtc->cali_is_supported = true;
return 0;
}
static int mtk_rtc_set_spare(struct device *dev)
{
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
struct reg_field tmp[SPARE_RG_MAX];
int i, ret;
struct nvmem_config nvmem_cfg = {
.name = "mtk_rtc_nvmem",
.word_size = SPARE_REG_WIDTH,
.stride = 1,
.size = SPARE_RG_MAX * SPARE_REG_WIDTH,
.reg_read = rtc_nvram_read,
.reg_write = rtc_nvram_write,
.priv = dev,
};
memcpy(tmp, rtc->dev_comp->spare_reg_fields, sizeof(tmp));
for (i = 0; i < SPARE_RG_MAX; i++) {
tmp[i].reg += rtc->addr_base;
rtc->spare[i] = devm_regmap_field_alloc(rtc->dev,
rtc->regmap,
tmp[i]);
if (IS_ERR(rtc->spare[i])) {
dev_err(rtc->dev, "spare regmap field[%d] err= %ld\n",
i, PTR_ERR(rtc->spare[i]));
return PTR_ERR(rtc->spare[i]);
}
}
ret = rtc_nvmem_register(rtc->rtc_dev, &nvmem_cfg);
if (ret)
dev_err(rtc->dev, "nvmem register failed\n");
return ret;
}
static void mtk_rtc_set_lp_irq(struct mt6397_rtc *rtc)
{
u32 irqen;
#ifndef USER_BUILD_KERNEL
irqen = RTC_IRQ_EN_LP;
#endif
mutex_lock(&rtc->lock);
regmap_update_bits(rtc->regmap,
rtc->addr_base + RTC_IRQ_EN,
RTC_IRQ_EN_LP, irqen);
mtk_rtc_write_trigger(rtc);
mutex_unlock(&rtc->lock);
}
static int mtk_rtc_probe(struct platform_device *pdev)
{
struct resource *res;
struct mt6397_chip *mt6397_chip = dev_get_drvdata(pdev->dev.parent);
struct mt6397_rtc *rtc;
const struct of_device_id *of_id;
int ret;
struct device_node *boot_node = NULL;
struct tag_bootmode *tag = NULL;
struct dentry *mtk_rtc_dir;
struct dentry *mtk_rtc_file;
rtc = devm_kzalloc(&pdev->dev, sizeof(struct mt6397_rtc), GFP_KERNEL);
if (!rtc)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
rtc->addr_base = res->start;
of_id = of_match_device(mt6397_rtc_of_match, &pdev->dev);
if (!of_id) {
dev_err(&pdev->dev, "Failed to probe of_node\n");
return -EINVAL;
}
rtc->dev_comp = of_id->data;
rtc->irq = platform_get_irq(pdev, 0);
if (rtc->irq < 0)
return rtc->irq;
rtc->regmap = mt6397_chip->regmap;
rtc->dev = &pdev->dev;
mutex_init(&rtc->lock);
platform_set_drvdata(pdev, rtc);
rtc->rtc_dev = devm_rtc_allocate_device(rtc->dev);
if (IS_ERR(rtc->rtc_dev))
return PTR_ERR(rtc->rtc_dev);
/* KPOC alarm related setting */
mt6397_rtc_suspend_lock =
wakeup_source_register(NULL, "mt6397-rtc suspend wakelock");
boot_node = of_parse_phandle(pdev->dev.of_node, "bootmode", 0);
if (!boot_node) {
dev_err(&pdev->dev,
"%s: failed to get boot mode phandle\n", __func__);
} else {
tag = (struct tag_bootmode *)of_get_property(
boot_node, "atag,boot", NULL);
if (!tag)
dev_err(&pdev->dev,
"%s: failed to get atag,boot\n", __func__);
else {
dev_notice(&pdev->dev,
"%s, bootmode:%d\n", __func__, tag->bootmode);
bootmode = tag->bootmode;
}
}
#ifdef CONFIG_PM
rtc->pm_nb.notifier_call = rtc_pm_event;
rtc->pm_nb.priority = 0;
if (register_pm_notifier(&rtc->pm_nb))
pr_notice("rtc pm failed\n");
else
rtc_pm_notifier_registered = true;
#endif /* CONFIG_PM */
#ifdef CONFIG_SEC_PM
rtc_reset_check(pdev);
if (power_kobj) {
ret = sysfs_create_file(power_kobj, &rtc_status_attr.attr);
if (ret)
pr_err("%s: failed %d\n", __func__, ret);
}
#endif /* CONFIG_SEC_PM */
INIT_WORK(&rtc->work, mtk_rtc_work_queue);
/* KPOC alarm related setting */
ret = request_threaded_irq(rtc->irq, NULL,
mtk_rtc_irq_handler_thread,
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
"mt6397-rtc", rtc);
if (ret) {
dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
rtc->irq, ret);
return ret;
}
device_init_wakeup(&pdev->dev, 1);
rtc->rtc_dev->ops = &mtk_rtc_ops;
ret = rtc_register_device(rtc->rtc_dev);
if (ret) {
dev_err(&pdev->dev, "register rtc device failed\n");
goto out_free_irq;
}
if (rtc->dev_comp->spare_reg_fields)
if (mtk_rtc_set_spare(&pdev->dev))
dev_err(&pdev->dev, "spare is not supported\n");
if (rtc->dev_comp->cali_reg_fields)
if (mtk_rtc_config_eosc_cali(&pdev->dev))
dev_err(&pdev->dev, "config eosc cali failed\n");
if (rtc->dev_comp->eosc_cali_version == EOSC_CALI_MT6357_SERIES ||
rtc->dev_comp->eosc_cali_version == EOSC_CALI_MT6358_SERIES)
rtc_lpsd_restore_al_mask(&pdev->dev);
mtk_rtc_set_lp_irq(rtc);
mtk_rtc_dir = debugfs_create_dir("mtk_rtc", NULL);
if (!mtk_rtc_dir) {
dev_err(&pdev->dev,
"create /sys/kernel/debug/mtk_rtc_dir failed\n");
} else {
mtk_rtc_file = debugfs_create_file("mtk_rtc", 0644,
mtk_rtc_dir, rtc,
&mtk_rtc_debug_ops);
if (!mtk_rtc_file) {
dev_err(&pdev->dev,
"create /sys/kernel/debug/mtk_rtc/mtk_rtc failed\n");
}
}
return 0;
out_free_irq:
free_irq(rtc->irq, rtc);
return ret;
}
static int mtk_rtc_remove(struct platform_device *pdev)
{
struct mt6397_rtc *rtc = platform_get_drvdata(pdev);
free_irq(rtc->irq, rtc);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int mt6397_rtc_suspend(struct device *dev)
{
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
enable_irq_wake(rtc->irq);
return 0;
}
static int mt6397_rtc_resume(struct device *dev)
{
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
disable_irq_wake(rtc->irq);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(mt6397_pm_ops, mt6397_rtc_suspend,
mt6397_rtc_resume);
static struct platform_driver mtk_rtc_driver = {
.driver = {
.name = "mt6397-rtc",
.of_match_table = mt6397_rtc_of_match,
.pm = &mt6397_pm_ops,
},
.probe = mtk_rtc_probe,
.remove = mtk_rtc_remove,
.shutdown = mtk_rtc_shutdown,
};
module_platform_driver(mtk_rtc_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Tianping Fang <tianping.fang@mediatek.com>");
MODULE_DESCRIPTION("RTC Driver for MediaTek MT6397 PMIC");