kernel_samsung_a34x-permissive/arch/powerpc/platforms/powernv/opal-lpc.c

422 lines
10 KiB
C
Raw Normal View History

/*
* PowerNV LPC bus handling.
*
* Copyright 2013 IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/bug.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <asm/machdep.h>
#include <asm/firmware.h>
#include <asm/opal.h>
#include <asm/prom.h>
#include <linux/uaccess.h>
#include <asm/debugfs.h>
#include <asm/isa-bridge.h>
static int opal_lpc_chip_id = -1;
static u8 opal_lpc_inb(unsigned long port)
{
int64_t rc;
__be32 data;
if (opal_lpc_chip_id < 0 || port > 0xffff)
return 0xff;
rc = opal_lpc_read(opal_lpc_chip_id, OPAL_LPC_IO, port, &data, 1);
return rc ? 0xff : be32_to_cpu(data);
}
static __le16 __opal_lpc_inw(unsigned long port)
{
int64_t rc;
__be32 data;
if (opal_lpc_chip_id < 0 || port > 0xfffe)
return 0xffff;
if (port & 1)
return (__le16)opal_lpc_inb(port) << 8 | opal_lpc_inb(port + 1);
rc = opal_lpc_read(opal_lpc_chip_id, OPAL_LPC_IO, port, &data, 2);
return rc ? 0xffff : be32_to_cpu(data);
}
static u16 opal_lpc_inw(unsigned long port)
{
return le16_to_cpu(__opal_lpc_inw(port));
}
static __le32 __opal_lpc_inl(unsigned long port)
{
int64_t rc;
__be32 data;
if (opal_lpc_chip_id < 0 || port > 0xfffc)
return 0xffffffff;
if (port & 3)
return (__le32)opal_lpc_inb(port ) << 24 |
(__le32)opal_lpc_inb(port + 1) << 16 |
(__le32)opal_lpc_inb(port + 2) << 8 |
opal_lpc_inb(port + 3);
rc = opal_lpc_read(opal_lpc_chip_id, OPAL_LPC_IO, port, &data, 4);
return rc ? 0xffffffff : be32_to_cpu(data);
}
static u32 opal_lpc_inl(unsigned long port)
{
return le32_to_cpu(__opal_lpc_inl(port));
}
static void opal_lpc_outb(u8 val, unsigned long port)
{
if (opal_lpc_chip_id < 0 || port > 0xffff)
return;
opal_lpc_write(opal_lpc_chip_id, OPAL_LPC_IO, port, val, 1);
}
static void __opal_lpc_outw(__le16 val, unsigned long port)
{
if (opal_lpc_chip_id < 0 || port > 0xfffe)
return;
if (port & 1) {
opal_lpc_outb(val >> 8, port);
opal_lpc_outb(val , port + 1);
return;
}
opal_lpc_write(opal_lpc_chip_id, OPAL_LPC_IO, port, val, 2);
}
static void opal_lpc_outw(u16 val, unsigned long port)
{
__opal_lpc_outw(cpu_to_le16(val), port);
}
static void __opal_lpc_outl(__le32 val, unsigned long port)
{
if (opal_lpc_chip_id < 0 || port > 0xfffc)
return;
if (port & 3) {
opal_lpc_outb(val >> 24, port);
opal_lpc_outb(val >> 16, port + 1);
opal_lpc_outb(val >> 8, port + 2);
opal_lpc_outb(val , port + 3);
return;
}
opal_lpc_write(opal_lpc_chip_id, OPAL_LPC_IO, port, val, 4);
}
static void opal_lpc_outl(u32 val, unsigned long port)
{
__opal_lpc_outl(cpu_to_le32(val), port);
}
static void opal_lpc_insb(unsigned long p, void *b, unsigned long c)
{
u8 *ptr = b;
while(c--)
*(ptr++) = opal_lpc_inb(p);
}
static void opal_lpc_insw(unsigned long p, void *b, unsigned long c)
{
__le16 *ptr = b;
while(c--)
*(ptr++) = __opal_lpc_inw(p);
}
static void opal_lpc_insl(unsigned long p, void *b, unsigned long c)
{
__le32 *ptr = b;
while(c--)
*(ptr++) = __opal_lpc_inl(p);
}
static void opal_lpc_outsb(unsigned long p, const void *b, unsigned long c)
{
const u8 *ptr = b;
while(c--)
opal_lpc_outb(*(ptr++), p);
}
static void opal_lpc_outsw(unsigned long p, const void *b, unsigned long c)
{
const __le16 *ptr = b;
while(c--)
__opal_lpc_outw(*(ptr++), p);
}
static void opal_lpc_outsl(unsigned long p, const void *b, unsigned long c)
{
const __le32 *ptr = b;
while(c--)
__opal_lpc_outl(*(ptr++), p);
}
static const struct ppc_pci_io opal_lpc_io = {
.inb = opal_lpc_inb,
.inw = opal_lpc_inw,
.inl = opal_lpc_inl,
.outb = opal_lpc_outb,
.outw = opal_lpc_outw,
.outl = opal_lpc_outl,
.insb = opal_lpc_insb,
.insw = opal_lpc_insw,
.insl = opal_lpc_insl,
.outsb = opal_lpc_outsb,
.outsw = opal_lpc_outsw,
.outsl = opal_lpc_outsl,
};
#ifdef CONFIG_DEBUG_FS
struct lpc_debugfs_entry {
enum OpalLPCAddressType lpc_type;
};
static ssize_t lpc_debug_read(struct file *filp, char __user *ubuf,
size_t count, loff_t *ppos)
{
struct lpc_debugfs_entry *lpc = filp->private_data;
u32 data, pos, len, todo;
int rc;
if (!access_ok(VERIFY_WRITE, ubuf, count))
return -EFAULT;
todo = count;
while (todo) {
pos = *ppos;
/*
* Select access size based on count and alignment and
* access type. IO and MEM only support byte acceses,
* FW supports all 3.
*/
len = 1;
if (lpc->lpc_type == OPAL_LPC_FW) {
if (todo > 3 && (pos & 3) == 0)
len = 4;
else if (todo > 1 && (pos & 1) == 0)
len = 2;
}
rc = opal_lpc_read(opal_lpc_chip_id, lpc->lpc_type, pos,
&data, len);
if (rc)
return -ENXIO;
/*
* Now there is some trickery with the data returned by OPAL
* as it's the desired data right justified in a 32-bit BE
* word.
*
* This is a very bad interface and I'm to blame for it :-(
*
* So we can't just apply a 32-bit swap to what comes from OPAL,
* because user space expects the *bytes* to be in their proper
* respective positions (ie, LPC position).
*
* So what we really want to do here is to shift data right
* appropriately on a LE kernel.
*
* IE. If the LPC transaction has bytes B0, B1, B2 and B3 in that
* order, we have in memory written to by OPAL at the "data"
* pointer:
*
* Bytes: OPAL "data" LE "data"
* 32-bit: B0 B1 B2 B3 B0B1B2B3 B3B2B1B0
* 16-bit: B0 B1 0000B0B1 B1B00000
* 8-bit: B0 000000B0 B0000000
*
* So a BE kernel will have the leftmost of the above in the MSB
* and rightmost in the LSB and can just then "cast" the u32 "data"
* down to the appropriate quantity and write it.
*
* However, an LE kernel can't. It doesn't need to swap because a
* load from data followed by a store to user are going to preserve
* the byte ordering which is the wire byte order which is what the
* user wants, but in order to "crop" to the right size, we need to
* shift right first.
*/
switch(len) {
case 4:
rc = __put_user((u32)data, (u32 __user *)ubuf);
break;
case 2:
#ifdef __LITTLE_ENDIAN__
data >>= 16;
#endif
rc = __put_user((u16)data, (u16 __user *)ubuf);
break;
default:
#ifdef __LITTLE_ENDIAN__
data >>= 24;
#endif
rc = __put_user((u8)data, (u8 __user *)ubuf);
break;
}
if (rc)
return -EFAULT;
*ppos += len;
ubuf += len;
todo -= len;
}
return count;
}
static ssize_t lpc_debug_write(struct file *filp, const char __user *ubuf,
size_t count, loff_t *ppos)
{
struct lpc_debugfs_entry *lpc = filp->private_data;
u32 data, pos, len, todo;
int rc;
if (!access_ok(VERIFY_READ, ubuf, count))
return -EFAULT;
todo = count;
while (todo) {
pos = *ppos;
/*
* Select access size based on count and alignment and
* access type. IO and MEM only support byte acceses,
* FW supports all 3.
*/
len = 1;
if (lpc->lpc_type == OPAL_LPC_FW) {
if (todo > 3 && (pos & 3) == 0)
len = 4;
else if (todo > 1 && (pos & 1) == 0)
len = 2;
}
/*
* Similarly to the read case, we have some trickery here but
* it's different to handle. We need to pass the value to OPAL in
* a register whose layout depends on the access size. We want
* to reproduce the memory layout of the user, however we aren't
* doing a load from user and a store to another memory location
* which would achieve that. Here we pass the value to OPAL via
* a register which is expected to contain the "BE" interpretation
* of the byte sequence. IE: for a 32-bit access, byte 0 should be
* in the MSB. So here we *do* need to byteswap on LE.
*
* User bytes: LE "data" OPAL "data"
* 32-bit: B0 B1 B2 B3 B3B2B1B0 B0B1B2B3
* 16-bit: B0 B1 0000B1B0 0000B0B1
* 8-bit: B0 000000B0 000000B0
*/
switch(len) {
case 4:
rc = __get_user(data, (u32 __user *)ubuf);
data = cpu_to_be32(data);
break;
case 2:
rc = __get_user(data, (u16 __user *)ubuf);
data = cpu_to_be16(data);
break;
default:
rc = __get_user(data, (u8 __user *)ubuf);
break;
}
if (rc)
return -EFAULT;
rc = opal_lpc_write(opal_lpc_chip_id, lpc->lpc_type, pos,
data, len);
if (rc)
return -ENXIO;
*ppos += len;
ubuf += len;
todo -= len;
}
return count;
}
static const struct file_operations lpc_fops = {
.read = lpc_debug_read,
.write = lpc_debug_write,
.open = simple_open,
.llseek = default_llseek,
};
static int opal_lpc_debugfs_create_type(struct dentry *folder,
const char *fname,
enum OpalLPCAddressType type)
{
struct lpc_debugfs_entry *entry;
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->lpc_type = type;
debugfs_create_file(fname, 0600, folder, entry, &lpc_fops);
return 0;
}
static int opal_lpc_init_debugfs(void)
{
struct dentry *root;
int rc = 0;
if (opal_lpc_chip_id < 0)
return -ENODEV;
root = debugfs_create_dir("lpc", powerpc_debugfs_root);
rc |= opal_lpc_debugfs_create_type(root, "io", OPAL_LPC_IO);
rc |= opal_lpc_debugfs_create_type(root, "mem", OPAL_LPC_MEM);
rc |= opal_lpc_debugfs_create_type(root, "fw", OPAL_LPC_FW);
return rc;
}
machine_device_initcall(powernv, opal_lpc_init_debugfs);
#endif /* CONFIG_DEBUG_FS */
void __init opal_lpc_init(void)
{
struct device_node *np;
/*
* Look for a Power8 LPC bus tagged as "primary",
* we currently support only one though the OPAL APIs
* support any number.
*/
for_each_compatible_node(np, NULL, "ibm,power8-lpc") {
if (!of_device_is_available(np))
continue;
if (!of_get_property(np, "primary", NULL))
continue;
opal_lpc_chip_id = of_get_ibm_chip_id(np);
break;
}
if (opal_lpc_chip_id < 0)
return;
/* Does it support direct mapping ? */
if (of_get_property(np, "ranges", NULL)) {
pr_info("OPAL: Found memory mapped LPC bus on chip %d\n",
opal_lpc_chip_id);
isa_bridge_init_non_pci(np);
} else {
pr_info("OPAL: Found non-mapped LPC bus on chip %d\n",
opal_lpc_chip_id);
/* Setup special IO ops */
ppc_pci_io = opal_lpc_io;
isa_io_special = true;
}
}