756 lines
20 KiB
C
756 lines
20 KiB
C
|
/*
|
||
|
* This file is part of the Chelsio T4 Ethernet driver for Linux.
|
||
|
*
|
||
|
* Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
|
||
|
*
|
||
|
* This software is available to you under a choice of one of two
|
||
|
* licenses. You may choose to be licensed under the terms of the GNU
|
||
|
* General Public License (GPL) Version 2, available from the file
|
||
|
* COPYING in the main directory of this source tree, or the
|
||
|
* OpenIB.org BSD license below:
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or
|
||
|
* without modification, are permitted provided that the following
|
||
|
* conditions are met:
|
||
|
*
|
||
|
* - Redistributions of source code must retain the above
|
||
|
* copyright notice, this list of conditions and the following
|
||
|
* disclaimer.
|
||
|
*
|
||
|
* - Redistributions in binary form must reproduce the above
|
||
|
* copyright notice, this list of conditions and the following
|
||
|
* disclaimer in the documentation and/or other materials
|
||
|
* provided with the distribution.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
* SOFTWARE.
|
||
|
*/
|
||
|
|
||
|
#include <linux/skbuff.h>
|
||
|
#include <linux/netdevice.h>
|
||
|
#include <linux/if.h>
|
||
|
#include <linux/if_vlan.h>
|
||
|
#include <linux/jhash.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/debugfs.h>
|
||
|
#include <linux/seq_file.h>
|
||
|
#include <net/neighbour.h>
|
||
|
#include "cxgb4.h"
|
||
|
#include "l2t.h"
|
||
|
#include "t4_msg.h"
|
||
|
#include "t4fw_api.h"
|
||
|
#include "t4_regs.h"
|
||
|
#include "t4_values.h"
|
||
|
|
||
|
/* identifies sync vs async L2T_WRITE_REQs */
|
||
|
#define SYNC_WR_S 12
|
||
|
#define SYNC_WR_V(x) ((x) << SYNC_WR_S)
|
||
|
#define SYNC_WR_F SYNC_WR_V(1)
|
||
|
|
||
|
struct l2t_data {
|
||
|
unsigned int l2t_start; /* start index of our piece of the L2T */
|
||
|
unsigned int l2t_size; /* number of entries in l2tab */
|
||
|
rwlock_t lock;
|
||
|
atomic_t nfree; /* number of free entries */
|
||
|
struct l2t_entry *rover; /* starting point for next allocation */
|
||
|
struct l2t_entry l2tab[0]; /* MUST BE LAST */
|
||
|
};
|
||
|
|
||
|
static inline unsigned int vlan_prio(const struct l2t_entry *e)
|
||
|
{
|
||
|
return e->vlan >> VLAN_PRIO_SHIFT;
|
||
|
}
|
||
|
|
||
|
static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e)
|
||
|
{
|
||
|
if (atomic_add_return(1, &e->refcnt) == 1) /* 0 -> 1 transition */
|
||
|
atomic_dec(&d->nfree);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* To avoid having to check address families we do not allow v4 and v6
|
||
|
* neighbors to be on the same hash chain. We keep v4 entries in the first
|
||
|
* half of available hash buckets and v6 in the second. We need at least two
|
||
|
* entries in our L2T for this scheme to work.
|
||
|
*/
|
||
|
enum {
|
||
|
L2T_MIN_HASH_BUCKETS = 2,
|
||
|
};
|
||
|
|
||
|
static inline unsigned int arp_hash(struct l2t_data *d, const u32 *key,
|
||
|
int ifindex)
|
||
|
{
|
||
|
unsigned int l2t_size_half = d->l2t_size / 2;
|
||
|
|
||
|
return jhash_2words(*key, ifindex, 0) % l2t_size_half;
|
||
|
}
|
||
|
|
||
|
static inline unsigned int ipv6_hash(struct l2t_data *d, const u32 *key,
|
||
|
int ifindex)
|
||
|
{
|
||
|
unsigned int l2t_size_half = d->l2t_size / 2;
|
||
|
u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3];
|
||
|
|
||
|
return (l2t_size_half +
|
||
|
(jhash_2words(xor, ifindex, 0) % l2t_size_half));
|
||
|
}
|
||
|
|
||
|
static unsigned int addr_hash(struct l2t_data *d, const u32 *addr,
|
||
|
int addr_len, int ifindex)
|
||
|
{
|
||
|
return addr_len == 4 ? arp_hash(d, addr, ifindex) :
|
||
|
ipv6_hash(d, addr, ifindex);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Checks if an L2T entry is for the given IP/IPv6 address. It does not check
|
||
|
* whether the L2T entry and the address are of the same address family.
|
||
|
* Callers ensure an address is only checked against L2T entries of the same
|
||
|
* family, something made trivial by the separation of IP and IPv6 hash chains
|
||
|
* mentioned above. Returns 0 if there's a match,
|
||
|
*/
|
||
|
static int addreq(const struct l2t_entry *e, const u32 *addr)
|
||
|
{
|
||
|
if (e->v6)
|
||
|
return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) |
|
||
|
(e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]);
|
||
|
return e->addr[0] ^ addr[0];
|
||
|
}
|
||
|
|
||
|
static void neigh_replace(struct l2t_entry *e, struct neighbour *n)
|
||
|
{
|
||
|
neigh_hold(n);
|
||
|
if (e->neigh)
|
||
|
neigh_release(e->neigh);
|
||
|
e->neigh = n;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Write an L2T entry. Must be called with the entry locked.
|
||
|
* The write may be synchronous or asynchronous.
|
||
|
*/
|
||
|
static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync)
|
||
|
{
|
||
|
struct l2t_data *d = adap->l2t;
|
||
|
unsigned int l2t_idx = e->idx + d->l2t_start;
|
||
|
struct sk_buff *skb;
|
||
|
struct cpl_l2t_write_req *req;
|
||
|
|
||
|
skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
|
||
|
if (!skb)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
req = __skb_put(skb, sizeof(*req));
|
||
|
INIT_TP_WR(req, 0);
|
||
|
|
||
|
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ,
|
||
|
l2t_idx | (sync ? SYNC_WR_F : 0) |
|
||
|
TID_QID_V(adap->sge.fw_evtq.abs_id)));
|
||
|
req->params = htons(L2T_W_PORT_V(e->lport) | L2T_W_NOREPLY_V(!sync));
|
||
|
req->l2t_idx = htons(l2t_idx);
|
||
|
req->vlan = htons(e->vlan);
|
||
|
if (e->neigh && !(e->neigh->dev->flags & IFF_LOOPBACK))
|
||
|
memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
|
||
|
memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
|
||
|
|
||
|
t4_mgmt_tx(adap, skb);
|
||
|
|
||
|
if (sync && e->state != L2T_STATE_SWITCHING)
|
||
|
e->state = L2T_STATE_SYNC_WRITE;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Send packets waiting in an L2T entry's ARP queue. Must be called with the
|
||
|
* entry locked.
|
||
|
*/
|
||
|
static void send_pending(struct adapter *adap, struct l2t_entry *e)
|
||
|
{
|
||
|
struct sk_buff *skb;
|
||
|
|
||
|
while ((skb = __skb_dequeue(&e->arpq)) != NULL)
|
||
|
t4_ofld_send(adap, skb);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Process a CPL_L2T_WRITE_RPL. Wake up the ARP queue if it completes a
|
||
|
* synchronous L2T_WRITE. Note that the TID in the reply is really the L2T
|
||
|
* index it refers to.
|
||
|
*/
|
||
|
void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl)
|
||
|
{
|
||
|
struct l2t_data *d = adap->l2t;
|
||
|
unsigned int tid = GET_TID(rpl);
|
||
|
unsigned int l2t_idx = tid % L2T_SIZE;
|
||
|
|
||
|
if (unlikely(rpl->status != CPL_ERR_NONE)) {
|
||
|
dev_err(adap->pdev_dev,
|
||
|
"Unexpected L2T_WRITE_RPL status %u for entry %u\n",
|
||
|
rpl->status, l2t_idx);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (tid & SYNC_WR_F) {
|
||
|
struct l2t_entry *e = &d->l2tab[l2t_idx - d->l2t_start];
|
||
|
|
||
|
spin_lock(&e->lock);
|
||
|
if (e->state != L2T_STATE_SWITCHING) {
|
||
|
send_pending(adap, e);
|
||
|
e->state = (e->neigh->nud_state & NUD_STALE) ?
|
||
|
L2T_STATE_STALE : L2T_STATE_VALID;
|
||
|
}
|
||
|
spin_unlock(&e->lock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Add a packet to an L2T entry's queue of packets awaiting resolution.
|
||
|
* Must be called with the entry's lock held.
|
||
|
*/
|
||
|
static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
|
||
|
{
|
||
|
__skb_queue_tail(&e->arpq, skb);
|
||
|
}
|
||
|
|
||
|
int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb,
|
||
|
struct l2t_entry *e)
|
||
|
{
|
||
|
struct adapter *adap = netdev2adap(dev);
|
||
|
|
||
|
again:
|
||
|
switch (e->state) {
|
||
|
case L2T_STATE_STALE: /* entry is stale, kick off revalidation */
|
||
|
neigh_event_send(e->neigh, NULL);
|
||
|
spin_lock_bh(&e->lock);
|
||
|
if (e->state == L2T_STATE_STALE)
|
||
|
e->state = L2T_STATE_VALID;
|
||
|
spin_unlock_bh(&e->lock);
|
||
|
/* fall through */
|
||
|
case L2T_STATE_VALID: /* fast-path, send the packet on */
|
||
|
return t4_ofld_send(adap, skb);
|
||
|
case L2T_STATE_RESOLVING:
|
||
|
case L2T_STATE_SYNC_WRITE:
|
||
|
spin_lock_bh(&e->lock);
|
||
|
if (e->state != L2T_STATE_SYNC_WRITE &&
|
||
|
e->state != L2T_STATE_RESOLVING) {
|
||
|
spin_unlock_bh(&e->lock);
|
||
|
goto again;
|
||
|
}
|
||
|
arpq_enqueue(e, skb);
|
||
|
spin_unlock_bh(&e->lock);
|
||
|
|
||
|
if (e->state == L2T_STATE_RESOLVING &&
|
||
|
!neigh_event_send(e->neigh, NULL)) {
|
||
|
spin_lock_bh(&e->lock);
|
||
|
if (e->state == L2T_STATE_RESOLVING &&
|
||
|
!skb_queue_empty(&e->arpq))
|
||
|
write_l2e(adap, e, 1);
|
||
|
spin_unlock_bh(&e->lock);
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(cxgb4_l2t_send);
|
||
|
|
||
|
/*
|
||
|
* Allocate a free L2T entry. Must be called with l2t_data.lock held.
|
||
|
*/
|
||
|
static struct l2t_entry *alloc_l2e(struct l2t_data *d)
|
||
|
{
|
||
|
struct l2t_entry *end, *e, **p;
|
||
|
|
||
|
if (!atomic_read(&d->nfree))
|
||
|
return NULL;
|
||
|
|
||
|
/* there's definitely a free entry */
|
||
|
for (e = d->rover, end = &d->l2tab[d->l2t_size]; e != end; ++e)
|
||
|
if (atomic_read(&e->refcnt) == 0)
|
||
|
goto found;
|
||
|
|
||
|
for (e = d->l2tab; atomic_read(&e->refcnt); ++e)
|
||
|
;
|
||
|
found:
|
||
|
d->rover = e + 1;
|
||
|
atomic_dec(&d->nfree);
|
||
|
|
||
|
/*
|
||
|
* The entry we found may be an inactive entry that is
|
||
|
* presently in the hash table. We need to remove it.
|
||
|
*/
|
||
|
if (e->state < L2T_STATE_SWITCHING)
|
||
|
for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
|
||
|
if (*p == e) {
|
||
|
*p = e->next;
|
||
|
e->next = NULL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
e->state = L2T_STATE_UNUSED;
|
||
|
return e;
|
||
|
}
|
||
|
|
||
|
static struct l2t_entry *find_or_alloc_l2e(struct l2t_data *d, u16 vlan,
|
||
|
u8 port, u8 *dmac)
|
||
|
{
|
||
|
struct l2t_entry *end, *e, **p;
|
||
|
struct l2t_entry *first_free = NULL;
|
||
|
|
||
|
for (e = &d->l2tab[0], end = &d->l2tab[d->l2t_size]; e != end; ++e) {
|
||
|
if (atomic_read(&e->refcnt) == 0) {
|
||
|
if (!first_free)
|
||
|
first_free = e;
|
||
|
} else {
|
||
|
if (e->state == L2T_STATE_SWITCHING) {
|
||
|
if (ether_addr_equal(e->dmac, dmac) &&
|
||
|
(e->vlan == vlan) && (e->lport == port))
|
||
|
goto exists;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (first_free) {
|
||
|
e = first_free;
|
||
|
goto found;
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
|
||
|
found:
|
||
|
/* The entry we found may be an inactive entry that is
|
||
|
* presently in the hash table. We need to remove it.
|
||
|
*/
|
||
|
if (e->state < L2T_STATE_SWITCHING)
|
||
|
for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
|
||
|
if (*p == e) {
|
||
|
*p = e->next;
|
||
|
e->next = NULL;
|
||
|
break;
|
||
|
}
|
||
|
e->state = L2T_STATE_UNUSED;
|
||
|
|
||
|
exists:
|
||
|
return e;
|
||
|
}
|
||
|
|
||
|
/* Called when an L2T entry has no more users. The entry is left in the hash
|
||
|
* table since it is likely to be reused but we also bump nfree to indicate
|
||
|
* that the entry can be reallocated for a different neighbor. We also drop
|
||
|
* the existing neighbor reference in case the neighbor is going away and is
|
||
|
* waiting on our reference.
|
||
|
*
|
||
|
* Because entries can be reallocated to other neighbors once their ref count
|
||
|
* drops to 0 we need to take the entry's lock to avoid races with a new
|
||
|
* incarnation.
|
||
|
*/
|
||
|
static void _t4_l2e_free(struct l2t_entry *e)
|
||
|
{
|
||
|
struct l2t_data *d;
|
||
|
struct sk_buff *skb;
|
||
|
|
||
|
if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */
|
||
|
if (e->neigh) {
|
||
|
neigh_release(e->neigh);
|
||
|
e->neigh = NULL;
|
||
|
}
|
||
|
while ((skb = __skb_dequeue(&e->arpq)) != NULL)
|
||
|
kfree_skb(skb);
|
||
|
}
|
||
|
|
||
|
d = container_of(e, struct l2t_data, l2tab[e->idx]);
|
||
|
atomic_inc(&d->nfree);
|
||
|
}
|
||
|
|
||
|
/* Locked version of _t4_l2e_free */
|
||
|
static void t4_l2e_free(struct l2t_entry *e)
|
||
|
{
|
||
|
struct l2t_data *d;
|
||
|
struct sk_buff *skb;
|
||
|
|
||
|
spin_lock_bh(&e->lock);
|
||
|
if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */
|
||
|
if (e->neigh) {
|
||
|
neigh_release(e->neigh);
|
||
|
e->neigh = NULL;
|
||
|
}
|
||
|
while ((skb = __skb_dequeue(&e->arpq)) != NULL)
|
||
|
kfree_skb(skb);
|
||
|
}
|
||
|
spin_unlock_bh(&e->lock);
|
||
|
|
||
|
d = container_of(e, struct l2t_data, l2tab[e->idx]);
|
||
|
atomic_inc(&d->nfree);
|
||
|
}
|
||
|
|
||
|
void cxgb4_l2t_release(struct l2t_entry *e)
|
||
|
{
|
||
|
if (atomic_dec_and_test(&e->refcnt))
|
||
|
t4_l2e_free(e);
|
||
|
}
|
||
|
EXPORT_SYMBOL(cxgb4_l2t_release);
|
||
|
|
||
|
/*
|
||
|
* Update an L2T entry that was previously used for the same next hop as neigh.
|
||
|
* Must be called with softirqs disabled.
|
||
|
*/
|
||
|
static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
|
||
|
{
|
||
|
unsigned int nud_state;
|
||
|
|
||
|
spin_lock(&e->lock); /* avoid race with t4_l2t_free */
|
||
|
if (neigh != e->neigh)
|
||
|
neigh_replace(e, neigh);
|
||
|
nud_state = neigh->nud_state;
|
||
|
if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
|
||
|
!(nud_state & NUD_VALID))
|
||
|
e->state = L2T_STATE_RESOLVING;
|
||
|
else if (nud_state & NUD_CONNECTED)
|
||
|
e->state = L2T_STATE_VALID;
|
||
|
else
|
||
|
e->state = L2T_STATE_STALE;
|
||
|
spin_unlock(&e->lock);
|
||
|
}
|
||
|
|
||
|
struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh,
|
||
|
const struct net_device *physdev,
|
||
|
unsigned int priority)
|
||
|
{
|
||
|
u8 lport;
|
||
|
u16 vlan;
|
||
|
struct l2t_entry *e;
|
||
|
unsigned int addr_len = neigh->tbl->key_len;
|
||
|
u32 *addr = (u32 *)neigh->primary_key;
|
||
|
int ifidx = neigh->dev->ifindex;
|
||
|
int hash = addr_hash(d, addr, addr_len, ifidx);
|
||
|
|
||
|
if (neigh->dev->flags & IFF_LOOPBACK)
|
||
|
lport = netdev2pinfo(physdev)->tx_chan + 4;
|
||
|
else
|
||
|
lport = netdev2pinfo(physdev)->lport;
|
||
|
|
||
|
if (is_vlan_dev(neigh->dev))
|
||
|
vlan = vlan_dev_vlan_id(neigh->dev);
|
||
|
else
|
||
|
vlan = VLAN_NONE;
|
||
|
|
||
|
write_lock_bh(&d->lock);
|
||
|
for (e = d->l2tab[hash].first; e; e = e->next)
|
||
|
if (!addreq(e, addr) && e->ifindex == ifidx &&
|
||
|
e->vlan == vlan && e->lport == lport) {
|
||
|
l2t_hold(d, e);
|
||
|
if (atomic_read(&e->refcnt) == 1)
|
||
|
reuse_entry(e, neigh);
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
/* Need to allocate a new entry */
|
||
|
e = alloc_l2e(d);
|
||
|
if (e) {
|
||
|
spin_lock(&e->lock); /* avoid race with t4_l2t_free */
|
||
|
e->state = L2T_STATE_RESOLVING;
|
||
|
if (neigh->dev->flags & IFF_LOOPBACK)
|
||
|
memcpy(e->dmac, physdev->dev_addr, sizeof(e->dmac));
|
||
|
memcpy(e->addr, addr, addr_len);
|
||
|
e->ifindex = ifidx;
|
||
|
e->hash = hash;
|
||
|
e->lport = lport;
|
||
|
e->v6 = addr_len == 16;
|
||
|
atomic_set(&e->refcnt, 1);
|
||
|
neigh_replace(e, neigh);
|
||
|
e->vlan = vlan;
|
||
|
e->next = d->l2tab[hash].first;
|
||
|
d->l2tab[hash].first = e;
|
||
|
spin_unlock(&e->lock);
|
||
|
}
|
||
|
done:
|
||
|
write_unlock_bh(&d->lock);
|
||
|
return e;
|
||
|
}
|
||
|
EXPORT_SYMBOL(cxgb4_l2t_get);
|
||
|
|
||
|
u64 cxgb4_select_ntuple(struct net_device *dev,
|
||
|
const struct l2t_entry *l2t)
|
||
|
{
|
||
|
struct adapter *adap = netdev2adap(dev);
|
||
|
struct tp_params *tp = &adap->params.tp;
|
||
|
u64 ntuple = 0;
|
||
|
|
||
|
/* Initialize each of the fields which we care about which are present
|
||
|
* in the Compressed Filter Tuple.
|
||
|
*/
|
||
|
if (tp->vlan_shift >= 0 && l2t->vlan != VLAN_NONE)
|
||
|
ntuple |= (u64)(FT_VLAN_VLD_F | l2t->vlan) << tp->vlan_shift;
|
||
|
|
||
|
if (tp->port_shift >= 0)
|
||
|
ntuple |= (u64)l2t->lport << tp->port_shift;
|
||
|
|
||
|
if (tp->protocol_shift >= 0)
|
||
|
ntuple |= (u64)IPPROTO_TCP << tp->protocol_shift;
|
||
|
|
||
|
if (tp->vnic_shift >= 0 && (tp->ingress_config & VNIC_F)) {
|
||
|
u32 viid = cxgb4_port_viid(dev);
|
||
|
u32 vf = FW_VIID_VIN_G(viid);
|
||
|
u32 pf = FW_VIID_PFN_G(viid);
|
||
|
u32 vld = FW_VIID_VIVLD_G(viid);
|
||
|
|
||
|
ntuple |= (u64)(FT_VNID_ID_VF_V(vf) |
|
||
|
FT_VNID_ID_PF_V(pf) |
|
||
|
FT_VNID_ID_VLD_V(vld)) << tp->vnic_shift;
|
||
|
}
|
||
|
|
||
|
return ntuple;
|
||
|
}
|
||
|
EXPORT_SYMBOL(cxgb4_select_ntuple);
|
||
|
|
||
|
/*
|
||
|
* Called when the host's neighbor layer makes a change to some entry that is
|
||
|
* loaded into the HW L2 table.
|
||
|
*/
|
||
|
void t4_l2t_update(struct adapter *adap, struct neighbour *neigh)
|
||
|
{
|
||
|
unsigned int addr_len = neigh->tbl->key_len;
|
||
|
u32 *addr = (u32 *) neigh->primary_key;
|
||
|
int hash, ifidx = neigh->dev->ifindex;
|
||
|
struct sk_buff_head *arpq = NULL;
|
||
|
struct l2t_data *d = adap->l2t;
|
||
|
struct l2t_entry *e;
|
||
|
|
||
|
hash = addr_hash(d, addr, addr_len, ifidx);
|
||
|
read_lock_bh(&d->lock);
|
||
|
for (e = d->l2tab[hash].first; e; e = e->next)
|
||
|
if (!addreq(e, addr) && e->ifindex == ifidx) {
|
||
|
spin_lock(&e->lock);
|
||
|
if (atomic_read(&e->refcnt))
|
||
|
goto found;
|
||
|
spin_unlock(&e->lock);
|
||
|
break;
|
||
|
}
|
||
|
read_unlock_bh(&d->lock);
|
||
|
return;
|
||
|
|
||
|
found:
|
||
|
read_unlock(&d->lock);
|
||
|
|
||
|
if (neigh != e->neigh)
|
||
|
neigh_replace(e, neigh);
|
||
|
|
||
|
if (e->state == L2T_STATE_RESOLVING) {
|
||
|
if (neigh->nud_state & NUD_FAILED) {
|
||
|
arpq = &e->arpq;
|
||
|
} else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) &&
|
||
|
!skb_queue_empty(&e->arpq)) {
|
||
|
write_l2e(adap, e, 1);
|
||
|
}
|
||
|
} else {
|
||
|
e->state = neigh->nud_state & NUD_CONNECTED ?
|
||
|
L2T_STATE_VALID : L2T_STATE_STALE;
|
||
|
if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)))
|
||
|
write_l2e(adap, e, 0);
|
||
|
}
|
||
|
|
||
|
if (arpq) {
|
||
|
struct sk_buff *skb;
|
||
|
|
||
|
/* Called when address resolution fails for an L2T
|
||
|
* entry to handle packets on the arpq head. If a
|
||
|
* packet specifies a failure handler it is invoked,
|
||
|
* otherwise the packet is sent to the device.
|
||
|
*/
|
||
|
while ((skb = __skb_dequeue(&e->arpq)) != NULL) {
|
||
|
const struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
|
||
|
|
||
|
spin_unlock(&e->lock);
|
||
|
if (cb->arp_err_handler)
|
||
|
cb->arp_err_handler(cb->handle, skb);
|
||
|
else
|
||
|
t4_ofld_send(adap, skb);
|
||
|
spin_lock(&e->lock);
|
||
|
}
|
||
|
}
|
||
|
spin_unlock_bh(&e->lock);
|
||
|
}
|
||
|
|
||
|
/* Allocate an L2T entry for use by a switching rule. Such need to be
|
||
|
* explicitly freed and while busy they are not on any hash chain, so normal
|
||
|
* address resolution updates do not see them.
|
||
|
*/
|
||
|
struct l2t_entry *t4_l2t_alloc_switching(struct adapter *adap, u16 vlan,
|
||
|
u8 port, u8 *eth_addr)
|
||
|
{
|
||
|
struct l2t_data *d = adap->l2t;
|
||
|
struct l2t_entry *e;
|
||
|
int ret;
|
||
|
|
||
|
write_lock_bh(&d->lock);
|
||
|
e = find_or_alloc_l2e(d, vlan, port, eth_addr);
|
||
|
if (e) {
|
||
|
spin_lock(&e->lock); /* avoid race with t4_l2t_free */
|
||
|
if (!atomic_read(&e->refcnt)) {
|
||
|
e->state = L2T_STATE_SWITCHING;
|
||
|
e->vlan = vlan;
|
||
|
e->lport = port;
|
||
|
ether_addr_copy(e->dmac, eth_addr);
|
||
|
atomic_set(&e->refcnt, 1);
|
||
|
ret = write_l2e(adap, e, 0);
|
||
|
if (ret < 0) {
|
||
|
_t4_l2e_free(e);
|
||
|
spin_unlock(&e->lock);
|
||
|
write_unlock_bh(&d->lock);
|
||
|
return NULL;
|
||
|
}
|
||
|
} else {
|
||
|
atomic_inc(&e->refcnt);
|
||
|
}
|
||
|
|
||
|
spin_unlock(&e->lock);
|
||
|
}
|
||
|
write_unlock_bh(&d->lock);
|
||
|
return e;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @dev: net_device pointer
|
||
|
* @vlan: VLAN Id
|
||
|
* @port: Associated port
|
||
|
* @dmac: Destination MAC address to add to L2T
|
||
|
* Returns pointer to the allocated l2t entry
|
||
|
*
|
||
|
* Allocates an L2T entry for use by switching rule of a filter
|
||
|
*/
|
||
|
struct l2t_entry *cxgb4_l2t_alloc_switching(struct net_device *dev, u16 vlan,
|
||
|
u8 port, u8 *dmac)
|
||
|
{
|
||
|
struct adapter *adap = netdev2adap(dev);
|
||
|
|
||
|
return t4_l2t_alloc_switching(adap, vlan, port, dmac);
|
||
|
}
|
||
|
EXPORT_SYMBOL(cxgb4_l2t_alloc_switching);
|
||
|
|
||
|
struct l2t_data *t4_init_l2t(unsigned int l2t_start, unsigned int l2t_end)
|
||
|
{
|
||
|
unsigned int l2t_size;
|
||
|
int i;
|
||
|
struct l2t_data *d;
|
||
|
|
||
|
if (l2t_start >= l2t_end || l2t_end >= L2T_SIZE)
|
||
|
return NULL;
|
||
|
l2t_size = l2t_end - l2t_start + 1;
|
||
|
if (l2t_size < L2T_MIN_HASH_BUCKETS)
|
||
|
return NULL;
|
||
|
|
||
|
d = kvzalloc(sizeof(*d) + l2t_size * sizeof(struct l2t_entry), GFP_KERNEL);
|
||
|
if (!d)
|
||
|
return NULL;
|
||
|
|
||
|
d->l2t_start = l2t_start;
|
||
|
d->l2t_size = l2t_size;
|
||
|
|
||
|
d->rover = d->l2tab;
|
||
|
atomic_set(&d->nfree, l2t_size);
|
||
|
rwlock_init(&d->lock);
|
||
|
|
||
|
for (i = 0; i < d->l2t_size; ++i) {
|
||
|
d->l2tab[i].idx = i;
|
||
|
d->l2tab[i].state = L2T_STATE_UNUSED;
|
||
|
spin_lock_init(&d->l2tab[i].lock);
|
||
|
atomic_set(&d->l2tab[i].refcnt, 0);
|
||
|
skb_queue_head_init(&d->l2tab[i].arpq);
|
||
|
}
|
||
|
return d;
|
||
|
}
|
||
|
|
||
|
static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos)
|
||
|
{
|
||
|
struct l2t_data *d = seq->private;
|
||
|
|
||
|
return pos >= d->l2t_size ? NULL : &d->l2tab[pos];
|
||
|
}
|
||
|
|
||
|
static void *l2t_seq_start(struct seq_file *seq, loff_t *pos)
|
||
|
{
|
||
|
return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
|
||
|
}
|
||
|
|
||
|
static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
||
|
{
|
||
|
v = l2t_get_idx(seq, *pos);
|
||
|
++(*pos);
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
static void l2t_seq_stop(struct seq_file *seq, void *v)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static char l2e_state(const struct l2t_entry *e)
|
||
|
{
|
||
|
switch (e->state) {
|
||
|
case L2T_STATE_VALID: return 'V';
|
||
|
case L2T_STATE_STALE: return 'S';
|
||
|
case L2T_STATE_SYNC_WRITE: return 'W';
|
||
|
case L2T_STATE_RESOLVING:
|
||
|
return skb_queue_empty(&e->arpq) ? 'R' : 'A';
|
||
|
case L2T_STATE_SWITCHING: return 'X';
|
||
|
default:
|
||
|
return 'U';
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int l2t_seq_show(struct seq_file *seq, void *v)
|
||
|
{
|
||
|
if (v == SEQ_START_TOKEN)
|
||
|
seq_puts(seq, " Idx IP address "
|
||
|
"Ethernet address VLAN/P LP State Users Port\n");
|
||
|
else {
|
||
|
char ip[60];
|
||
|
struct l2t_data *d = seq->private;
|
||
|
struct l2t_entry *e = v;
|
||
|
|
||
|
spin_lock_bh(&e->lock);
|
||
|
if (e->state == L2T_STATE_SWITCHING)
|
||
|
ip[0] = '\0';
|
||
|
else
|
||
|
sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr);
|
||
|
seq_printf(seq, "%4u %-25s %17pM %4d %u %2u %c %5u %s\n",
|
||
|
e->idx + d->l2t_start, ip, e->dmac,
|
||
|
e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport,
|
||
|
l2e_state(e), atomic_read(&e->refcnt),
|
||
|
e->neigh ? e->neigh->dev->name : "");
|
||
|
spin_unlock_bh(&e->lock);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct seq_operations l2t_seq_ops = {
|
||
|
.start = l2t_seq_start,
|
||
|
.next = l2t_seq_next,
|
||
|
.stop = l2t_seq_stop,
|
||
|
.show = l2t_seq_show
|
||
|
};
|
||
|
|
||
|
static int l2t_seq_open(struct inode *inode, struct file *file)
|
||
|
{
|
||
|
int rc = seq_open(file, &l2t_seq_ops);
|
||
|
|
||
|
if (!rc) {
|
||
|
struct adapter *adap = inode->i_private;
|
||
|
struct seq_file *seq = file->private_data;
|
||
|
|
||
|
seq->private = adap->l2t;
|
||
|
}
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
const struct file_operations t4_l2t_fops = {
|
||
|
.owner = THIS_MODULE,
|
||
|
.open = l2t_seq_open,
|
||
|
.read = seq_read,
|
||
|
.llseek = seq_lseek,
|
||
|
.release = seq_release,
|
||
|
};
|