kernel_samsung_a34x-permissive/kernel/sched/tune.c

1033 lines
26 KiB
C
Raw Normal View History

#include <linux/cgroup.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/percpu.h>
#include <linux/printk.h>
#include <linux/rcupdate.h>
#include <linux/slab.h>
#include <trace/events/sched.h>
#include "sched.h"
bool schedtune_initialized = false;
extern struct reciprocal_value schedtune_spc_rdiv;
/* We hold schedtune boost in effect for at least this long */
#define SCHEDTUNE_BOOST_HOLD_NS 50000000ULL
/*
* EAS scheduler tunables for task groups.
*
* When CGroup support is enabled, we have to synchronize two different
* paths:
* - slow path: where CGroups are created/updated/removed
* - fast path: where tasks in a CGroups are accounted
*
* The slow path tracks (a limited number of) CGroups and maps each on a
* "boost_group" index. The fastpath accounts tasks currently RUNNABLE on each
* "boost_group".
*
* Once a new CGroup is created, a boost group idx is assigned and the
* corresponding "boost_group" marked as valid on each CPU.
* Once a CGroup is release, the corresponding "boost_group" is marked as
* invalid on each CPU. The CPU boost value (boost_max) is aggregated by
* considering only valid boost_groups with a non null tasks counter.
*
* .:: Locking strategy
*
* The fast path uses a spin lock for each CPU boost_group which protects the
* tasks counter.
*
* The "valid" and "boost" values of each CPU boost_group is instead
* protected by the RCU lock provided by the CGroups callbacks. Thus, only the
* slow path can access and modify the boost_group attribtues of each CPU.
* The fast path will catch up the most updated values at the next scheduling
* event (i.e. enqueue/dequeue).
*
* |
* SLOW PATH | FAST PATH
* CGroup add/update/remove | Scheduler enqueue/dequeue events
* |
* |
* | DEFINE_PER_CPU(struct boost_groups)
* | +--------------+----+---+----+----+
* | | idle | | | | |
* | | boost_max | | | | |
* | +---->lock | | | | |
* struct schedtune allocated_groups | | | group[ ] | | | | |
* +------------------------------+ +-------+ | | +--+---------+-+----+---+----+----+
* | idx | | | | | | valid |
* | boots / prefer_idle | | | | | | boost |
* | perf_{boost/constraints}_idx | <---------+(*) | | | | tasks | <------------+
* | css | +-------+ | | +---------+ |
* +-+----------------------------+ | | | | | | |
* ^ | | | | | | |
* | +-------+ | | +---------+ |
* | | | | | | | |
* | | | | | | | |
* | +-------+ | | +---------+ |
* | zmalloc | | | | | | |
* | | | | | | | |
* | +-------+ | | +---------+ |
* + BOOSTGROUPS_COUNT | | BOOSTGROUPS_COUNT |
* schedtune_boostgroup_init() | + |
* | schedtune_{en,de}queue_task() |
* | +
* | schedtune_tasks_update()
* |
*/
/* SchdTune tunables for a group of tasks */
struct schedtune {
/* SchedTune CGroup subsystem */
struct cgroup_subsys_state css;
/* Boost group allocated ID */
int idx;
/* Boost value for tasks on that SchedTune CGroup */
int boost;
/* Hint to bias scheduling of tasks on that SchedTune CGroup
* towards idle CPUs */
int prefer_idle;
#ifdef CONFIG_UCLAMP_TASK_GROUP
/* The two decimal precision [%] value requested from user-space */
unsigned int uclamp_pct[UCLAMP_CNT];
/* Clamp values requested for a task group */
struct uclamp_se uclamp_req[UCLAMP_CNT];
/* Effective clamp values used for a task group */
struct uclamp_se uclamp[UCLAMP_CNT];
#endif
};
static inline struct schedtune *css_st(struct cgroup_subsys_state *css)
{
return css ? container_of(css, struct schedtune, css) : NULL;
}
static inline struct schedtune *task_schedtune(struct task_struct *tsk)
{
return css_st(task_css(tsk, schedtune_cgrp_id));
}
static inline struct schedtune *parent_st(struct schedtune *st)
{
return css_st(st->css.parent);
}
/*
* SchedTune root control group
* The root control group is used to defined a system-wide boosting tuning,
* which is applied to all tasks in the system.
* Task specific boost tuning could be specified by creating and
* configuring a child control group under the root one.
* By default, system-wide boosting is disabled, i.e. no boosting is applied
* to tasks which are not into a child control group.
*/
struct schedtune
root_schedtune = {
.boost = 0,
.prefer_idle = 0,
};
/*
* Maximum number of boost groups to support
* When per-task boosting is used we still allow only limited number of
* boost groups for two main reasons:
* 1. on a real system we usually have only few classes of workloads which
* make sense to boost with different values (e.g. background vs foreground
* tasks, interactive vs low-priority tasks)
* 2. a limited number allows for a simpler and more memory/time efficient
* implementation especially for the computation of the per-CPU boost
* value
*/
#define BOOSTGROUPS_COUNT 6
/* Array of configured boostgroups */
static struct schedtune *allocated_group[BOOSTGROUPS_COUNT] = {
&root_schedtune,
NULL,
};
static inline bool is_group_idx_valid(int idx)
{
return idx >= 0 && idx < BOOSTGROUPS_COUNT;
}
/* SchedTune boost groups
* Keep track of all the boost groups which impact on CPU, for example when a
* CPU has two RUNNABLE tasks belonging to two different boost groups and thus
* likely with different boost values.
* Since on each system we expect only a limited number of boost groups, here
* we use a simple array to keep track of the metrics required to compute the
* maximum per-CPU boosting value.
*/
struct boost_groups {
/* Maximum boost value for all RUNNABLE tasks on a CPU */
int boost_max;
u64 boost_ts;
struct {
/* True when this boost group maps an actual cgroup */
bool valid;
/* The boost for tasks on that boost group */
int boost;
/* Count of RUNNABLE tasks on that boost group */
unsigned tasks;
/* Timestamp of boost activation */
u64 ts;
} group[BOOSTGROUPS_COUNT];
/* CPU's boost group locking */
raw_spinlock_t lock;
};
/* Boost groups affecting each CPU in the system */
DEFINE_PER_CPU(struct boost_groups, cpu_boost_groups);
static inline bool schedtune_boost_timeout(u64 now, u64 ts)
{
return ((now - ts) > SCHEDTUNE_BOOST_HOLD_NS);
}
static inline bool
schedtune_boost_group_active(int idx, struct boost_groups* bg, u64 now)
{
if (bg->group[idx].tasks)
return true;
return !schedtune_boost_timeout(now, bg->group[idx].ts);
}
static void
schedtune_cpu_update(int cpu, u64 now)
{
struct boost_groups *bg = &per_cpu(cpu_boost_groups, cpu);
int boost_max;
u64 boost_ts;
int idx;
/* The root boost group is always active */
boost_max = bg->group[0].boost;
boost_ts = now;
for (idx = 1; idx < BOOSTGROUPS_COUNT; ++idx) {
/* Ignore non boostgroups not mapping a cgroup */
if (!bg->group[idx].valid)
continue;
/*
* A boost group affects a CPU only if it has
* RUNNABLE tasks on that CPU or it has hold
* in effect from a previous task.
*/
if (!schedtune_boost_group_active(idx, bg, now))
continue;
/* This boost group is active */
if (boost_max > bg->group[idx].boost)
continue;
boost_max = bg->group[idx].boost;
boost_ts = bg->group[idx].ts;
}
/* Ensures boost_max is non-negative when all cgroup boost values
* are neagtive. Avoids under-accounting of cpu capacity which may cause
* task stacking and frequency spikes.*/
boost_max = max(boost_max, 0);
bg->boost_max = boost_max;
bg->boost_ts = boost_ts;
}
static int
schedtune_boostgroup_update(int idx, int boost)
{
struct boost_groups *bg;
int cur_boost_max;
int old_boost;
int cpu;
u64 now;
/* Update per CPU boost groups */
for_each_possible_cpu(cpu) {
bg = &per_cpu(cpu_boost_groups, cpu);
/* CGroups are never associated to non active cgroups */
BUG_ON(!bg->group[idx].valid);
/*
* Keep track of current boost values to compute the per CPU
* maximum only when it has been affected by the new value of
* the updated boost group
*/
cur_boost_max = bg->boost_max;
old_boost = bg->group[idx].boost;
/* Update the boost value of this boost group */
bg->group[idx].boost = boost;
/* Check if this update increase current max */
now = sched_clock_cpu(cpu);
if (boost > cur_boost_max &&
schedtune_boost_group_active(idx, bg, now)) {
bg->boost_max = boost;
bg->boost_ts = bg->group[idx].ts;
trace_sched_tune_boostgroup_update(cpu, 1, bg->boost_max);
continue;
}
/* Check if this update has decreased current max */
if (cur_boost_max == old_boost && old_boost > boost) {
schedtune_cpu_update(cpu, now);
trace_sched_tune_boostgroup_update(cpu, -1, bg->boost_max);
continue;
}
trace_sched_tune_boostgroup_update(cpu, 0, bg->boost_max);
}
return 0;
}
#define ENQUEUE_TASK 1
#define DEQUEUE_TASK -1
static inline bool
schedtune_update_timestamp(struct task_struct *p)
{
if (sched_feat(SCHEDTUNE_BOOST_HOLD_ALL))
return true;
return task_has_rt_policy(p);
}
static inline void
schedtune_tasks_update(struct task_struct *p, int cpu, int idx, int task_count)
{
struct boost_groups *bg = &per_cpu(cpu_boost_groups, cpu);
int tasks = bg->group[idx].tasks + task_count;
/* Update boosted tasks count while avoiding to make it negative */
bg->group[idx].tasks = max(0, tasks);
/* Update timeout on enqueue */
if (task_count > 0) {
u64 now = sched_clock_cpu(cpu);
if (schedtune_update_timestamp(p))
bg->group[idx].ts = now;
/* Boost group activation or deactivation on that RQ */
if (bg->group[idx].tasks == 1)
schedtune_cpu_update(cpu, now);
}
trace_sched_tune_tasks_update(p, cpu, tasks, idx,
bg->group[idx].boost, bg->boost_max,
bg->group[idx].ts);
}
/*
* NOTE: This function must be called while holding the lock on the CPU RQ
*/
void schedtune_enqueue_task(struct task_struct *p, int cpu)
{
struct boost_groups *bg = &per_cpu(cpu_boost_groups, cpu);
unsigned long irq_flags;
struct schedtune *st;
int idx;
if (unlikely(!schedtune_initialized))
return;
/*
* Boost group accouting is protected by a per-cpu lock and requires
* interrupt to be disabled to avoid race conditions for example on
* do_exit()::cgroup_exit() and task migration.
*/
raw_spin_lock_irqsave(&bg->lock, irq_flags);
rcu_read_lock();
st = task_schedtune(p);
idx = st->idx;
schedtune_tasks_update(p, cpu, idx, ENQUEUE_TASK);
rcu_read_unlock();
raw_spin_unlock_irqrestore(&bg->lock, irq_flags);
}
int schedtune_can_attach(struct cgroup_taskset *tset)
{
struct task_struct *task;
struct cgroup_subsys_state *css;
struct boost_groups *bg;
struct rq_flags rq_flags;
unsigned int cpu;
struct rq *rq;
int src_bg; /* Source boost group index */
int dst_bg; /* Destination boost group index */
int tasks;
u64 now;
if (unlikely(!schedtune_initialized))
return 0;
cgroup_taskset_for_each(task, css, tset) {
/*
* Lock the CPU's RQ the task is enqueued to avoid race
* conditions with migration code while the task is being
* accounted
*/
rq = task_rq_lock(task, &rq_flags);
if (!task->on_rq) {
task_rq_unlock(rq, task, &rq_flags);
continue;
}
/*
* Boost group accouting is protected by a per-cpu lock and requires
* interrupt to be disabled to avoid race conditions on...
*/
cpu = cpu_of(rq);
bg = &per_cpu(cpu_boost_groups, cpu);
raw_spin_lock(&bg->lock);
dst_bg = css_st(css)->idx;
src_bg = task_schedtune(task)->idx;
/*
* Current task is not changing boostgroup, which can
* happen when the new hierarchy is in use.
*/
if (unlikely(dst_bg == src_bg)) {
raw_spin_unlock(&bg->lock);
task_rq_unlock(rq, task, &rq_flags);
continue;
}
/*
* This is the case of a RUNNABLE task which is switching its
* current boost group.
*/
/* Move task from src to dst boost group */
tasks = bg->group[src_bg].tasks - 1;
bg->group[src_bg].tasks = max(0, tasks);
bg->group[dst_bg].tasks += 1;
/* Update boost hold start for this group */
now = sched_clock_cpu(cpu);
bg->group[dst_bg].ts = now;
/* Force boost group re-evaluation at next boost check */
bg->boost_ts = now - SCHEDTUNE_BOOST_HOLD_NS;
raw_spin_unlock(&bg->lock);
task_rq_unlock(rq, task, &rq_flags);
}
return 0;
}
void schedtune_cancel_attach(struct cgroup_taskset *tset)
{
/* This can happen only if SchedTune controller is mounted with
* other hierarchies ane one of them fails. Since usually SchedTune is
* mouted on its own hierarcy, for the time being we do not implement
* a proper rollback mechanism */
WARN(1, "SchedTune cancel attach not implemented");
}
/*
* NOTE: This function must be called while holding the lock on the CPU RQ
*/
void schedtune_dequeue_task(struct task_struct *p, int cpu)
{
struct boost_groups *bg = &per_cpu(cpu_boost_groups, cpu);
unsigned long irq_flags;
struct schedtune *st;
int idx;
if (unlikely(!schedtune_initialized))
return;
/*
* Boost group accouting is protected by a per-cpu lock and requires
* interrupt to be disabled to avoid race conditions on...
*/
raw_spin_lock_irqsave(&bg->lock, irq_flags);
rcu_read_lock();
st = task_schedtune(p);
idx = st->idx;
schedtune_tasks_update(p, cpu, idx, DEQUEUE_TASK);
rcu_read_unlock();
raw_spin_unlock_irqrestore(&bg->lock, irq_flags);
}
int schedtune_cpu_boost(int cpu)
{
struct boost_groups *bg;
u64 now;
bg = &per_cpu(cpu_boost_groups, cpu);
now = sched_clock_cpu(cpu);
/* Check to see if we have a hold in effect */
if (schedtune_boost_timeout(now, bg->boost_ts))
schedtune_cpu_update(cpu, now);
return bg->boost_max;
}
int schedtune_task_boost(struct task_struct *p)
{
struct schedtune *st;
int task_boost;
if (unlikely(!schedtune_initialized))
return 0;
/* Get task boost value */
rcu_read_lock();
st = task_schedtune(p);
task_boost = st->boost;
rcu_read_unlock();
return task_boost;
}
int schedtune_prefer_idle(struct task_struct *p)
{
struct schedtune *st;
int prefer_idle;
if (unlikely(!schedtune_initialized))
return 0;
/* Get prefer_idle value */
rcu_read_lock();
st = task_schedtune(p);
prefer_idle = st->prefer_idle;
rcu_read_unlock();
return prefer_idle;
}
#ifdef CONFIG_UCLAMP_TASK_GROUP
void init_root_st_uclamp(int clamp_id)
{
struct uclamp_se uc_max = {};
uc_max.value = uclamp_none(UCLAMP_MAX);
uc_max.bucket_id = uclamp_bucket_id(uc_max.value);
uc_max.user_defined = false;
root_schedtune.uclamp_req[clamp_id] = uc_max;
root_schedtune.uclamp[clamp_id] = uc_max;
}
struct uclamp_se
uclamp_st_restrict(struct task_struct *p, enum uclamp_id clamp_id)
{
struct uclamp_se uc_req = p->uclamp_req[clamp_id];
struct uclamp_se uc_max;
rcu_read_lock();
/*
* Tasks in autogroups or root task group will be
* restricted by system defaults.
*/
if (task_schedtune(p) == &root_schedtune)
goto unlock;
uc_max = task_schedtune(p)->uclamp[clamp_id];
if (UCLAMP_MIN == clamp_id && 0 == uc_max.value)
goto unlock;
if (!uc_req.user_defined || (uc_req.value != uc_max.value &&
uc_max.value != uclamp_none(clamp_id))) {
rcu_read_unlock();
return uc_max;
}
unlock:
rcu_read_unlock();
return uc_req;
}
static inline void alloc_uclamp_sched_group(struct schedtune *st,
struct schedtune *parent)
{
enum uclamp_id clamp_id;
for_each_clamp_id(clamp_id) {
uclamp_se_set(&st->uclamp_req[clamp_id],
uclamp_none(clamp_id), false);
st->uclamp[clamp_id] = parent->uclamp[clamp_id];
}
}
#endif
static u64
prefer_idle_read(struct cgroup_subsys_state *css, struct cftype *cft)
{
struct schedtune *st = css_st(css);
return st->prefer_idle;
}
static int
prefer_idle_write(struct cgroup_subsys_state *css, struct cftype *cft,
u64 prefer_idle)
{
struct schedtune *st = css_st(css);
st->prefer_idle = !!prefer_idle;
return 0;
}
static s64
boost_read(struct cgroup_subsys_state *css, struct cftype *cft)
{
struct schedtune *st = css_st(css);
return st->boost;
}
static int
boost_write(struct cgroup_subsys_state *css, struct cftype *cft,
s64 boost)
{
struct schedtune *st = css_st(css);
if (boost < 0 || boost > 100)
return -EINVAL;
st->boost = boost;
/* Update CPU boost */
schedtune_boostgroup_update(st->idx, st->boost);
return 0;
}
#ifdef CONFIG_UCLAMP_TASK_GROUP
static void cpu_util_update_eff(struct cgroup_subsys_state *css)
{
struct cgroup_subsys_state *top_css = css;
struct uclamp_se *uc_se = NULL;
unsigned int eff[UCLAMP_CNT];
enum uclamp_id clamp_id;
unsigned int clamps;
css_for_each_descendant_pre(css, top_css) {
for_each_clamp_id(clamp_id) {
/* Assume effective clamps matches requested clamps */
eff[clamp_id] = css_st(css)->uclamp_req[clamp_id].value;
}
/* Ensure protection is always capped by limit */
eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
/* Propagate most restrictive effective clamps */
clamps = 0x0;
uc_se = css_st(css)->uclamp;
for_each_clamp_id(clamp_id) {
if (eff[clamp_id] == uc_se[clamp_id].value)
continue;
uc_se[clamp_id].value = eff[clamp_id];
uc_se[clamp_id].bucket_id =
uclamp_bucket_id(eff[clamp_id]);
clamps |= (0x1 << clamp_id);
}
if (!clamps) {
css = css_rightmost_descendant(css);
continue;
}
/* Immediately update descendants RUNNABLE tasks */
uclamp_update_active_tasks(css, clamps);
}
}
void uclamp_update_root_st(void)
{
struct schedtune *st = &root_schedtune;
uclamp_se_set(&st->uclamp_req[UCLAMP_MIN],
sysctl_sched_uclamp_util_min, false);
uclamp_se_set(&st->uclamp_req[UCLAMP_MAX],
sysctl_sched_uclamp_util_max, false);
rcu_read_lock();
cpu_util_update_eff(&root_schedtune.css);
rcu_read_unlock();
}
/*
* Integer 10^N with a given N exponent by casting to integer the literal "1eN"
* C expression. Since there is no way to convert a macro argument (N) into a
* character constant, use two levels of macros.
*/
#define _POW10(exp) ((unsigned int)1e##exp)
#define POW10(exp) _POW10(exp)
struct uclamp_request {
#define UCLAMP_PERCENT_SHIFT 2
#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
s64 percent;
u64 util;
int ret;
};
static inline struct uclamp_request
capacity_from_percent(char *buf)
{
struct uclamp_request req = {
.percent = UCLAMP_PERCENT_SCALE,
.util = SCHED_CAPACITY_SCALE,
.ret = 0,
};
buf = strim(buf);
if (strcmp(buf, "max")) {
req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
&req.percent);
if (req.ret)
return req;
if (req.percent > UCLAMP_PERCENT_SCALE) {
req.ret = -ERANGE;
return req;
}
req.util = req.percent << SCHED_CAPACITY_SHIFT;
req.util =
DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
}
return req;
}
static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
size_t nbytes, loff_t off,
enum uclamp_id clamp_id)
{
struct uclamp_request req;
struct schedtune *st;
req = capacity_from_percent(buf);
if (req.ret)
return req.ret;
mutex_lock(&uclamp_mutex);
rcu_read_lock();
st = css_st(of_css(of));
if (st->uclamp_req[clamp_id].value != req.util)
uclamp_se_set(&st->uclamp_req[clamp_id], req.util, false);
/*
* Because of not recoverable conversion rounding we keep track of the
* exact requested value
*/
st->uclamp_pct[clamp_id] = req.percent;
/* Update effective clamps to track the most restrictive value */
cpu_util_update_eff(of_css(of));
rcu_read_unlock();
mutex_unlock(&uclamp_mutex);
return nbytes;
}
static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
char *buf, size_t nbytes,
loff_t off)
{
return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
}
static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
char *buf, size_t nbytes,
loff_t off)
{
return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
}
static inline void cpu_uclamp_print(struct seq_file *sf,
enum uclamp_id clamp_id)
{
struct schedtune *st;
u64 util_clamp;
u64 percent;
u32 rem;
rcu_read_lock();
st = css_st(seq_css(sf));
util_clamp = st->uclamp_req[clamp_id].value;
rcu_read_unlock();
if (util_clamp == SCHED_CAPACITY_SCALE) {
seq_puts(sf, "max\n");
return;
}
percent = st->uclamp_pct[clamp_id];
percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
}
static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
{
cpu_uclamp_print(sf, UCLAMP_MIN);
return 0;
}
static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
{
cpu_uclamp_print(sf, UCLAMP_MAX);
return 0;
}
#endif
static struct cftype files[] = {
{
.name = "boost",
.read_s64 = boost_read,
.write_s64 = boost_write,
},
{
.name = "prefer_idle",
.read_u64 = prefer_idle_read,
.write_u64 = prefer_idle_write,
},
#ifdef CONFIG_UCLAMP_TASK_GROUP
{
.name = "uclamp.min",
.flags = CFTYPE_NOT_ON_ROOT,
.seq_show = cpu_uclamp_min_show,
.write = cpu_uclamp_min_write,
},
{
.name = "uclamp.max",
.flags = CFTYPE_NOT_ON_ROOT,
.seq_show = cpu_uclamp_max_show,
.write = cpu_uclamp_max_write,
},
#endif
{ } /* terminate */
};
static void
schedtune_boostgroup_init(struct schedtune *st, int idx)
{
struct boost_groups *bg;
int cpu;
/* Initialize per CPUs boost group support */
for_each_possible_cpu(cpu) {
bg = &per_cpu(cpu_boost_groups, cpu);
bg->group[idx].boost = 0;
bg->group[idx].valid = true;
bg->group[idx].ts = 0;
}
/* Keep track of allocated boost groups */
allocated_group[idx] = st;
st->idx = idx;
}
static struct cgroup_subsys_state *
schedtune_css_alloc(struct cgroup_subsys_state *parent_css)
{
#ifdef CONFIG_UCLAMP_TASK_GROUP
struct schedtune *parent = parent_css ? css_st(parent_css) : NULL;
#endif
struct schedtune *st;
int idx;
if (!parent_css)
return &root_schedtune.css;
/* Allow only single level hierachies */
if (parent_css != &root_schedtune.css) {
pr_err("Nested SchedTune boosting groups not allowed\n");
return ERR_PTR(-ENOMEM);
}
/* Allow only a limited number of boosting groups */
for (idx = 1; idx < BOOSTGROUPS_COUNT; ++idx)
if (!allocated_group[idx])
break;
if (idx == BOOSTGROUPS_COUNT) {
pr_err("Trying to create more than %d SchedTune boosting groups\n",
BOOSTGROUPS_COUNT);
return ERR_PTR(-ENOSPC);
}
st = kzalloc(sizeof(*st), GFP_KERNEL);
if (!st)
goto out;
#ifdef CONFIG_UCLAMP_TASK_GROUP
alloc_uclamp_sched_group(st, parent);
#endif
/* Initialize per CPUs boost group support */
schedtune_boostgroup_init(st, idx);
return &st->css;
out:
return ERR_PTR(-ENOMEM);
}
static void
schedtune_boostgroup_release(struct schedtune *st)
{
struct boost_groups *bg;
int cpu;
/* Reset per CPUs boost group support */
for_each_possible_cpu(cpu) {
bg = &per_cpu(cpu_boost_groups, cpu);
bg->group[st->idx].valid = false;
bg->group[st->idx].boost = 0;
}
/* Keep track of allocated boost groups */
allocated_group[st->idx] = NULL;
}
static void
schedtune_css_free(struct cgroup_subsys_state *css)
{
struct schedtune *st = css_st(css);
/* Release per CPUs boost group support */
schedtune_boostgroup_release(st);
kfree(st);
}
struct cgroup_subsys schedtune_cgrp_subsys = {
.css_alloc = schedtune_css_alloc,
.css_free = schedtune_css_free,
.can_attach = schedtune_can_attach,
.cancel_attach = schedtune_cancel_attach,
.legacy_cftypes = files,
.early_init = 1,
};
static inline void
schedtune_init_cgroups(void)
{
struct boost_groups *bg;
int cpu;
/* Initialize the per CPU boost groups */
for_each_possible_cpu(cpu) {
bg = &per_cpu(cpu_boost_groups, cpu);
memset(bg, 0, sizeof(struct boost_groups));
bg->group[0].valid = true;
raw_spin_lock_init(&bg->lock);
}
pr_info("schedtune: configured to support %d boost groups\n",
BOOSTGROUPS_COUNT);
schedtune_initialized = true;
}
#ifdef CONFIG_SCHED_TUNE
int prefer_idle_for_perf_idx(int idx, int prefer_idle)
{
struct schedtune *ct = NULL;
if (!is_group_idx_valid(idx))
return -ERANGE;
ct = allocated_group[idx];
if (!ct)
return -EINVAL;
rcu_read_lock();
ct->prefer_idle = prefer_idle;
rcu_read_unlock();
return 0;
}
EXPORT_SYMBOL(prefer_idle_for_perf_idx);
#endif
#if defined(CONFIG_UCLAMP_TASK_GROUP) && defined(CONFIG_SCHED_TUNE)
int uclamp_min_for_perf_idx(int idx, int min_value)
{
struct schedtune *st;
struct cgroup_subsys_state *css;
s64 percent = min_value * UCLAMP_PERCENT_SCALE;
if (min_value > SCHED_CAPACITY_SCALE)
return -ERANGE;
if (!is_group_idx_valid(idx))
return -ERANGE;
st = allocated_group[idx];
if (!st)
return -EINVAL;
css = &st->css;
mutex_lock(&uclamp_mutex);
rcu_read_lock();
if (st->uclamp_req[UCLAMP_MIN].value != min_value)
uclamp_se_set(&st->uclamp_req[UCLAMP_MIN], min_value, false);
st->uclamp_pct[UCLAMP_MIN] = percent >> SCHED_CAPACITY_SHIFT;
cpu_util_update_eff(css);
rcu_read_unlock();
mutex_unlock(&uclamp_mutex);
return 0;
}
EXPORT_SYMBOL(uclamp_min_for_perf_idx);
int uclamp_min_pct_for_perf_idx(int idx, int pct)
{
unsigned int min_value;
if (pct < 0 || pct > 100)
return -ERANGE;
min_value = scale_from_percent(pct);
return uclamp_min_for_perf_idx(idx, min_value);
}
EXPORT_SYMBOL(uclamp_min_pct_for_perf_idx);
#endif
/*
* Initialize the cgroup structures
*/
static int
schedtune_init(void)
{
schedtune_spc_rdiv = reciprocal_value(100);
schedtune_init_cgroups();
return 0;
}
postcore_initcall(schedtune_init);