kernel_samsung_a34x-permissive/net/sunrpc/xprtrdma/transport.c

920 lines
25 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
* Copyright (c) 2014-2017 Oracle. All rights reserved.
* Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the BSD-type
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Network Appliance, Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* transport.c
*
* This file contains the top-level implementation of an RPC RDMA
* transport.
*
* Naming convention: functions beginning with xprt_ are part of the
* transport switch. All others are RPC RDMA internal.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/smp.h>
#include <linux/sunrpc/addr.h>
#include <linux/sunrpc/svc_rdma.h>
#include "xprt_rdma.h"
#include <trace/events/rpcrdma.h>
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
# define RPCDBG_FACILITY RPCDBG_TRANS
#endif
/*
* tunables
*/
static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRWR;
int xprt_rdma_pad_optimize;
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
static unsigned int min_inline_size = RPCRDMA_MIN_INLINE;
static unsigned int max_inline_size = RPCRDMA_MAX_INLINE;
static unsigned int zero;
static unsigned int max_padding = PAGE_SIZE;
static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
static unsigned int max_memreg = RPCRDMA_LAST - 1;
static unsigned int dummy;
static struct ctl_table_header *sunrpc_table_header;
static struct ctl_table xr_tunables_table[] = {
{
.procname = "rdma_slot_table_entries",
.data = &xprt_rdma_slot_table_entries,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_slot_table_size,
.extra2 = &max_slot_table_size
},
{
.procname = "rdma_max_inline_read",
.data = &xprt_rdma_max_inline_read,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_inline_size,
.extra2 = &max_inline_size,
},
{
.procname = "rdma_max_inline_write",
.data = &xprt_rdma_max_inline_write,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_inline_size,
.extra2 = &max_inline_size,
},
{
.procname = "rdma_inline_write_padding",
.data = &dummy,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &zero,
.extra2 = &max_padding,
},
{
.procname = "rdma_memreg_strategy",
.data = &xprt_rdma_memreg_strategy,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_memreg,
.extra2 = &max_memreg,
},
{
.procname = "rdma_pad_optimize",
.data = &xprt_rdma_pad_optimize,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{ },
};
static struct ctl_table sunrpc_table[] = {
{
.procname = "sunrpc",
.mode = 0555,
.child = xr_tunables_table
},
{ },
};
#endif
static const struct rpc_xprt_ops xprt_rdma_procs;
static void
xprt_rdma_format_addresses4(struct rpc_xprt *xprt, struct sockaddr *sap)
{
struct sockaddr_in *sin = (struct sockaddr_in *)sap;
char buf[20];
snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA;
}
static void
xprt_rdma_format_addresses6(struct rpc_xprt *xprt, struct sockaddr *sap)
{
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sap;
char buf[40];
snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr);
xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA6;
}
void
xprt_rdma_format_addresses(struct rpc_xprt *xprt, struct sockaddr *sap)
{
char buf[128];
switch (sap->sa_family) {
case AF_INET:
xprt_rdma_format_addresses4(xprt, sap);
break;
case AF_INET6:
xprt_rdma_format_addresses6(xprt, sap);
break;
default:
pr_err("rpcrdma: Unrecognized address family\n");
return;
}
(void)rpc_ntop(sap, buf, sizeof(buf));
xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
}
void
xprt_rdma_free_addresses(struct rpc_xprt *xprt)
{
unsigned int i;
for (i = 0; i < RPC_DISPLAY_MAX; i++)
switch (i) {
case RPC_DISPLAY_PROTO:
case RPC_DISPLAY_NETID:
continue;
default:
kfree(xprt->address_strings[i]);
}
}
void
rpcrdma_conn_func(struct rpcrdma_ep *ep)
{
schedule_delayed_work(&ep->rep_connect_worker, 0);
}
void
rpcrdma_connect_worker(struct work_struct *work)
{
struct rpcrdma_ep *ep =
container_of(work, struct rpcrdma_ep, rep_connect_worker.work);
struct rpcrdma_xprt *r_xprt =
container_of(ep, struct rpcrdma_xprt, rx_ep);
struct rpc_xprt *xprt = &r_xprt->rx_xprt;
spin_lock_bh(&xprt->transport_lock);
if (ep->rep_connected > 0) {
if (!xprt_test_and_set_connected(xprt)) {
xprt->stat.connect_count++;
xprt->stat.connect_time += (long)jiffies -
xprt->stat.connect_start;
xprt_wake_pending_tasks(xprt, 0);
}
} else {
if (xprt_test_and_clear_connected(xprt))
xprt_wake_pending_tasks(xprt, -ENOTCONN);
}
spin_unlock_bh(&xprt->transport_lock);
}
static void
xprt_rdma_connect_worker(struct work_struct *work)
{
struct rpcrdma_xprt *r_xprt = container_of(work, struct rpcrdma_xprt,
rx_connect_worker.work);
struct rpc_xprt *xprt = &r_xprt->rx_xprt;
int rc = 0;
xprt_clear_connected(xprt);
rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
if (rc)
xprt_wake_pending_tasks(xprt, rc);
xprt_clear_connecting(xprt);
}
static void
xprt_rdma_inject_disconnect(struct rpc_xprt *xprt)
{
struct rpcrdma_xprt *r_xprt = container_of(xprt, struct rpcrdma_xprt,
rx_xprt);
trace_xprtrdma_inject_dsc(r_xprt);
rdma_disconnect(r_xprt->rx_ia.ri_id);
}
/*
* xprt_rdma_destroy
*
* Destroy the xprt.
* Free all memory associated with the object, including its own.
* NOTE: none of the *destroy methods free memory for their top-level
* objects, even though they may have allocated it (they do free
* private memory). It's up to the caller to handle it. In this
* case (RDMA transport), all structure memory is inlined with the
* struct rpcrdma_xprt.
*/
static void
xprt_rdma_destroy(struct rpc_xprt *xprt)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
trace_xprtrdma_destroy(r_xprt);
cancel_delayed_work_sync(&r_xprt->rx_connect_worker);
xprt_clear_connected(xprt);
rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
rpcrdma_buffer_destroy(&r_xprt->rx_buf);
rpcrdma_ia_close(&r_xprt->rx_ia);
xprt_rdma_free_addresses(xprt);
xprt_free(xprt);
module_put(THIS_MODULE);
}
static const struct rpc_timeout xprt_rdma_default_timeout = {
.to_initval = 60 * HZ,
.to_maxval = 60 * HZ,
};
/**
* xprt_setup_rdma - Set up transport to use RDMA
*
* @args: rpc transport arguments
*/
static struct rpc_xprt *
xprt_setup_rdma(struct xprt_create *args)
{
struct rpcrdma_create_data_internal cdata;
struct rpc_xprt *xprt;
struct rpcrdma_xprt *new_xprt;
struct rpcrdma_ep *new_ep;
struct sockaddr *sap;
int rc;
if (args->addrlen > sizeof(xprt->addr)) {
dprintk("RPC: %s: address too large\n", __func__);
return ERR_PTR(-EBADF);
}
xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt), 0, 0);
if (xprt == NULL) {
dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n",
__func__);
return ERR_PTR(-ENOMEM);
}
/* 60 second timeout, no retries */
xprt->timeout = &xprt_rdma_default_timeout;
xprt->bind_timeout = RPCRDMA_BIND_TO;
xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
xprt->idle_timeout = RPCRDMA_IDLE_DISC_TO;
xprt->resvport = 0; /* privileged port not needed */
xprt->tsh_size = 0; /* RPC-RDMA handles framing */
xprt->ops = &xprt_rdma_procs;
/*
* Set up RDMA-specific connect data.
*/
sap = args->dstaddr;
/* Ensure xprt->addr holds valid server TCP (not RDMA)
* address, for any side protocols which peek at it */
xprt->prot = IPPROTO_TCP;
xprt->addrlen = args->addrlen;
memcpy(&xprt->addr, sap, xprt->addrlen);
if (rpc_get_port(sap))
xprt_set_bound(xprt);
xprt_rdma_format_addresses(xprt, sap);
cdata.max_requests = xprt_rdma_slot_table_entries;
cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
cdata.inline_wsize = xprt_rdma_max_inline_write;
if (cdata.inline_wsize > cdata.wsize)
cdata.inline_wsize = cdata.wsize;
cdata.inline_rsize = xprt_rdma_max_inline_read;
if (cdata.inline_rsize > cdata.rsize)
cdata.inline_rsize = cdata.rsize;
/*
* Create new transport instance, which includes initialized
* o ia
* o endpoint
* o buffers
*/
new_xprt = rpcx_to_rdmax(xprt);
rc = rpcrdma_ia_open(new_xprt);
if (rc)
goto out1;
/*
* initialize and create ep
*/
new_xprt->rx_data = cdata;
new_ep = &new_xprt->rx_ep;
rc = rpcrdma_ep_create(&new_xprt->rx_ep,
&new_xprt->rx_ia, &new_xprt->rx_data);
if (rc)
goto out2;
rc = rpcrdma_buffer_create(new_xprt);
if (rc)
goto out3;
INIT_DELAYED_WORK(&new_xprt->rx_connect_worker,
xprt_rdma_connect_worker);
xprt->max_payload = new_xprt->rx_ia.ri_ops->ro_maxpages(new_xprt);
if (xprt->max_payload == 0)
goto out4;
xprt->max_payload <<= PAGE_SHIFT;
dprintk("RPC: %s: transport data payload maximum: %zu bytes\n",
__func__, xprt->max_payload);
if (!try_module_get(THIS_MODULE))
goto out4;
dprintk("RPC: %s: %s:%s\n", __func__,
xprt->address_strings[RPC_DISPLAY_ADDR],
xprt->address_strings[RPC_DISPLAY_PORT]);
trace_xprtrdma_create(new_xprt);
return xprt;
out4:
rpcrdma_buffer_destroy(&new_xprt->rx_buf);
rc = -ENODEV;
out3:
rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
out2:
rpcrdma_ia_close(&new_xprt->rx_ia);
out1:
trace_xprtrdma_destroy(new_xprt);
xprt_rdma_free_addresses(xprt);
xprt_free(xprt);
return ERR_PTR(rc);
}
/**
* xprt_rdma_close - Close down RDMA connection
* @xprt: generic transport to be closed
*
* Called during transport shutdown reconnect, or device
* removal. Caller holds the transport's write lock.
*/
static void
xprt_rdma_close(struct rpc_xprt *xprt)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
struct rpcrdma_ep *ep = &r_xprt->rx_ep;
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
dprintk("RPC: %s: closing xprt %p\n", __func__, xprt);
if (test_and_clear_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags)) {
xprt_clear_connected(xprt);
rpcrdma_ia_remove(ia);
return;
}
if (ep->rep_connected == -ENODEV)
return;
if (ep->rep_connected > 0)
xprt->reestablish_timeout = 0;
xprt_disconnect_done(xprt);
rpcrdma_ep_disconnect(ep, ia);
/* Prepare @xprt for the next connection by reinitializing
* its credit grant to one (see RFC 8166, Section 3.3.3).
*/
r_xprt->rx_buf.rb_credits = 1;
xprt->cwnd = RPC_CWNDSHIFT;
}
/**
* xprt_rdma_set_port - update server port with rpcbind result
* @xprt: controlling RPC transport
* @port: new port value
*
* Transport connect status is unchanged.
*/
static void
xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
{
struct sockaddr *sap = (struct sockaddr *)&xprt->addr;
char buf[8];
dprintk("RPC: %s: setting port for xprt %p (%s:%s) to %u\n",
__func__, xprt,
xprt->address_strings[RPC_DISPLAY_ADDR],
xprt->address_strings[RPC_DISPLAY_PORT],
port);
rpc_set_port(sap, port);
kfree(xprt->address_strings[RPC_DISPLAY_PORT]);
snprintf(buf, sizeof(buf), "%u", port);
xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
kfree(xprt->address_strings[RPC_DISPLAY_HEX_PORT]);
snprintf(buf, sizeof(buf), "%4hx", port);
xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
}
/**
* xprt_rdma_timer - invoked when an RPC times out
* @xprt: controlling RPC transport
* @task: RPC task that timed out
*
* Invoked when the transport is still connected, but an RPC
* retransmit timeout occurs.
*
* Since RDMA connections don't have a keep-alive, forcibly
* disconnect and retry to connect. This drives full
* detection of the network path, and retransmissions of
* all pending RPCs.
*/
static void
xprt_rdma_timer(struct rpc_xprt *xprt, struct rpc_task *task)
{
xprt_force_disconnect(xprt);
}
static void
xprt_rdma_connect(struct rpc_xprt *xprt, struct rpc_task *task)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
if (r_xprt->rx_ep.rep_connected != 0) {
/* Reconnect */
schedule_delayed_work(&r_xprt->rx_connect_worker,
xprt->reestablish_timeout);
xprt->reestablish_timeout <<= 1;
if (xprt->reestablish_timeout > RPCRDMA_MAX_REEST_TO)
xprt->reestablish_timeout = RPCRDMA_MAX_REEST_TO;
else if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
} else {
schedule_delayed_work(&r_xprt->rx_connect_worker, 0);
if (!RPC_IS_ASYNC(task))
flush_delayed_work(&r_xprt->rx_connect_worker);
}
}
/**
* xprt_rdma_alloc_slot - allocate an rpc_rqst
* @xprt: controlling RPC transport
* @task: RPC task requesting a fresh rpc_rqst
*
* tk_status values:
* %0 if task->tk_rqstp points to a fresh rpc_rqst
* %-EAGAIN if no rpc_rqst is available; queued on backlog
*/
static void
xprt_rdma_alloc_slot(struct rpc_xprt *xprt, struct rpc_task *task)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
struct rpcrdma_req *req;
req = rpcrdma_buffer_get(&r_xprt->rx_buf);
if (!req)
goto out_sleep;
task->tk_rqstp = &req->rl_slot;
task->tk_status = 0;
return;
out_sleep:
rpc_sleep_on(&xprt->backlog, task, NULL);
task->tk_status = -EAGAIN;
}
/**
* xprt_rdma_free_slot - release an rpc_rqst
* @xprt: controlling RPC transport
* @rqst: rpc_rqst to release
*
*/
static void
xprt_rdma_free_slot(struct rpc_xprt *xprt, struct rpc_rqst *rqst)
{
memset(rqst, 0, sizeof(*rqst));
rpcrdma_buffer_put(rpcr_to_rdmar(rqst));
rpc_wake_up_next(&xprt->backlog);
}
static bool
rpcrdma_get_sendbuf(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
size_t size, gfp_t flags)
{
struct rpcrdma_regbuf *rb;
if (req->rl_sendbuf && rdmab_length(req->rl_sendbuf) >= size)
return true;
rb = rpcrdma_alloc_regbuf(size, DMA_TO_DEVICE, flags);
if (IS_ERR(rb))
return false;
rpcrdma_free_regbuf(req->rl_sendbuf);
r_xprt->rx_stats.hardway_register_count += size;
req->rl_sendbuf = rb;
return true;
}
/* The rq_rcv_buf is used only if a Reply chunk is necessary.
* The decision to use a Reply chunk is made later in
* rpcrdma_marshal_req. This buffer is registered at that time.
*
* Otherwise, the associated RPC Reply arrives in a separate
* Receive buffer, arbitrarily chosen by the HCA. The buffer
* allocated here for the RPC Reply is not utilized in that
* case. See rpcrdma_inline_fixup.
*
* A regbuf is used here to remember the buffer size.
*/
static bool
rpcrdma_get_recvbuf(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
size_t size, gfp_t flags)
{
struct rpcrdma_regbuf *rb;
if (req->rl_recvbuf && rdmab_length(req->rl_recvbuf) >= size)
return true;
rb = rpcrdma_alloc_regbuf(size, DMA_NONE, flags);
if (IS_ERR(rb))
return false;
rpcrdma_free_regbuf(req->rl_recvbuf);
r_xprt->rx_stats.hardway_register_count += size;
req->rl_recvbuf = rb;
return true;
}
/**
* xprt_rdma_allocate - allocate transport resources for an RPC
* @task: RPC task
*
* Return values:
* 0: Success; rq_buffer points to RPC buffer to use
* ENOMEM: Out of memory, call again later
* EIO: A permanent error occurred, do not retry
*
* The RDMA allocate/free functions need the task structure as a place
* to hide the struct rpcrdma_req, which is necessary for the actual
* send/recv sequence.
*
* xprt_rdma_allocate provides buffers that are already mapped for
* DMA, and a local DMA lkey is provided for each.
*/
static int
xprt_rdma_allocate(struct rpc_task *task)
{
struct rpc_rqst *rqst = task->tk_rqstp;
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
gfp_t flags;
flags = RPCRDMA_DEF_GFP;
if (RPC_IS_SWAPPER(task))
flags = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
if (!rpcrdma_get_sendbuf(r_xprt, req, rqst->rq_callsize, flags))
goto out_fail;
if (!rpcrdma_get_recvbuf(r_xprt, req, rqst->rq_rcvsize, flags))
goto out_fail;
rqst->rq_buffer = req->rl_sendbuf->rg_base;
rqst->rq_rbuffer = req->rl_recvbuf->rg_base;
trace_xprtrdma_allocate(task, req);
return 0;
out_fail:
trace_xprtrdma_allocate(task, NULL);
return -ENOMEM;
}
/**
* xprt_rdma_free - release resources allocated by xprt_rdma_allocate
* @task: RPC task
*
* Caller guarantees rqst->rq_buffer is non-NULL.
*/
static void
xprt_rdma_free(struct rpc_task *task)
{
struct rpc_rqst *rqst = task->tk_rqstp;
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
if (test_bit(RPCRDMA_REQ_F_PENDING, &req->rl_flags))
rpcrdma_release_rqst(r_xprt, req);
trace_xprtrdma_rpc_done(task, req);
}
/**
* xprt_rdma_send_request - marshal and send an RPC request
* @task: RPC task with an RPC message in rq_snd_buf
*
* Caller holds the transport's write lock.
*
* Returns:
* %0 if the RPC message has been sent
* %-ENOTCONN if the caller should reconnect and call again
* %-EAGAIN if the caller should call again
* %-ENOBUFS if the caller should call again after a delay
* %-EIO if a permanent error occurred and the request was not
* sent. Do not try to send this message again.
*/
static int
xprt_rdma_send_request(struct rpc_task *task)
{
struct rpc_rqst *rqst = task->tk_rqstp;
struct rpc_xprt *xprt = rqst->rq_xprt;
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
int rc = 0;
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
if (unlikely(!rqst->rq_buffer))
return xprt_rdma_bc_send_reply(rqst);
#endif /* CONFIG_SUNRPC_BACKCHANNEL */
if (!xprt_connected(xprt))
goto drop_connection;
rc = rpcrdma_marshal_req(r_xprt, rqst);
if (rc < 0)
goto failed_marshal;
/* Must suppress retransmit to maintain credits */
if (rqst->rq_connect_cookie == xprt->connect_cookie)
goto drop_connection;
rqst->rq_xtime = ktime_get();
__set_bit(RPCRDMA_REQ_F_PENDING, &req->rl_flags);
if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
goto drop_connection;
rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len;
rqst->rq_bytes_sent = 0;
/* An RPC with no reply will throw off credit accounting,
* so drop the connection to reset the credit grant.
*/
if (!rpc_reply_expected(task))
goto drop_connection;
return 0;
failed_marshal:
if (rc != -ENOTCONN)
return rc;
drop_connection:
xprt_disconnect_done(xprt);
return -ENOTCONN; /* implies disconnect */
}
void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
long idle_time = 0;
if (xprt_connected(xprt))
idle_time = (long)(jiffies - xprt->last_used) / HZ;
seq_puts(seq, "\txprt:\trdma ");
seq_printf(seq, "%u %lu %lu %lu %ld %lu %lu %lu %llu %llu ",
0, /* need a local port? */
xprt->stat.bind_count,
xprt->stat.connect_count,
xprt->stat.connect_time,
idle_time,
xprt->stat.sends,
xprt->stat.recvs,
xprt->stat.bad_xids,
xprt->stat.req_u,
xprt->stat.bklog_u);
seq_printf(seq, "%lu %lu %lu %llu %llu %llu %llu %lu %lu %lu %lu ",
r_xprt->rx_stats.read_chunk_count,
r_xprt->rx_stats.write_chunk_count,
r_xprt->rx_stats.reply_chunk_count,
r_xprt->rx_stats.total_rdma_request,
r_xprt->rx_stats.total_rdma_reply,
r_xprt->rx_stats.pullup_copy_count,
r_xprt->rx_stats.fixup_copy_count,
r_xprt->rx_stats.hardway_register_count,
r_xprt->rx_stats.failed_marshal_count,
r_xprt->rx_stats.bad_reply_count,
r_xprt->rx_stats.nomsg_call_count);
seq_printf(seq, "%lu %lu %lu %lu %lu %lu\n",
r_xprt->rx_stats.mrs_recovered,
r_xprt->rx_stats.mrs_orphaned,
r_xprt->rx_stats.mrs_allocated,
r_xprt->rx_stats.local_inv_needed,
r_xprt->rx_stats.empty_sendctx_q,
r_xprt->rx_stats.reply_waits_for_send);
}
static int
xprt_rdma_enable_swap(struct rpc_xprt *xprt)
{
return 0;
}
static void
xprt_rdma_disable_swap(struct rpc_xprt *xprt)
{
}
/*
* Plumbing for rpc transport switch and kernel module
*/
static const struct rpc_xprt_ops xprt_rdma_procs = {
.reserve_xprt = xprt_reserve_xprt_cong,
.release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */
.alloc_slot = xprt_rdma_alloc_slot,
.free_slot = xprt_rdma_free_slot,
.release_request = xprt_release_rqst_cong, /* ditto */
.set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */
.timer = xprt_rdma_timer,
.rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */
.set_port = xprt_rdma_set_port,
.connect = xprt_rdma_connect,
.buf_alloc = xprt_rdma_allocate,
.buf_free = xprt_rdma_free,
.send_request = xprt_rdma_send_request,
.close = xprt_rdma_close,
.destroy = xprt_rdma_destroy,
.print_stats = xprt_rdma_print_stats,
.enable_swap = xprt_rdma_enable_swap,
.disable_swap = xprt_rdma_disable_swap,
.inject_disconnect = xprt_rdma_inject_disconnect,
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
.bc_setup = xprt_rdma_bc_setup,
.bc_up = xprt_rdma_bc_up,
.bc_maxpayload = xprt_rdma_bc_maxpayload,
.bc_free_rqst = xprt_rdma_bc_free_rqst,
.bc_destroy = xprt_rdma_bc_destroy,
#endif
};
static struct xprt_class xprt_rdma = {
.list = LIST_HEAD_INIT(xprt_rdma.list),
.name = "rdma",
.owner = THIS_MODULE,
.ident = XPRT_TRANSPORT_RDMA,
.setup = xprt_setup_rdma,
.netid = { "rdma", "rdma6", "" },
};
void xprt_rdma_cleanup(void)
{
int rc;
dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n");
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
if (sunrpc_table_header) {
unregister_sysctl_table(sunrpc_table_header);
sunrpc_table_header = NULL;
}
#endif
rc = xprt_unregister_transport(&xprt_rdma);
if (rc)
dprintk("RPC: %s: xprt_unregister returned %i\n",
__func__, rc);
rpcrdma_destroy_wq();
rc = xprt_unregister_transport(&xprt_rdma_bc);
if (rc)
dprintk("RPC: %s: xprt_unregister(bc) returned %i\n",
__func__, rc);
}
int xprt_rdma_init(void)
{
int rc;
rc = rpcrdma_alloc_wq();
if (rc)
return rc;
rc = xprt_register_transport(&xprt_rdma);
if (rc) {
rpcrdma_destroy_wq();
return rc;
}
rc = xprt_register_transport(&xprt_rdma_bc);
if (rc) {
xprt_unregister_transport(&xprt_rdma);
rpcrdma_destroy_wq();
return rc;
}
dprintk("RPCRDMA Module Init, register RPC RDMA transport\n");
dprintk("Defaults:\n");
dprintk("\tSlots %d\n"
"\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
xprt_rdma_slot_table_entries,
xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
dprintk("\tPadding 0\n\tMemreg %d\n", xprt_rdma_memreg_strategy);
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
if (!sunrpc_table_header)
sunrpc_table_header = register_sysctl_table(sunrpc_table);
#endif
return 0;
}