191 lines
4.8 KiB
C
191 lines
4.8 KiB
C
|
/*
|
||
|
* aes-ce-cipher.c - core AES cipher using ARMv8 Crypto Extensions
|
||
|
*
|
||
|
* Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*/
|
||
|
|
||
|
#include <asm/neon.h>
|
||
|
#include <asm/simd.h>
|
||
|
#include <asm/unaligned.h>
|
||
|
#include <crypto/aes.h>
|
||
|
#include <linux/cpufeature.h>
|
||
|
#include <linux/crypto.h>
|
||
|
#include <linux/module.h>
|
||
|
|
||
|
#include "aes-ce-setkey.h"
|
||
|
|
||
|
MODULE_DESCRIPTION("Synchronous AES cipher using ARMv8 Crypto Extensions");
|
||
|
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
|
||
|
MODULE_LICENSE("GPL v2");
|
||
|
|
||
|
asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
|
||
|
asmlinkage void __aes_arm64_decrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
|
||
|
|
||
|
struct aes_block {
|
||
|
u8 b[AES_BLOCK_SIZE];
|
||
|
};
|
||
|
|
||
|
asmlinkage void __aes_ce_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
|
||
|
asmlinkage void __aes_ce_decrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
|
||
|
|
||
|
asmlinkage u32 __aes_ce_sub(u32 l);
|
||
|
asmlinkage void __aes_ce_invert(struct aes_block *out,
|
||
|
const struct aes_block *in);
|
||
|
|
||
|
static int num_rounds(struct crypto_aes_ctx *ctx)
|
||
|
{
|
||
|
/*
|
||
|
* # of rounds specified by AES:
|
||
|
* 128 bit key 10 rounds
|
||
|
* 192 bit key 12 rounds
|
||
|
* 256 bit key 14 rounds
|
||
|
* => n byte key => 6 + (n/4) rounds
|
||
|
*/
|
||
|
return 6 + ctx->key_length / 4;
|
||
|
}
|
||
|
|
||
|
static void aes_cipher_encrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[])
|
||
|
{
|
||
|
struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
|
||
|
|
||
|
if (!may_use_simd()) {
|
||
|
__aes_arm64_encrypt(ctx->key_enc, dst, src, num_rounds(ctx));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
kernel_neon_begin();
|
||
|
__aes_ce_encrypt(ctx->key_enc, dst, src, num_rounds(ctx));
|
||
|
kernel_neon_end();
|
||
|
}
|
||
|
|
||
|
static void aes_cipher_decrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[])
|
||
|
{
|
||
|
struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
|
||
|
|
||
|
if (!may_use_simd()) {
|
||
|
__aes_arm64_decrypt(ctx->key_dec, dst, src, num_rounds(ctx));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
kernel_neon_begin();
|
||
|
__aes_ce_decrypt(ctx->key_dec, dst, src, num_rounds(ctx));
|
||
|
kernel_neon_end();
|
||
|
}
|
||
|
|
||
|
int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
|
||
|
unsigned int key_len)
|
||
|
{
|
||
|
/*
|
||
|
* The AES key schedule round constants
|
||
|
*/
|
||
|
static u8 const rcon[] = {
|
||
|
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
|
||
|
};
|
||
|
|
||
|
u32 kwords = key_len / sizeof(u32);
|
||
|
struct aes_block *key_enc, *key_dec;
|
||
|
int i, j;
|
||
|
|
||
|
if (key_len != AES_KEYSIZE_128 &&
|
||
|
key_len != AES_KEYSIZE_192 &&
|
||
|
key_len != AES_KEYSIZE_256)
|
||
|
return -EINVAL;
|
||
|
|
||
|
ctx->key_length = key_len;
|
||
|
for (i = 0; i < kwords; i++)
|
||
|
ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32));
|
||
|
|
||
|
kernel_neon_begin();
|
||
|
for (i = 0; i < sizeof(rcon); i++) {
|
||
|
u32 *rki = ctx->key_enc + (i * kwords);
|
||
|
u32 *rko = rki + kwords;
|
||
|
|
||
|
rko[0] = ror32(__aes_ce_sub(rki[kwords - 1]), 8) ^ rcon[i] ^ rki[0];
|
||
|
rko[1] = rko[0] ^ rki[1];
|
||
|
rko[2] = rko[1] ^ rki[2];
|
||
|
rko[3] = rko[2] ^ rki[3];
|
||
|
|
||
|
if (key_len == AES_KEYSIZE_192) {
|
||
|
if (i >= 7)
|
||
|
break;
|
||
|
rko[4] = rko[3] ^ rki[4];
|
||
|
rko[5] = rko[4] ^ rki[5];
|
||
|
} else if (key_len == AES_KEYSIZE_256) {
|
||
|
if (i >= 6)
|
||
|
break;
|
||
|
rko[4] = __aes_ce_sub(rko[3]) ^ rki[4];
|
||
|
rko[5] = rko[4] ^ rki[5];
|
||
|
rko[6] = rko[5] ^ rki[6];
|
||
|
rko[7] = rko[6] ^ rki[7];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Generate the decryption keys for the Equivalent Inverse Cipher.
|
||
|
* This involves reversing the order of the round keys, and applying
|
||
|
* the Inverse Mix Columns transformation on all but the first and
|
||
|
* the last one.
|
||
|
*/
|
||
|
key_enc = (struct aes_block *)ctx->key_enc;
|
||
|
key_dec = (struct aes_block *)ctx->key_dec;
|
||
|
j = num_rounds(ctx);
|
||
|
|
||
|
key_dec[0] = key_enc[j];
|
||
|
for (i = 1, j--; j > 0; i++, j--)
|
||
|
__aes_ce_invert(key_dec + i, key_enc + j);
|
||
|
key_dec[i] = key_enc[0];
|
||
|
|
||
|
kernel_neon_end();
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(ce_aes_expandkey);
|
||
|
|
||
|
int ce_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key,
|
||
|
unsigned int key_len)
|
||
|
{
|
||
|
struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
|
||
|
int ret;
|
||
|
|
||
|
ret = ce_aes_expandkey(ctx, in_key, key_len);
|
||
|
if (!ret)
|
||
|
return 0;
|
||
|
|
||
|
tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
EXPORT_SYMBOL(ce_aes_setkey);
|
||
|
|
||
|
static struct crypto_alg aes_alg = {
|
||
|
.cra_name = "aes",
|
||
|
.cra_driver_name = "aes-ce",
|
||
|
.cra_priority = 250,
|
||
|
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
|
||
|
.cra_blocksize = AES_BLOCK_SIZE,
|
||
|
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
|
||
|
.cra_module = THIS_MODULE,
|
||
|
.cra_cipher = {
|
||
|
.cia_min_keysize = AES_MIN_KEY_SIZE,
|
||
|
.cia_max_keysize = AES_MAX_KEY_SIZE,
|
||
|
.cia_setkey = ce_aes_setkey,
|
||
|
.cia_encrypt = aes_cipher_encrypt,
|
||
|
.cia_decrypt = aes_cipher_decrypt
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static int __init aes_mod_init(void)
|
||
|
{
|
||
|
return crypto_register_alg(&aes_alg);
|
||
|
}
|
||
|
|
||
|
static void __exit aes_mod_exit(void)
|
||
|
{
|
||
|
crypto_unregister_alg(&aes_alg);
|
||
|
}
|
||
|
|
||
|
module_cpu_feature_match(AES, aes_mod_init);
|
||
|
module_exit(aes_mod_exit);
|