2102 lines
53 KiB
C
2102 lines
53 KiB
C
|
// SPDX-License-Identifier: GPL-2.0+
|
||
|
/*
|
||
|
* Procedures for creating, accessing and interpreting the device tree.
|
||
|
*
|
||
|
* Paul Mackerras August 1996.
|
||
|
* Copyright (C) 1996-2005 Paul Mackerras.
|
||
|
*
|
||
|
* Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
|
||
|
* {engebret|bergner}@us.ibm.com
|
||
|
*
|
||
|
* Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
|
||
|
*
|
||
|
* Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
|
||
|
* Grant Likely.
|
||
|
*/
|
||
|
|
||
|
#define pr_fmt(fmt) "OF: " fmt
|
||
|
|
||
|
#include <linux/console.h>
|
||
|
#include <linux/ctype.h>
|
||
|
#include <linux/cpu.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/of.h>
|
||
|
#include <linux/of_device.h>
|
||
|
#include <linux/of_graph.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/proc_fs.h>
|
||
|
|
||
|
#include "of_private.h"
|
||
|
|
||
|
LIST_HEAD(aliases_lookup);
|
||
|
|
||
|
struct device_node *of_root;
|
||
|
EXPORT_SYMBOL(of_root);
|
||
|
struct device_node *of_chosen;
|
||
|
struct device_node *of_aliases;
|
||
|
struct device_node *of_stdout;
|
||
|
static const char *of_stdout_options;
|
||
|
|
||
|
struct kset *of_kset;
|
||
|
|
||
|
/*
|
||
|
* Used to protect the of_aliases, to hold off addition of nodes to sysfs.
|
||
|
* This mutex must be held whenever modifications are being made to the
|
||
|
* device tree. The of_{attach,detach}_node() and
|
||
|
* of_{add,remove,update}_property() helpers make sure this happens.
|
||
|
*/
|
||
|
DEFINE_MUTEX(of_mutex);
|
||
|
|
||
|
/* use when traversing tree through the child, sibling,
|
||
|
* or parent members of struct device_node.
|
||
|
*/
|
||
|
DEFINE_RAW_SPINLOCK(devtree_lock);
|
||
|
|
||
|
bool of_node_name_eq(const struct device_node *np, const char *name)
|
||
|
{
|
||
|
const char *node_name;
|
||
|
size_t len;
|
||
|
|
||
|
if (!np)
|
||
|
return false;
|
||
|
|
||
|
node_name = kbasename(np->full_name);
|
||
|
len = strchrnul(node_name, '@') - node_name;
|
||
|
|
||
|
return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_node_name_eq);
|
||
|
|
||
|
bool of_node_name_prefix(const struct device_node *np, const char *prefix)
|
||
|
{
|
||
|
if (!np)
|
||
|
return false;
|
||
|
|
||
|
return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_node_name_prefix);
|
||
|
|
||
|
int of_n_addr_cells(struct device_node *np)
|
||
|
{
|
||
|
u32 cells;
|
||
|
|
||
|
do {
|
||
|
if (np->parent)
|
||
|
np = np->parent;
|
||
|
if (!of_property_read_u32(np, "#address-cells", &cells))
|
||
|
return cells;
|
||
|
} while (np->parent);
|
||
|
/* No #address-cells property for the root node */
|
||
|
return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_n_addr_cells);
|
||
|
|
||
|
int of_n_size_cells(struct device_node *np)
|
||
|
{
|
||
|
u32 cells;
|
||
|
|
||
|
do {
|
||
|
if (np->parent)
|
||
|
np = np->parent;
|
||
|
if (!of_property_read_u32(np, "#size-cells", &cells))
|
||
|
return cells;
|
||
|
} while (np->parent);
|
||
|
/* No #size-cells property for the root node */
|
||
|
return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_n_size_cells);
|
||
|
|
||
|
#ifdef CONFIG_NUMA
|
||
|
int __weak of_node_to_nid(struct device_node *np)
|
||
|
{
|
||
|
return NUMA_NO_NODE;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Assumptions behind phandle_cache implementation:
|
||
|
* - phandle property values are in a contiguous range of 1..n
|
||
|
*
|
||
|
* If the assumptions do not hold, then
|
||
|
* - the phandle lookup overhead reduction provided by the cache
|
||
|
* will likely be less
|
||
|
*/
|
||
|
|
||
|
static struct device_node **phandle_cache;
|
||
|
static u32 phandle_cache_mask;
|
||
|
|
||
|
/*
|
||
|
* Caller must hold devtree_lock.
|
||
|
*/
|
||
|
static void __of_free_phandle_cache(void)
|
||
|
{
|
||
|
u32 cache_entries = phandle_cache_mask + 1;
|
||
|
u32 k;
|
||
|
|
||
|
if (!phandle_cache)
|
||
|
return;
|
||
|
|
||
|
for (k = 0; k < cache_entries; k++)
|
||
|
of_node_put(phandle_cache[k]);
|
||
|
|
||
|
kfree(phandle_cache);
|
||
|
phandle_cache = NULL;
|
||
|
}
|
||
|
|
||
|
int of_free_phandle_cache(void)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
|
||
|
__of_free_phandle_cache();
|
||
|
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
#if !defined(CONFIG_MODULES)
|
||
|
late_initcall_sync(of_free_phandle_cache);
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Caller must hold devtree_lock.
|
||
|
*/
|
||
|
void __of_free_phandle_cache_entry(phandle handle)
|
||
|
{
|
||
|
phandle masked_handle;
|
||
|
struct device_node *np;
|
||
|
|
||
|
if (!handle)
|
||
|
return;
|
||
|
|
||
|
masked_handle = handle & phandle_cache_mask;
|
||
|
|
||
|
if (phandle_cache) {
|
||
|
np = phandle_cache[masked_handle];
|
||
|
if (np && handle == np->phandle) {
|
||
|
of_node_put(np);
|
||
|
phandle_cache[masked_handle] = NULL;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void of_populate_phandle_cache(void)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
u32 cache_entries;
|
||
|
struct device_node *np;
|
||
|
u32 phandles = 0;
|
||
|
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
|
||
|
__of_free_phandle_cache();
|
||
|
|
||
|
for_each_of_allnodes(np)
|
||
|
if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
|
||
|
phandles++;
|
||
|
|
||
|
if (!phandles)
|
||
|
goto out;
|
||
|
|
||
|
cache_entries = roundup_pow_of_two(phandles);
|
||
|
phandle_cache_mask = cache_entries - 1;
|
||
|
|
||
|
phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
|
||
|
GFP_ATOMIC);
|
||
|
if (!phandle_cache)
|
||
|
goto out;
|
||
|
|
||
|
for_each_of_allnodes(np)
|
||
|
if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) {
|
||
|
of_node_get(np);
|
||
|
phandle_cache[np->phandle & phandle_cache_mask] = np;
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
}
|
||
|
|
||
|
void __init of_core_init(void)
|
||
|
{
|
||
|
struct device_node *np;
|
||
|
|
||
|
of_populate_phandle_cache();
|
||
|
|
||
|
/* Create the kset, and register existing nodes */
|
||
|
mutex_lock(&of_mutex);
|
||
|
of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
|
||
|
if (!of_kset) {
|
||
|
mutex_unlock(&of_mutex);
|
||
|
pr_err("failed to register existing nodes\n");
|
||
|
return;
|
||
|
}
|
||
|
for_each_of_allnodes(np)
|
||
|
__of_attach_node_sysfs(np);
|
||
|
mutex_unlock(&of_mutex);
|
||
|
|
||
|
/* Symlink in /proc as required by userspace ABI */
|
||
|
if (of_root)
|
||
|
proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
|
||
|
}
|
||
|
|
||
|
static struct property *__of_find_property(const struct device_node *np,
|
||
|
const char *name, int *lenp)
|
||
|
{
|
||
|
struct property *pp;
|
||
|
|
||
|
if (!np)
|
||
|
return NULL;
|
||
|
|
||
|
for (pp = np->properties; pp; pp = pp->next) {
|
||
|
if (of_prop_cmp(pp->name, name) == 0) {
|
||
|
if (lenp)
|
||
|
*lenp = pp->length;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return pp;
|
||
|
}
|
||
|
|
||
|
struct property *of_find_property(const struct device_node *np,
|
||
|
const char *name,
|
||
|
int *lenp)
|
||
|
{
|
||
|
struct property *pp;
|
||
|
unsigned long flags;
|
||
|
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
pp = __of_find_property(np, name, lenp);
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
|
||
|
return pp;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_find_property);
|
||
|
|
||
|
struct device_node *__of_find_all_nodes(struct device_node *prev)
|
||
|
{
|
||
|
struct device_node *np;
|
||
|
if (!prev) {
|
||
|
np = of_root;
|
||
|
} else if (prev->child) {
|
||
|
np = prev->child;
|
||
|
} else {
|
||
|
/* Walk back up looking for a sibling, or the end of the structure */
|
||
|
np = prev;
|
||
|
while (np->parent && !np->sibling)
|
||
|
np = np->parent;
|
||
|
np = np->sibling; /* Might be null at the end of the tree */
|
||
|
}
|
||
|
return np;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* of_find_all_nodes - Get next node in global list
|
||
|
* @prev: Previous node or NULL to start iteration
|
||
|
* of_node_put() will be called on it
|
||
|
*
|
||
|
* Returns a node pointer with refcount incremented, use
|
||
|
* of_node_put() on it when done.
|
||
|
*/
|
||
|
struct device_node *of_find_all_nodes(struct device_node *prev)
|
||
|
{
|
||
|
struct device_node *np;
|
||
|
unsigned long flags;
|
||
|
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
np = __of_find_all_nodes(prev);
|
||
|
of_node_get(np);
|
||
|
of_node_put(prev);
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
return np;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_find_all_nodes);
|
||
|
|
||
|
/*
|
||
|
* Find a property with a given name for a given node
|
||
|
* and return the value.
|
||
|
*/
|
||
|
const void *__of_get_property(const struct device_node *np,
|
||
|
const char *name, int *lenp)
|
||
|
{
|
||
|
struct property *pp = __of_find_property(np, name, lenp);
|
||
|
|
||
|
return pp ? pp->value : NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Find a property with a given name for a given node
|
||
|
* and return the value.
|
||
|
*/
|
||
|
const void *of_get_property(const struct device_node *np, const char *name,
|
||
|
int *lenp)
|
||
|
{
|
||
|
struct property *pp = of_find_property(np, name, lenp);
|
||
|
|
||
|
return pp ? pp->value : NULL;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_get_property);
|
||
|
|
||
|
/*
|
||
|
* arch_match_cpu_phys_id - Match the given logical CPU and physical id
|
||
|
*
|
||
|
* @cpu: logical cpu index of a core/thread
|
||
|
* @phys_id: physical identifier of a core/thread
|
||
|
*
|
||
|
* CPU logical to physical index mapping is architecture specific.
|
||
|
* However this __weak function provides a default match of physical
|
||
|
* id to logical cpu index. phys_id provided here is usually values read
|
||
|
* from the device tree which must match the hardware internal registers.
|
||
|
*
|
||
|
* Returns true if the physical identifier and the logical cpu index
|
||
|
* correspond to the same core/thread, false otherwise.
|
||
|
*/
|
||
|
bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
|
||
|
{
|
||
|
return (u32)phys_id == cpu;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Checks if the given "prop_name" property holds the physical id of the
|
||
|
* core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
|
||
|
* NULL, local thread number within the core is returned in it.
|
||
|
*/
|
||
|
static bool __of_find_n_match_cpu_property(struct device_node *cpun,
|
||
|
const char *prop_name, int cpu, unsigned int *thread)
|
||
|
{
|
||
|
const __be32 *cell;
|
||
|
int ac, prop_len, tid;
|
||
|
u64 hwid;
|
||
|
|
||
|
ac = of_n_addr_cells(cpun);
|
||
|
cell = of_get_property(cpun, prop_name, &prop_len);
|
||
|
if (!cell || !ac)
|
||
|
return false;
|
||
|
prop_len /= sizeof(*cell) * ac;
|
||
|
for (tid = 0; tid < prop_len; tid++) {
|
||
|
hwid = of_read_number(cell, ac);
|
||
|
if (arch_match_cpu_phys_id(cpu, hwid)) {
|
||
|
if (thread)
|
||
|
*thread = tid;
|
||
|
return true;
|
||
|
}
|
||
|
cell += ac;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* arch_find_n_match_cpu_physical_id - See if the given device node is
|
||
|
* for the cpu corresponding to logical cpu 'cpu'. Return true if so,
|
||
|
* else false. If 'thread' is non-NULL, the local thread number within the
|
||
|
* core is returned in it.
|
||
|
*/
|
||
|
bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
|
||
|
int cpu, unsigned int *thread)
|
||
|
{
|
||
|
/* Check for non-standard "ibm,ppc-interrupt-server#s" property
|
||
|
* for thread ids on PowerPC. If it doesn't exist fallback to
|
||
|
* standard "reg" property.
|
||
|
*/
|
||
|
if (IS_ENABLED(CONFIG_PPC) &&
|
||
|
__of_find_n_match_cpu_property(cpun,
|
||
|
"ibm,ppc-interrupt-server#s",
|
||
|
cpu, thread))
|
||
|
return true;
|
||
|
|
||
|
return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* of_get_cpu_node - Get device node associated with the given logical CPU
|
||
|
*
|
||
|
* @cpu: CPU number(logical index) for which device node is required
|
||
|
* @thread: if not NULL, local thread number within the physical core is
|
||
|
* returned
|
||
|
*
|
||
|
* The main purpose of this function is to retrieve the device node for the
|
||
|
* given logical CPU index. It should be used to initialize the of_node in
|
||
|
* cpu device. Once of_node in cpu device is populated, all the further
|
||
|
* references can use that instead.
|
||
|
*
|
||
|
* CPU logical to physical index mapping is architecture specific and is built
|
||
|
* before booting secondary cores. This function uses arch_match_cpu_phys_id
|
||
|
* which can be overridden by architecture specific implementation.
|
||
|
*
|
||
|
* Returns a node pointer for the logical cpu with refcount incremented, use
|
||
|
* of_node_put() on it when done. Returns NULL if not found.
|
||
|
*/
|
||
|
struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
|
||
|
{
|
||
|
struct device_node *cpun;
|
||
|
|
||
|
for_each_node_by_type(cpun, "cpu") {
|
||
|
if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
|
||
|
return cpun;
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_get_cpu_node);
|
||
|
|
||
|
/**
|
||
|
* of_cpu_node_to_id: Get the logical CPU number for a given device_node
|
||
|
*
|
||
|
* @cpu_node: Pointer to the device_node for CPU.
|
||
|
*
|
||
|
* Returns the logical CPU number of the given CPU device_node.
|
||
|
* Returns -ENODEV if the CPU is not found.
|
||
|
*/
|
||
|
int of_cpu_node_to_id(struct device_node *cpu_node)
|
||
|
{
|
||
|
int cpu;
|
||
|
bool found = false;
|
||
|
struct device_node *np;
|
||
|
|
||
|
for_each_possible_cpu(cpu) {
|
||
|
np = of_cpu_device_node_get(cpu);
|
||
|
found = (cpu_node == np);
|
||
|
of_node_put(np);
|
||
|
if (found)
|
||
|
return cpu;
|
||
|
}
|
||
|
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_cpu_node_to_id);
|
||
|
|
||
|
/**
|
||
|
* __of_device_is_compatible() - Check if the node matches given constraints
|
||
|
* @device: pointer to node
|
||
|
* @compat: required compatible string, NULL or "" for any match
|
||
|
* @type: required device_type value, NULL or "" for any match
|
||
|
* @name: required node name, NULL or "" for any match
|
||
|
*
|
||
|
* Checks if the given @compat, @type and @name strings match the
|
||
|
* properties of the given @device. A constraints can be skipped by
|
||
|
* passing NULL or an empty string as the constraint.
|
||
|
*
|
||
|
* Returns 0 for no match, and a positive integer on match. The return
|
||
|
* value is a relative score with larger values indicating better
|
||
|
* matches. The score is weighted for the most specific compatible value
|
||
|
* to get the highest score. Matching type is next, followed by matching
|
||
|
* name. Practically speaking, this results in the following priority
|
||
|
* order for matches:
|
||
|
*
|
||
|
* 1. specific compatible && type && name
|
||
|
* 2. specific compatible && type
|
||
|
* 3. specific compatible && name
|
||
|
* 4. specific compatible
|
||
|
* 5. general compatible && type && name
|
||
|
* 6. general compatible && type
|
||
|
* 7. general compatible && name
|
||
|
* 8. general compatible
|
||
|
* 9. type && name
|
||
|
* 10. type
|
||
|
* 11. name
|
||
|
*/
|
||
|
static int __of_device_is_compatible(const struct device_node *device,
|
||
|
const char *compat, const char *type, const char *name)
|
||
|
{
|
||
|
struct property *prop;
|
||
|
const char *cp;
|
||
|
int index = 0, score = 0;
|
||
|
|
||
|
/* Compatible match has highest priority */
|
||
|
if (compat && compat[0]) {
|
||
|
prop = __of_find_property(device, "compatible", NULL);
|
||
|
for (cp = of_prop_next_string(prop, NULL); cp;
|
||
|
cp = of_prop_next_string(prop, cp), index++) {
|
||
|
if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
|
||
|
score = INT_MAX/2 - (index << 2);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (!score)
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Matching type is better than matching name */
|
||
|
if (type && type[0]) {
|
||
|
if (!device->type || of_node_cmp(type, device->type))
|
||
|
return 0;
|
||
|
score += 2;
|
||
|
}
|
||
|
|
||
|
/* Matching name is a bit better than not */
|
||
|
if (name && name[0]) {
|
||
|
if (!device->name || of_node_cmp(name, device->name))
|
||
|
return 0;
|
||
|
score++;
|
||
|
}
|
||
|
|
||
|
return score;
|
||
|
}
|
||
|
|
||
|
/** Checks if the given "compat" string matches one of the strings in
|
||
|
* the device's "compatible" property
|
||
|
*/
|
||
|
int of_device_is_compatible(const struct device_node *device,
|
||
|
const char *compat)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
int res;
|
||
|
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
res = __of_device_is_compatible(device, compat, NULL, NULL);
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
return res;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_device_is_compatible);
|
||
|
|
||
|
/** Checks if the device is compatible with any of the entries in
|
||
|
* a NULL terminated array of strings. Returns the best match
|
||
|
* score or 0.
|
||
|
*/
|
||
|
int of_device_compatible_match(struct device_node *device,
|
||
|
const char *const *compat)
|
||
|
{
|
||
|
unsigned int tmp, score = 0;
|
||
|
|
||
|
if (!compat)
|
||
|
return 0;
|
||
|
|
||
|
while (*compat) {
|
||
|
tmp = of_device_is_compatible(device, *compat);
|
||
|
if (tmp > score)
|
||
|
score = tmp;
|
||
|
compat++;
|
||
|
}
|
||
|
|
||
|
return score;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* of_machine_is_compatible - Test root of device tree for a given compatible value
|
||
|
* @compat: compatible string to look for in root node's compatible property.
|
||
|
*
|
||
|
* Returns a positive integer if the root node has the given value in its
|
||
|
* compatible property.
|
||
|
*/
|
||
|
int of_machine_is_compatible(const char *compat)
|
||
|
{
|
||
|
struct device_node *root;
|
||
|
int rc = 0;
|
||
|
|
||
|
root = of_find_node_by_path("/");
|
||
|
if (root) {
|
||
|
rc = of_device_is_compatible(root, compat);
|
||
|
of_node_put(root);
|
||
|
}
|
||
|
return rc;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_machine_is_compatible);
|
||
|
|
||
|
/**
|
||
|
* __of_device_is_available - check if a device is available for use
|
||
|
*
|
||
|
* @device: Node to check for availability, with locks already held
|
||
|
*
|
||
|
* Returns true if the status property is absent or set to "okay" or "ok",
|
||
|
* false otherwise
|
||
|
*/
|
||
|
static bool __of_device_is_available(const struct device_node *device)
|
||
|
{
|
||
|
const char *status;
|
||
|
int statlen;
|
||
|
|
||
|
if (!device)
|
||
|
return false;
|
||
|
|
||
|
status = __of_get_property(device, "status", &statlen);
|
||
|
if (status == NULL)
|
||
|
return true;
|
||
|
|
||
|
if (statlen > 0) {
|
||
|
if (!strcmp(status, "okay") || !strcmp(status, "ok"))
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* of_device_is_available - check if a device is available for use
|
||
|
*
|
||
|
* @device: Node to check for availability
|
||
|
*
|
||
|
* Returns true if the status property is absent or set to "okay" or "ok",
|
||
|
* false otherwise
|
||
|
*/
|
||
|
bool of_device_is_available(const struct device_node *device)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
bool res;
|
||
|
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
res = __of_device_is_available(device);
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
return res;
|
||
|
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_device_is_available);
|
||
|
|
||
|
/**
|
||
|
* of_device_is_big_endian - check if a device has BE registers
|
||
|
*
|
||
|
* @device: Node to check for endianness
|
||
|
*
|
||
|
* Returns true if the device has a "big-endian" property, or if the kernel
|
||
|
* was compiled for BE *and* the device has a "native-endian" property.
|
||
|
* Returns false otherwise.
|
||
|
*
|
||
|
* Callers would nominally use ioread32be/iowrite32be if
|
||
|
* of_device_is_big_endian() == true, or readl/writel otherwise.
|
||
|
*/
|
||
|
bool of_device_is_big_endian(const struct device_node *device)
|
||
|
{
|
||
|
if (of_property_read_bool(device, "big-endian"))
|
||
|
return true;
|
||
|
if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
|
||
|
of_property_read_bool(device, "native-endian"))
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_device_is_big_endian);
|
||
|
|
||
|
/**
|
||
|
* of_get_parent - Get a node's parent if any
|
||
|
* @node: Node to get parent
|
||
|
*
|
||
|
* Returns a node pointer with refcount incremented, use
|
||
|
* of_node_put() on it when done.
|
||
|
*/
|
||
|
struct device_node *of_get_parent(const struct device_node *node)
|
||
|
{
|
||
|
struct device_node *np;
|
||
|
unsigned long flags;
|
||
|
|
||
|
if (!node)
|
||
|
return NULL;
|
||
|
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
np = of_node_get(node->parent);
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
return np;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_get_parent);
|
||
|
|
||
|
/**
|
||
|
* of_get_next_parent - Iterate to a node's parent
|
||
|
* @node: Node to get parent of
|
||
|
*
|
||
|
* This is like of_get_parent() except that it drops the
|
||
|
* refcount on the passed node, making it suitable for iterating
|
||
|
* through a node's parents.
|
||
|
*
|
||
|
* Returns a node pointer with refcount incremented, use
|
||
|
* of_node_put() on it when done.
|
||
|
*/
|
||
|
struct device_node *of_get_next_parent(struct device_node *node)
|
||
|
{
|
||
|
struct device_node *parent;
|
||
|
unsigned long flags;
|
||
|
|
||
|
if (!node)
|
||
|
return NULL;
|
||
|
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
parent = of_node_get(node->parent);
|
||
|
of_node_put(node);
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
return parent;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_get_next_parent);
|
||
|
|
||
|
static struct device_node *__of_get_next_child(const struct device_node *node,
|
||
|
struct device_node *prev)
|
||
|
{
|
||
|
struct device_node *next;
|
||
|
|
||
|
if (!node)
|
||
|
return NULL;
|
||
|
|
||
|
next = prev ? prev->sibling : node->child;
|
||
|
for (; next; next = next->sibling)
|
||
|
if (of_node_get(next))
|
||
|
break;
|
||
|
of_node_put(prev);
|
||
|
return next;
|
||
|
}
|
||
|
#define __for_each_child_of_node(parent, child) \
|
||
|
for (child = __of_get_next_child(parent, NULL); child != NULL; \
|
||
|
child = __of_get_next_child(parent, child))
|
||
|
|
||
|
/**
|
||
|
* of_get_next_child - Iterate a node childs
|
||
|
* @node: parent node
|
||
|
* @prev: previous child of the parent node, or NULL to get first
|
||
|
*
|
||
|
* Returns a node pointer with refcount incremented, use of_node_put() on
|
||
|
* it when done. Returns NULL when prev is the last child. Decrements the
|
||
|
* refcount of prev.
|
||
|
*/
|
||
|
struct device_node *of_get_next_child(const struct device_node *node,
|
||
|
struct device_node *prev)
|
||
|
{
|
||
|
struct device_node *next;
|
||
|
unsigned long flags;
|
||
|
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
next = __of_get_next_child(node, prev);
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
return next;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_get_next_child);
|
||
|
|
||
|
/**
|
||
|
* of_get_next_available_child - Find the next available child node
|
||
|
* @node: parent node
|
||
|
* @prev: previous child of the parent node, or NULL to get first
|
||
|
*
|
||
|
* This function is like of_get_next_child(), except that it
|
||
|
* automatically skips any disabled nodes (i.e. status = "disabled").
|
||
|
*/
|
||
|
struct device_node *of_get_next_available_child(const struct device_node *node,
|
||
|
struct device_node *prev)
|
||
|
{
|
||
|
struct device_node *next;
|
||
|
unsigned long flags;
|
||
|
|
||
|
if (!node)
|
||
|
return NULL;
|
||
|
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
next = prev ? prev->sibling : node->child;
|
||
|
for (; next; next = next->sibling) {
|
||
|
if (!__of_device_is_available(next))
|
||
|
continue;
|
||
|
if (of_node_get(next))
|
||
|
break;
|
||
|
}
|
||
|
of_node_put(prev);
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
return next;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_get_next_available_child);
|
||
|
|
||
|
/**
|
||
|
* of_get_compatible_child - Find compatible child node
|
||
|
* @parent: parent node
|
||
|
* @compatible: compatible string
|
||
|
*
|
||
|
* Lookup child node whose compatible property contains the given compatible
|
||
|
* string.
|
||
|
*
|
||
|
* Returns a node pointer with refcount incremented, use of_node_put() on it
|
||
|
* when done; or NULL if not found.
|
||
|
*/
|
||
|
struct device_node *of_get_compatible_child(const struct device_node *parent,
|
||
|
const char *compatible)
|
||
|
{
|
||
|
struct device_node *child;
|
||
|
|
||
|
for_each_child_of_node(parent, child) {
|
||
|
if (of_device_is_compatible(child, compatible))
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return child;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_get_compatible_child);
|
||
|
|
||
|
/**
|
||
|
* of_get_child_by_name - Find the child node by name for a given parent
|
||
|
* @node: parent node
|
||
|
* @name: child name to look for.
|
||
|
*
|
||
|
* This function looks for child node for given matching name
|
||
|
*
|
||
|
* Returns a node pointer if found, with refcount incremented, use
|
||
|
* of_node_put() on it when done.
|
||
|
* Returns NULL if node is not found.
|
||
|
*/
|
||
|
struct device_node *of_get_child_by_name(const struct device_node *node,
|
||
|
const char *name)
|
||
|
{
|
||
|
struct device_node *child;
|
||
|
|
||
|
for_each_child_of_node(node, child)
|
||
|
if (child->name && (of_node_cmp(child->name, name) == 0))
|
||
|
break;
|
||
|
return child;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_get_child_by_name);
|
||
|
|
||
|
struct device_node *__of_find_node_by_path(struct device_node *parent,
|
||
|
const char *path)
|
||
|
{
|
||
|
struct device_node *child;
|
||
|
int len;
|
||
|
|
||
|
len = strcspn(path, "/:");
|
||
|
if (!len)
|
||
|
return NULL;
|
||
|
|
||
|
__for_each_child_of_node(parent, child) {
|
||
|
const char *name = kbasename(child->full_name);
|
||
|
if (strncmp(path, name, len) == 0 && (strlen(name) == len))
|
||
|
return child;
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
struct device_node *__of_find_node_by_full_path(struct device_node *node,
|
||
|
const char *path)
|
||
|
{
|
||
|
const char *separator = strchr(path, ':');
|
||
|
|
||
|
while (node && *path == '/') {
|
||
|
struct device_node *tmp = node;
|
||
|
|
||
|
path++; /* Increment past '/' delimiter */
|
||
|
node = __of_find_node_by_path(node, path);
|
||
|
of_node_put(tmp);
|
||
|
path = strchrnul(path, '/');
|
||
|
if (separator && separator < path)
|
||
|
break;
|
||
|
}
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* of_find_node_opts_by_path - Find a node matching a full OF path
|
||
|
* @path: Either the full path to match, or if the path does not
|
||
|
* start with '/', the name of a property of the /aliases
|
||
|
* node (an alias). In the case of an alias, the node
|
||
|
* matching the alias' value will be returned.
|
||
|
* @opts: Address of a pointer into which to store the start of
|
||
|
* an options string appended to the end of the path with
|
||
|
* a ':' separator.
|
||
|
*
|
||
|
* Valid paths:
|
||
|
* /foo/bar Full path
|
||
|
* foo Valid alias
|
||
|
* foo/bar Valid alias + relative path
|
||
|
*
|
||
|
* Returns a node pointer with refcount incremented, use
|
||
|
* of_node_put() on it when done.
|
||
|
*/
|
||
|
struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
|
||
|
{
|
||
|
struct device_node *np = NULL;
|
||
|
struct property *pp;
|
||
|
unsigned long flags;
|
||
|
const char *separator = strchr(path, ':');
|
||
|
|
||
|
if (opts)
|
||
|
*opts = separator ? separator + 1 : NULL;
|
||
|
|
||
|
if (strcmp(path, "/") == 0)
|
||
|
return of_node_get(of_root);
|
||
|
|
||
|
/* The path could begin with an alias */
|
||
|
if (*path != '/') {
|
||
|
int len;
|
||
|
const char *p = separator;
|
||
|
|
||
|
if (!p)
|
||
|
p = strchrnul(path, '/');
|
||
|
len = p - path;
|
||
|
|
||
|
/* of_aliases must not be NULL */
|
||
|
if (!of_aliases)
|
||
|
return NULL;
|
||
|
|
||
|
for_each_property_of_node(of_aliases, pp) {
|
||
|
if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
|
||
|
np = of_find_node_by_path(pp->value);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (!np)
|
||
|
return NULL;
|
||
|
path = p;
|
||
|
}
|
||
|
|
||
|
/* Step down the tree matching path components */
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
if (!np)
|
||
|
np = of_node_get(of_root);
|
||
|
np = __of_find_node_by_full_path(np, path);
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
return np;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_find_node_opts_by_path);
|
||
|
|
||
|
/**
|
||
|
* of_find_node_by_name - Find a node by its "name" property
|
||
|
* @from: The node to start searching from or NULL; the node
|
||
|
* you pass will not be searched, only the next one
|
||
|
* will. Typically, you pass what the previous call
|
||
|
* returned. of_node_put() will be called on @from.
|
||
|
* @name: The name string to match against
|
||
|
*
|
||
|
* Returns a node pointer with refcount incremented, use
|
||
|
* of_node_put() on it when done.
|
||
|
*/
|
||
|
struct device_node *of_find_node_by_name(struct device_node *from,
|
||
|
const char *name)
|
||
|
{
|
||
|
struct device_node *np;
|
||
|
unsigned long flags;
|
||
|
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
for_each_of_allnodes_from(from, np)
|
||
|
if (np->name && (of_node_cmp(np->name, name) == 0)
|
||
|
&& of_node_get(np))
|
||
|
break;
|
||
|
of_node_put(from);
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
return np;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_find_node_by_name);
|
||
|
|
||
|
/**
|
||
|
* of_find_node_by_type - Find a node by its "device_type" property
|
||
|
* @from: The node to start searching from, or NULL to start searching
|
||
|
* the entire device tree. The node you pass will not be
|
||
|
* searched, only the next one will; typically, you pass
|
||
|
* what the previous call returned. of_node_put() will be
|
||
|
* called on from for you.
|
||
|
* @type: The type string to match against
|
||
|
*
|
||
|
* Returns a node pointer with refcount incremented, use
|
||
|
* of_node_put() on it when done.
|
||
|
*/
|
||
|
struct device_node *of_find_node_by_type(struct device_node *from,
|
||
|
const char *type)
|
||
|
{
|
||
|
struct device_node *np;
|
||
|
unsigned long flags;
|
||
|
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
for_each_of_allnodes_from(from, np)
|
||
|
if (np->type && (of_node_cmp(np->type, type) == 0)
|
||
|
&& of_node_get(np))
|
||
|
break;
|
||
|
of_node_put(from);
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
return np;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_find_node_by_type);
|
||
|
|
||
|
/**
|
||
|
* of_find_compatible_node - Find a node based on type and one of the
|
||
|
* tokens in its "compatible" property
|
||
|
* @from: The node to start searching from or NULL, the node
|
||
|
* you pass will not be searched, only the next one
|
||
|
* will; typically, you pass what the previous call
|
||
|
* returned. of_node_put() will be called on it
|
||
|
* @type: The type string to match "device_type" or NULL to ignore
|
||
|
* @compatible: The string to match to one of the tokens in the device
|
||
|
* "compatible" list.
|
||
|
*
|
||
|
* Returns a node pointer with refcount incremented, use
|
||
|
* of_node_put() on it when done.
|
||
|
*/
|
||
|
struct device_node *of_find_compatible_node(struct device_node *from,
|
||
|
const char *type, const char *compatible)
|
||
|
{
|
||
|
struct device_node *np;
|
||
|
unsigned long flags;
|
||
|
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
for_each_of_allnodes_from(from, np)
|
||
|
if (__of_device_is_compatible(np, compatible, type, NULL) &&
|
||
|
of_node_get(np))
|
||
|
break;
|
||
|
of_node_put(from);
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
return np;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_find_compatible_node);
|
||
|
|
||
|
/**
|
||
|
* of_find_node_with_property - Find a node which has a property with
|
||
|
* the given name.
|
||
|
* @from: The node to start searching from or NULL, the node
|
||
|
* you pass will not be searched, only the next one
|
||
|
* will; typically, you pass what the previous call
|
||
|
* returned. of_node_put() will be called on it
|
||
|
* @prop_name: The name of the property to look for.
|
||
|
*
|
||
|
* Returns a node pointer with refcount incremented, use
|
||
|
* of_node_put() on it when done.
|
||
|
*/
|
||
|
struct device_node *of_find_node_with_property(struct device_node *from,
|
||
|
const char *prop_name)
|
||
|
{
|
||
|
struct device_node *np;
|
||
|
struct property *pp;
|
||
|
unsigned long flags;
|
||
|
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
for_each_of_allnodes_from(from, np) {
|
||
|
for (pp = np->properties; pp; pp = pp->next) {
|
||
|
if (of_prop_cmp(pp->name, prop_name) == 0) {
|
||
|
of_node_get(np);
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
out:
|
||
|
of_node_put(from);
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
return np;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_find_node_with_property);
|
||
|
|
||
|
static
|
||
|
const struct of_device_id *__of_match_node(const struct of_device_id *matches,
|
||
|
const struct device_node *node)
|
||
|
{
|
||
|
const struct of_device_id *best_match = NULL;
|
||
|
int score, best_score = 0;
|
||
|
|
||
|
if (!matches)
|
||
|
return NULL;
|
||
|
|
||
|
for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
|
||
|
score = __of_device_is_compatible(node, matches->compatible,
|
||
|
matches->type, matches->name);
|
||
|
if (score > best_score) {
|
||
|
best_match = matches;
|
||
|
best_score = score;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return best_match;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* of_match_node - Tell if a device_node has a matching of_match structure
|
||
|
* @matches: array of of device match structures to search in
|
||
|
* @node: the of device structure to match against
|
||
|
*
|
||
|
* Low level utility function used by device matching.
|
||
|
*/
|
||
|
const struct of_device_id *of_match_node(const struct of_device_id *matches,
|
||
|
const struct device_node *node)
|
||
|
{
|
||
|
const struct of_device_id *match;
|
||
|
unsigned long flags;
|
||
|
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
match = __of_match_node(matches, node);
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
return match;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_match_node);
|
||
|
|
||
|
/**
|
||
|
* of_find_matching_node_and_match - Find a node based on an of_device_id
|
||
|
* match table.
|
||
|
* @from: The node to start searching from or NULL, the node
|
||
|
* you pass will not be searched, only the next one
|
||
|
* will; typically, you pass what the previous call
|
||
|
* returned. of_node_put() will be called on it
|
||
|
* @matches: array of of device match structures to search in
|
||
|
* @match Updated to point at the matches entry which matched
|
||
|
*
|
||
|
* Returns a node pointer with refcount incremented, use
|
||
|
* of_node_put() on it when done.
|
||
|
*/
|
||
|
struct device_node *of_find_matching_node_and_match(struct device_node *from,
|
||
|
const struct of_device_id *matches,
|
||
|
const struct of_device_id **match)
|
||
|
{
|
||
|
struct device_node *np;
|
||
|
const struct of_device_id *m;
|
||
|
unsigned long flags;
|
||
|
|
||
|
if (match)
|
||
|
*match = NULL;
|
||
|
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
for_each_of_allnodes_from(from, np) {
|
||
|
m = __of_match_node(matches, np);
|
||
|
if (m && of_node_get(np)) {
|
||
|
if (match)
|
||
|
*match = m;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
of_node_put(from);
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
return np;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_find_matching_node_and_match);
|
||
|
|
||
|
/**
|
||
|
* of_modalias_node - Lookup appropriate modalias for a device node
|
||
|
* @node: pointer to a device tree node
|
||
|
* @modalias: Pointer to buffer that modalias value will be copied into
|
||
|
* @len: Length of modalias value
|
||
|
*
|
||
|
* Based on the value of the compatible property, this routine will attempt
|
||
|
* to choose an appropriate modalias value for a particular device tree node.
|
||
|
* It does this by stripping the manufacturer prefix (as delimited by a ',')
|
||
|
* from the first entry in the compatible list property.
|
||
|
*
|
||
|
* This routine returns 0 on success, <0 on failure.
|
||
|
*/
|
||
|
int of_modalias_node(struct device_node *node, char *modalias, int len)
|
||
|
{
|
||
|
const char *compatible, *p;
|
||
|
int cplen;
|
||
|
|
||
|
compatible = of_get_property(node, "compatible", &cplen);
|
||
|
if (!compatible || strlen(compatible) > cplen)
|
||
|
return -ENODEV;
|
||
|
p = strchr(compatible, ',');
|
||
|
strlcpy(modalias, p ? p + 1 : compatible, len);
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(of_modalias_node);
|
||
|
|
||
|
/**
|
||
|
* of_find_node_by_phandle - Find a node given a phandle
|
||
|
* @handle: phandle of the node to find
|
||
|
*
|
||
|
* Returns a node pointer with refcount incremented, use
|
||
|
* of_node_put() on it when done.
|
||
|
*/
|
||
|
struct device_node *of_find_node_by_phandle(phandle handle)
|
||
|
{
|
||
|
struct device_node *np = NULL;
|
||
|
unsigned long flags;
|
||
|
phandle masked_handle;
|
||
|
|
||
|
if (!handle)
|
||
|
return NULL;
|
||
|
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
|
||
|
masked_handle = handle & phandle_cache_mask;
|
||
|
|
||
|
if (phandle_cache) {
|
||
|
if (phandle_cache[masked_handle] &&
|
||
|
handle == phandle_cache[masked_handle]->phandle)
|
||
|
np = phandle_cache[masked_handle];
|
||
|
if (np && of_node_check_flag(np, OF_DETACHED)) {
|
||
|
WARN_ON(1); /* did not uncache np on node removal */
|
||
|
of_node_put(np);
|
||
|
phandle_cache[masked_handle] = NULL;
|
||
|
np = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!np) {
|
||
|
for_each_of_allnodes(np)
|
||
|
if (np->phandle == handle &&
|
||
|
!of_node_check_flag(np, OF_DETACHED)) {
|
||
|
if (phandle_cache) {
|
||
|
/* will put when removed from cache */
|
||
|
of_node_get(np);
|
||
|
phandle_cache[masked_handle] = np;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
of_node_get(np);
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
return np;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_find_node_by_phandle);
|
||
|
|
||
|
void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
|
||
|
{
|
||
|
int i;
|
||
|
printk("%s %pOF", msg, args->np);
|
||
|
for (i = 0; i < args->args_count; i++) {
|
||
|
const char delim = i ? ',' : ':';
|
||
|
|
||
|
pr_cont("%c%08x", delim, args->args[i]);
|
||
|
}
|
||
|
pr_cont("\n");
|
||
|
}
|
||
|
|
||
|
int of_phandle_iterator_init(struct of_phandle_iterator *it,
|
||
|
const struct device_node *np,
|
||
|
const char *list_name,
|
||
|
const char *cells_name,
|
||
|
int cell_count)
|
||
|
{
|
||
|
const __be32 *list;
|
||
|
int size;
|
||
|
|
||
|
memset(it, 0, sizeof(*it));
|
||
|
|
||
|
list = of_get_property(np, list_name, &size);
|
||
|
if (!list)
|
||
|
return -ENOENT;
|
||
|
|
||
|
it->cells_name = cells_name;
|
||
|
it->cell_count = cell_count;
|
||
|
it->parent = np;
|
||
|
it->list_end = list + size / sizeof(*list);
|
||
|
it->phandle_end = list;
|
||
|
it->cur = list;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
|
||
|
|
||
|
int of_phandle_iterator_next(struct of_phandle_iterator *it)
|
||
|
{
|
||
|
uint32_t count = 0;
|
||
|
|
||
|
if (it->node) {
|
||
|
of_node_put(it->node);
|
||
|
it->node = NULL;
|
||
|
}
|
||
|
|
||
|
if (!it->cur || it->phandle_end >= it->list_end)
|
||
|
return -ENOENT;
|
||
|
|
||
|
it->cur = it->phandle_end;
|
||
|
|
||
|
/* If phandle is 0, then it is an empty entry with no arguments. */
|
||
|
it->phandle = be32_to_cpup(it->cur++);
|
||
|
|
||
|
if (it->phandle) {
|
||
|
|
||
|
/*
|
||
|
* Find the provider node and parse the #*-cells property to
|
||
|
* determine the argument length.
|
||
|
*/
|
||
|
it->node = of_find_node_by_phandle(it->phandle);
|
||
|
|
||
|
if (it->cells_name) {
|
||
|
if (!it->node) {
|
||
|
pr_err("%pOF: could not find phandle\n",
|
||
|
it->parent);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
if (of_property_read_u32(it->node, it->cells_name,
|
||
|
&count)) {
|
||
|
pr_err("%pOF: could not get %s for %pOF\n",
|
||
|
it->parent,
|
||
|
it->cells_name,
|
||
|
it->node);
|
||
|
goto err;
|
||
|
}
|
||
|
} else {
|
||
|
count = it->cell_count;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Make sure that the arguments actually fit in the remaining
|
||
|
* property data length
|
||
|
*/
|
||
|
if (it->cur + count > it->list_end) {
|
||
|
pr_err("%pOF: arguments longer than property\n",
|
||
|
it->parent);
|
||
|
goto err;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
it->phandle_end = it->cur + count;
|
||
|
it->cur_count = count;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
err:
|
||
|
if (it->node) {
|
||
|
of_node_put(it->node);
|
||
|
it->node = NULL;
|
||
|
}
|
||
|
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
|
||
|
|
||
|
int of_phandle_iterator_args(struct of_phandle_iterator *it,
|
||
|
uint32_t *args,
|
||
|
int size)
|
||
|
{
|
||
|
int i, count;
|
||
|
|
||
|
count = it->cur_count;
|
||
|
|
||
|
if (WARN_ON(size < count))
|
||
|
count = size;
|
||
|
|
||
|
for (i = 0; i < count; i++)
|
||
|
args[i] = be32_to_cpup(it->cur++);
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(of_phandle_iterator_args);
|
||
|
|
||
|
static int __of_parse_phandle_with_args(const struct device_node *np,
|
||
|
const char *list_name,
|
||
|
const char *cells_name,
|
||
|
int cell_count, int index,
|
||
|
struct of_phandle_args *out_args)
|
||
|
{
|
||
|
struct of_phandle_iterator it;
|
||
|
int rc, cur_index = 0;
|
||
|
|
||
|
/* Loop over the phandles until all the requested entry is found */
|
||
|
of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
|
||
|
/*
|
||
|
* All of the error cases bail out of the loop, so at
|
||
|
* this point, the parsing is successful. If the requested
|
||
|
* index matches, then fill the out_args structure and return,
|
||
|
* or return -ENOENT for an empty entry.
|
||
|
*/
|
||
|
rc = -ENOENT;
|
||
|
if (cur_index == index) {
|
||
|
if (!it.phandle)
|
||
|
goto err;
|
||
|
|
||
|
if (out_args) {
|
||
|
int c;
|
||
|
|
||
|
c = of_phandle_iterator_args(&it,
|
||
|
out_args->args,
|
||
|
MAX_PHANDLE_ARGS);
|
||
|
out_args->np = it.node;
|
||
|
out_args->args_count = c;
|
||
|
} else {
|
||
|
of_node_put(it.node);
|
||
|
}
|
||
|
|
||
|
/* Found it! return success */
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
cur_index++;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Unlock node before returning result; will be one of:
|
||
|
* -ENOENT : index is for empty phandle
|
||
|
* -EINVAL : parsing error on data
|
||
|
*/
|
||
|
|
||
|
err:
|
||
|
of_node_put(it.node);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* of_parse_phandle - Resolve a phandle property to a device_node pointer
|
||
|
* @np: Pointer to device node holding phandle property
|
||
|
* @phandle_name: Name of property holding a phandle value
|
||
|
* @index: For properties holding a table of phandles, this is the index into
|
||
|
* the table
|
||
|
*
|
||
|
* Returns the device_node pointer with refcount incremented. Use
|
||
|
* of_node_put() on it when done.
|
||
|
*/
|
||
|
struct device_node *of_parse_phandle(const struct device_node *np,
|
||
|
const char *phandle_name, int index)
|
||
|
{
|
||
|
struct of_phandle_args args;
|
||
|
|
||
|
if (index < 0)
|
||
|
return NULL;
|
||
|
|
||
|
if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
|
||
|
index, &args))
|
||
|
return NULL;
|
||
|
|
||
|
return args.np;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_parse_phandle);
|
||
|
|
||
|
/**
|
||
|
* of_parse_phandle_with_args() - Find a node pointed by phandle in a list
|
||
|
* @np: pointer to a device tree node containing a list
|
||
|
* @list_name: property name that contains a list
|
||
|
* @cells_name: property name that specifies phandles' arguments count
|
||
|
* @index: index of a phandle to parse out
|
||
|
* @out_args: optional pointer to output arguments structure (will be filled)
|
||
|
*
|
||
|
* This function is useful to parse lists of phandles and their arguments.
|
||
|
* Returns 0 on success and fills out_args, on error returns appropriate
|
||
|
* errno value.
|
||
|
*
|
||
|
* Caller is responsible to call of_node_put() on the returned out_args->np
|
||
|
* pointer.
|
||
|
*
|
||
|
* Example:
|
||
|
*
|
||
|
* phandle1: node1 {
|
||
|
* #list-cells = <2>;
|
||
|
* }
|
||
|
*
|
||
|
* phandle2: node2 {
|
||
|
* #list-cells = <1>;
|
||
|
* }
|
||
|
*
|
||
|
* node3 {
|
||
|
* list = <&phandle1 1 2 &phandle2 3>;
|
||
|
* }
|
||
|
*
|
||
|
* To get a device_node of the `node2' node you may call this:
|
||
|
* of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
|
||
|
*/
|
||
|
int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
|
||
|
const char *cells_name, int index,
|
||
|
struct of_phandle_args *out_args)
|
||
|
{
|
||
|
if (index < 0)
|
||
|
return -EINVAL;
|
||
|
return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
|
||
|
index, out_args);
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_parse_phandle_with_args);
|
||
|
|
||
|
/**
|
||
|
* of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
|
||
|
* @np: pointer to a device tree node containing a list
|
||
|
* @list_name: property name that contains a list
|
||
|
* @stem_name: stem of property names that specify phandles' arguments count
|
||
|
* @index: index of a phandle to parse out
|
||
|
* @out_args: optional pointer to output arguments structure (will be filled)
|
||
|
*
|
||
|
* This function is useful to parse lists of phandles and their arguments.
|
||
|
* Returns 0 on success and fills out_args, on error returns appropriate errno
|
||
|
* value. The difference between this function and of_parse_phandle_with_args()
|
||
|
* is that this API remaps a phandle if the node the phandle points to has
|
||
|
* a <@stem_name>-map property.
|
||
|
*
|
||
|
* Caller is responsible to call of_node_put() on the returned out_args->np
|
||
|
* pointer.
|
||
|
*
|
||
|
* Example:
|
||
|
*
|
||
|
* phandle1: node1 {
|
||
|
* #list-cells = <2>;
|
||
|
* }
|
||
|
*
|
||
|
* phandle2: node2 {
|
||
|
* #list-cells = <1>;
|
||
|
* }
|
||
|
*
|
||
|
* phandle3: node3 {
|
||
|
* #list-cells = <1>;
|
||
|
* list-map = <0 &phandle2 3>,
|
||
|
* <1 &phandle2 2>,
|
||
|
* <2 &phandle1 5 1>;
|
||
|
* list-map-mask = <0x3>;
|
||
|
* };
|
||
|
*
|
||
|
* node4 {
|
||
|
* list = <&phandle1 1 2 &phandle3 0>;
|
||
|
* }
|
||
|
*
|
||
|
* To get a device_node of the `node2' node you may call this:
|
||
|
* of_parse_phandle_with_args(node4, "list", "list", 1, &args);
|
||
|
*/
|
||
|
int of_parse_phandle_with_args_map(const struct device_node *np,
|
||
|
const char *list_name,
|
||
|
const char *stem_name,
|
||
|
int index, struct of_phandle_args *out_args)
|
||
|
{
|
||
|
char *cells_name, *map_name = NULL, *mask_name = NULL;
|
||
|
char *pass_name = NULL;
|
||
|
struct device_node *cur, *new = NULL;
|
||
|
const __be32 *map, *mask, *pass;
|
||
|
static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
|
||
|
static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
|
||
|
__be32 initial_match_array[MAX_PHANDLE_ARGS];
|
||
|
const __be32 *match_array = initial_match_array;
|
||
|
int i, ret, map_len, match;
|
||
|
u32 list_size, new_size;
|
||
|
|
||
|
if (index < 0)
|
||
|
return -EINVAL;
|
||
|
|
||
|
cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
|
||
|
if (!cells_name)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
ret = -ENOMEM;
|
||
|
map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
|
||
|
if (!map_name)
|
||
|
goto free;
|
||
|
|
||
|
mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
|
||
|
if (!mask_name)
|
||
|
goto free;
|
||
|
|
||
|
pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
|
||
|
if (!pass_name)
|
||
|
goto free;
|
||
|
|
||
|
ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
|
||
|
out_args);
|
||
|
if (ret)
|
||
|
goto free;
|
||
|
|
||
|
/* Get the #<list>-cells property */
|
||
|
cur = out_args->np;
|
||
|
ret = of_property_read_u32(cur, cells_name, &list_size);
|
||
|
if (ret < 0)
|
||
|
goto put;
|
||
|
|
||
|
/* Precalculate the match array - this simplifies match loop */
|
||
|
for (i = 0; i < list_size; i++)
|
||
|
initial_match_array[i] = cpu_to_be32(out_args->args[i]);
|
||
|
|
||
|
ret = -EINVAL;
|
||
|
while (cur) {
|
||
|
/* Get the <list>-map property */
|
||
|
map = of_get_property(cur, map_name, &map_len);
|
||
|
if (!map) {
|
||
|
ret = 0;
|
||
|
goto free;
|
||
|
}
|
||
|
map_len /= sizeof(u32);
|
||
|
|
||
|
/* Get the <list>-map-mask property (optional) */
|
||
|
mask = of_get_property(cur, mask_name, NULL);
|
||
|
if (!mask)
|
||
|
mask = dummy_mask;
|
||
|
/* Iterate through <list>-map property */
|
||
|
match = 0;
|
||
|
while (map_len > (list_size + 1) && !match) {
|
||
|
/* Compare specifiers */
|
||
|
match = 1;
|
||
|
for (i = 0; i < list_size; i++, map_len--)
|
||
|
match &= !((match_array[i] ^ *map++) & mask[i]);
|
||
|
|
||
|
of_node_put(new);
|
||
|
new = of_find_node_by_phandle(be32_to_cpup(map));
|
||
|
map++;
|
||
|
map_len--;
|
||
|
|
||
|
/* Check if not found */
|
||
|
if (!new)
|
||
|
goto put;
|
||
|
|
||
|
if (!of_device_is_available(new))
|
||
|
match = 0;
|
||
|
|
||
|
ret = of_property_read_u32(new, cells_name, &new_size);
|
||
|
if (ret)
|
||
|
goto put;
|
||
|
|
||
|
/* Check for malformed properties */
|
||
|
if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
|
||
|
goto put;
|
||
|
if (map_len < new_size)
|
||
|
goto put;
|
||
|
|
||
|
/* Move forward by new node's #<list>-cells amount */
|
||
|
map += new_size;
|
||
|
map_len -= new_size;
|
||
|
}
|
||
|
if (!match)
|
||
|
goto put;
|
||
|
|
||
|
/* Get the <list>-map-pass-thru property (optional) */
|
||
|
pass = of_get_property(cur, pass_name, NULL);
|
||
|
if (!pass)
|
||
|
pass = dummy_pass;
|
||
|
|
||
|
/*
|
||
|
* Successfully parsed a <list>-map translation; copy new
|
||
|
* specifier into the out_args structure, keeping the
|
||
|
* bits specified in <list>-map-pass-thru.
|
||
|
*/
|
||
|
match_array = map - new_size;
|
||
|
for (i = 0; i < new_size; i++) {
|
||
|
__be32 val = *(map - new_size + i);
|
||
|
|
||
|
if (i < list_size) {
|
||
|
val &= ~pass[i];
|
||
|
val |= cpu_to_be32(out_args->args[i]) & pass[i];
|
||
|
}
|
||
|
|
||
|
out_args->args[i] = be32_to_cpu(val);
|
||
|
}
|
||
|
out_args->args_count = list_size = new_size;
|
||
|
/* Iterate again with new provider */
|
||
|
out_args->np = new;
|
||
|
of_node_put(cur);
|
||
|
cur = new;
|
||
|
}
|
||
|
put:
|
||
|
of_node_put(cur);
|
||
|
of_node_put(new);
|
||
|
free:
|
||
|
kfree(mask_name);
|
||
|
kfree(map_name);
|
||
|
kfree(cells_name);
|
||
|
kfree(pass_name);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_parse_phandle_with_args_map);
|
||
|
|
||
|
/**
|
||
|
* of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
|
||
|
* @np: pointer to a device tree node containing a list
|
||
|
* @list_name: property name that contains a list
|
||
|
* @cell_count: number of argument cells following the phandle
|
||
|
* @index: index of a phandle to parse out
|
||
|
* @out_args: optional pointer to output arguments structure (will be filled)
|
||
|
*
|
||
|
* This function is useful to parse lists of phandles and their arguments.
|
||
|
* Returns 0 on success and fills out_args, on error returns appropriate
|
||
|
* errno value.
|
||
|
*
|
||
|
* Caller is responsible to call of_node_put() on the returned out_args->np
|
||
|
* pointer.
|
||
|
*
|
||
|
* Example:
|
||
|
*
|
||
|
* phandle1: node1 {
|
||
|
* }
|
||
|
*
|
||
|
* phandle2: node2 {
|
||
|
* }
|
||
|
*
|
||
|
* node3 {
|
||
|
* list = <&phandle1 0 2 &phandle2 2 3>;
|
||
|
* }
|
||
|
*
|
||
|
* To get a device_node of the `node2' node you may call this:
|
||
|
* of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
|
||
|
*/
|
||
|
int of_parse_phandle_with_fixed_args(const struct device_node *np,
|
||
|
const char *list_name, int cell_count,
|
||
|
int index, struct of_phandle_args *out_args)
|
||
|
{
|
||
|
if (index < 0)
|
||
|
return -EINVAL;
|
||
|
return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
|
||
|
index, out_args);
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
|
||
|
|
||
|
/**
|
||
|
* of_count_phandle_with_args() - Find the number of phandles references in a property
|
||
|
* @np: pointer to a device tree node containing a list
|
||
|
* @list_name: property name that contains a list
|
||
|
* @cells_name: property name that specifies phandles' arguments count
|
||
|
*
|
||
|
* Returns the number of phandle + argument tuples within a property. It
|
||
|
* is a typical pattern to encode a list of phandle and variable
|
||
|
* arguments into a single property. The number of arguments is encoded
|
||
|
* by a property in the phandle-target node. For example, a gpios
|
||
|
* property would contain a list of GPIO specifies consisting of a
|
||
|
* phandle and 1 or more arguments. The number of arguments are
|
||
|
* determined by the #gpio-cells property in the node pointed to by the
|
||
|
* phandle.
|
||
|
*/
|
||
|
int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
|
||
|
const char *cells_name)
|
||
|
{
|
||
|
struct of_phandle_iterator it;
|
||
|
int rc, cur_index = 0;
|
||
|
|
||
|
rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
while ((rc = of_phandle_iterator_next(&it)) == 0)
|
||
|
cur_index += 1;
|
||
|
|
||
|
if (rc != -ENOENT)
|
||
|
return rc;
|
||
|
|
||
|
return cur_index;
|
||
|
}
|
||
|
EXPORT_SYMBOL(of_count_phandle_with_args);
|
||
|
|
||
|
/**
|
||
|
* __of_add_property - Add a property to a node without lock operations
|
||
|
*/
|
||
|
int __of_add_property(struct device_node *np, struct property *prop)
|
||
|
{
|
||
|
struct property **next;
|
||
|
|
||
|
prop->next = NULL;
|
||
|
next = &np->properties;
|
||
|
while (*next) {
|
||
|
if (strcmp(prop->name, (*next)->name) == 0)
|
||
|
/* duplicate ! don't insert it */
|
||
|
return -EEXIST;
|
||
|
|
||
|
next = &(*next)->next;
|
||
|
}
|
||
|
*next = prop;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* of_add_property - Add a property to a node
|
||
|
*/
|
||
|
int of_add_property(struct device_node *np, struct property *prop)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
int rc;
|
||
|
|
||
|
mutex_lock(&of_mutex);
|
||
|
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
rc = __of_add_property(np, prop);
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
|
||
|
if (!rc)
|
||
|
__of_add_property_sysfs(np, prop);
|
||
|
|
||
|
mutex_unlock(&of_mutex);
|
||
|
|
||
|
if (!rc)
|
||
|
of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int __of_remove_property(struct device_node *np, struct property *prop)
|
||
|
{
|
||
|
struct property **next;
|
||
|
|
||
|
for (next = &np->properties; *next; next = &(*next)->next) {
|
||
|
if (*next == prop)
|
||
|
break;
|
||
|
}
|
||
|
if (*next == NULL)
|
||
|
return -ENODEV;
|
||
|
|
||
|
/* found the node */
|
||
|
*next = prop->next;
|
||
|
prop->next = np->deadprops;
|
||
|
np->deadprops = prop;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* of_remove_property - Remove a property from a node.
|
||
|
*
|
||
|
* Note that we don't actually remove it, since we have given out
|
||
|
* who-knows-how-many pointers to the data using get-property.
|
||
|
* Instead we just move the property to the "dead properties"
|
||
|
* list, so it won't be found any more.
|
||
|
*/
|
||
|
int of_remove_property(struct device_node *np, struct property *prop)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
int rc;
|
||
|
|
||
|
if (!prop)
|
||
|
return -ENODEV;
|
||
|
|
||
|
mutex_lock(&of_mutex);
|
||
|
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
rc = __of_remove_property(np, prop);
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
|
||
|
if (!rc)
|
||
|
__of_remove_property_sysfs(np, prop);
|
||
|
|
||
|
mutex_unlock(&of_mutex);
|
||
|
|
||
|
if (!rc)
|
||
|
of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int __of_update_property(struct device_node *np, struct property *newprop,
|
||
|
struct property **oldpropp)
|
||
|
{
|
||
|
struct property **next, *oldprop;
|
||
|
|
||
|
for (next = &np->properties; *next; next = &(*next)->next) {
|
||
|
if (of_prop_cmp((*next)->name, newprop->name) == 0)
|
||
|
break;
|
||
|
}
|
||
|
*oldpropp = oldprop = *next;
|
||
|
|
||
|
if (oldprop) {
|
||
|
/* replace the node */
|
||
|
newprop->next = oldprop->next;
|
||
|
*next = newprop;
|
||
|
oldprop->next = np->deadprops;
|
||
|
np->deadprops = oldprop;
|
||
|
} else {
|
||
|
/* new node */
|
||
|
newprop->next = NULL;
|
||
|
*next = newprop;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* of_update_property - Update a property in a node, if the property does
|
||
|
* not exist, add it.
|
||
|
*
|
||
|
* Note that we don't actually remove it, since we have given out
|
||
|
* who-knows-how-many pointers to the data using get-property.
|
||
|
* Instead we just move the property to the "dead properties" list,
|
||
|
* and add the new property to the property list
|
||
|
*/
|
||
|
int of_update_property(struct device_node *np, struct property *newprop)
|
||
|
{
|
||
|
struct property *oldprop;
|
||
|
unsigned long flags;
|
||
|
int rc;
|
||
|
|
||
|
if (!newprop->name)
|
||
|
return -EINVAL;
|
||
|
|
||
|
mutex_lock(&of_mutex);
|
||
|
|
||
|
raw_spin_lock_irqsave(&devtree_lock, flags);
|
||
|
rc = __of_update_property(np, newprop, &oldprop);
|
||
|
raw_spin_unlock_irqrestore(&devtree_lock, flags);
|
||
|
|
||
|
if (!rc)
|
||
|
__of_update_property_sysfs(np, newprop, oldprop);
|
||
|
|
||
|
mutex_unlock(&of_mutex);
|
||
|
|
||
|
if (!rc)
|
||
|
of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static void of_alias_add(struct alias_prop *ap, struct device_node *np,
|
||
|
int id, const char *stem, int stem_len)
|
||
|
{
|
||
|
ap->np = np;
|
||
|
ap->id = id;
|
||
|
strncpy(ap->stem, stem, stem_len);
|
||
|
ap->stem[stem_len] = 0;
|
||
|
list_add_tail(&ap->link, &aliases_lookup);
|
||
|
pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
|
||
|
ap->alias, ap->stem, ap->id, np);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* of_alias_scan - Scan all properties of the 'aliases' node
|
||
|
*
|
||
|
* The function scans all the properties of the 'aliases' node and populates
|
||
|
* the global lookup table with the properties. It returns the
|
||
|
* number of alias properties found, or an error code in case of failure.
|
||
|
*
|
||
|
* @dt_alloc: An allocator that provides a virtual address to memory
|
||
|
* for storing the resulting tree
|
||
|
*/
|
||
|
void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
|
||
|
{
|
||
|
struct property *pp;
|
||
|
|
||
|
of_aliases = of_find_node_by_path("/aliases");
|
||
|
of_chosen = of_find_node_by_path("/chosen");
|
||
|
if (of_chosen == NULL)
|
||
|
of_chosen = of_find_node_by_path("/chosen@0");
|
||
|
|
||
|
if (of_chosen) {
|
||
|
/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
|
||
|
const char *name = NULL;
|
||
|
|
||
|
if (of_property_read_string(of_chosen, "stdout-path", &name))
|
||
|
of_property_read_string(of_chosen, "linux,stdout-path",
|
||
|
&name);
|
||
|
if (IS_ENABLED(CONFIG_PPC) && !name)
|
||
|
of_property_read_string(of_aliases, "stdout", &name);
|
||
|
if (name)
|
||
|
of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
|
||
|
}
|
||
|
|
||
|
if (!of_aliases)
|
||
|
return;
|
||
|
|
||
|
for_each_property_of_node(of_aliases, pp) {
|
||
|
const char *start = pp->name;
|
||
|
const char *end = start + strlen(start);
|
||
|
struct device_node *np;
|
||
|
struct alias_prop *ap;
|
||
|
int id, len;
|
||
|
|
||
|
/* Skip those we do not want to proceed */
|
||
|
if (!strcmp(pp->name, "name") ||
|
||
|
!strcmp(pp->name, "phandle") ||
|
||
|
!strcmp(pp->name, "linux,phandle"))
|
||
|
continue;
|
||
|
|
||
|
np = of_find_node_by_path(pp->value);
|
||
|
if (!np)
|
||
|
continue;
|
||
|
|
||
|
/* walk the alias backwards to extract the id and work out
|
||
|
* the 'stem' string */
|
||
|
while (isdigit(*(end-1)) && end > start)
|
||
|
end--;
|
||
|
len = end - start;
|
||
|
|
||
|
if (kstrtoint(end, 10, &id) < 0)
|
||
|
continue;
|
||
|
|
||
|
/* Allocate an alias_prop with enough space for the stem */
|
||
|
ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
|
||
|
if (!ap)
|
||
|
continue;
|
||
|
memset(ap, 0, sizeof(*ap) + len + 1);
|
||
|
ap->alias = start;
|
||
|
of_alias_add(ap, np, id, start, len);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* of_alias_get_id - Get alias id for the given device_node
|
||
|
* @np: Pointer to the given device_node
|
||
|
* @stem: Alias stem of the given device_node
|
||
|
*
|
||
|
* The function travels the lookup table to get the alias id for the given
|
||
|
* device_node and alias stem. It returns the alias id if found.
|
||
|
*/
|
||
|
int of_alias_get_id(struct device_node *np, const char *stem)
|
||
|
{
|
||
|
struct alias_prop *app;
|
||
|
int id = -ENODEV;
|
||
|
|
||
|
mutex_lock(&of_mutex);
|
||
|
list_for_each_entry(app, &aliases_lookup, link) {
|
||
|
if (strcmp(app->stem, stem) != 0)
|
||
|
continue;
|
||
|
|
||
|
if (np == app->np) {
|
||
|
id = app->id;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
mutex_unlock(&of_mutex);
|
||
|
|
||
|
return id;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(of_alias_get_id);
|
||
|
|
||
|
/**
|
||
|
* of_alias_get_highest_id - Get highest alias id for the given stem
|
||
|
* @stem: Alias stem to be examined
|
||
|
*
|
||
|
* The function travels the lookup table to get the highest alias id for the
|
||
|
* given alias stem. It returns the alias id if found.
|
||
|
*/
|
||
|
int of_alias_get_highest_id(const char *stem)
|
||
|
{
|
||
|
struct alias_prop *app;
|
||
|
int id = -ENODEV;
|
||
|
|
||
|
mutex_lock(&of_mutex);
|
||
|
list_for_each_entry(app, &aliases_lookup, link) {
|
||
|
if (strcmp(app->stem, stem) != 0)
|
||
|
continue;
|
||
|
|
||
|
if (app->id > id)
|
||
|
id = app->id;
|
||
|
}
|
||
|
mutex_unlock(&of_mutex);
|
||
|
|
||
|
return id;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
|
||
|
|
||
|
/**
|
||
|
* of_console_check() - Test and setup console for DT setup
|
||
|
* @dn - Pointer to device node
|
||
|
* @name - Name to use for preferred console without index. ex. "ttyS"
|
||
|
* @index - Index to use for preferred console.
|
||
|
*
|
||
|
* Check if the given device node matches the stdout-path property in the
|
||
|
* /chosen node. If it does then register it as the preferred console and return
|
||
|
* TRUE. Otherwise return FALSE.
|
||
|
*/
|
||
|
bool of_console_check(struct device_node *dn, char *name, int index)
|
||
|
{
|
||
|
if (!dn || dn != of_stdout || console_set_on_cmdline)
|
||
|
return false;
|
||
|
|
||
|
/*
|
||
|
* XXX: cast `options' to char pointer to suppress complication
|
||
|
* warnings: printk, UART and console drivers expect char pointer.
|
||
|
*/
|
||
|
return !add_preferred_console(name, index, (char *)of_stdout_options);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(of_console_check);
|
||
|
|
||
|
/**
|
||
|
* of_find_next_cache_node - Find a node's subsidiary cache
|
||
|
* @np: node of type "cpu" or "cache"
|
||
|
*
|
||
|
* Returns a node pointer with refcount incremented, use
|
||
|
* of_node_put() on it when done. Caller should hold a reference
|
||
|
* to np.
|
||
|
*/
|
||
|
struct device_node *of_find_next_cache_node(const struct device_node *np)
|
||
|
{
|
||
|
struct device_node *child, *cache_node;
|
||
|
|
||
|
cache_node = of_parse_phandle(np, "l2-cache", 0);
|
||
|
if (!cache_node)
|
||
|
cache_node = of_parse_phandle(np, "next-level-cache", 0);
|
||
|
|
||
|
if (cache_node)
|
||
|
return cache_node;
|
||
|
|
||
|
/* OF on pmac has nodes instead of properties named "l2-cache"
|
||
|
* beneath CPU nodes.
|
||
|
*/
|
||
|
if (IS_ENABLED(CONFIG_PPC_PMAC) && !strcmp(np->type, "cpu"))
|
||
|
for_each_child_of_node(np, child)
|
||
|
if (!strcmp(child->type, "cache"))
|
||
|
return child;
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* of_find_last_cache_level - Find the level at which the last cache is
|
||
|
* present for the given logical cpu
|
||
|
*
|
||
|
* @cpu: cpu number(logical index) for which the last cache level is needed
|
||
|
*
|
||
|
* Returns the the level at which the last cache is present. It is exactly
|
||
|
* same as the total number of cache levels for the given logical cpu.
|
||
|
*/
|
||
|
int of_find_last_cache_level(unsigned int cpu)
|
||
|
{
|
||
|
u32 cache_level = 0;
|
||
|
struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
|
||
|
|
||
|
while (np) {
|
||
|
prev = np;
|
||
|
of_node_put(np);
|
||
|
np = of_find_next_cache_node(np);
|
||
|
}
|
||
|
|
||
|
of_property_read_u32(prev, "cache-level", &cache_level);
|
||
|
|
||
|
return cache_level;
|
||
|
}
|