248 lines
5.6 KiB
C
248 lines
5.6 KiB
C
|
/*
|
||
|
* c 2001 PPC 64 Team, IBM Corp
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License
|
||
|
* as published by the Free Software Foundation; either version
|
||
|
* 2 of the License, or (at your option) any later version.
|
||
|
*
|
||
|
* /dev/nvram driver for PPC64
|
||
|
*
|
||
|
* This perhaps should live in drivers/char
|
||
|
*/
|
||
|
|
||
|
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/ctype.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <asm/nvram.h>
|
||
|
#include <asm/rtas.h>
|
||
|
#include <asm/prom.h>
|
||
|
#include <asm/machdep.h>
|
||
|
|
||
|
/* Max bytes to read/write in one go */
|
||
|
#define NVRW_CNT 0x20
|
||
|
|
||
|
static unsigned int nvram_size;
|
||
|
static int nvram_fetch, nvram_store;
|
||
|
static char nvram_buf[NVRW_CNT]; /* assume this is in the first 4GB */
|
||
|
static DEFINE_SPINLOCK(nvram_lock);
|
||
|
|
||
|
/* See clobbering_unread_rtas_event() */
|
||
|
#define NVRAM_RTAS_READ_TIMEOUT 5 /* seconds */
|
||
|
static time64_t last_unread_rtas_event; /* timestamp */
|
||
|
|
||
|
#ifdef CONFIG_PSTORE
|
||
|
time64_t last_rtas_event;
|
||
|
#endif
|
||
|
|
||
|
static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
unsigned long len;
|
||
|
int done;
|
||
|
unsigned long flags;
|
||
|
char *p = buf;
|
||
|
|
||
|
|
||
|
if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
|
||
|
return -ENODEV;
|
||
|
|
||
|
if (*index >= nvram_size)
|
||
|
return 0;
|
||
|
|
||
|
i = *index;
|
||
|
if (i + count > nvram_size)
|
||
|
count = nvram_size - i;
|
||
|
|
||
|
spin_lock_irqsave(&nvram_lock, flags);
|
||
|
|
||
|
for (; count != 0; count -= len) {
|
||
|
len = count;
|
||
|
if (len > NVRW_CNT)
|
||
|
len = NVRW_CNT;
|
||
|
|
||
|
if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
|
||
|
len) != 0) || len != done) {
|
||
|
spin_unlock_irqrestore(&nvram_lock, flags);
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
memcpy(p, nvram_buf, len);
|
||
|
|
||
|
p += len;
|
||
|
i += len;
|
||
|
}
|
||
|
|
||
|
spin_unlock_irqrestore(&nvram_lock, flags);
|
||
|
|
||
|
*index = i;
|
||
|
return p - buf;
|
||
|
}
|
||
|
|
||
|
static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
unsigned long len;
|
||
|
int done;
|
||
|
unsigned long flags;
|
||
|
const char *p = buf;
|
||
|
|
||
|
if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
|
||
|
return -ENODEV;
|
||
|
|
||
|
if (*index >= nvram_size)
|
||
|
return 0;
|
||
|
|
||
|
i = *index;
|
||
|
if (i + count > nvram_size)
|
||
|
count = nvram_size - i;
|
||
|
|
||
|
spin_lock_irqsave(&nvram_lock, flags);
|
||
|
|
||
|
for (; count != 0; count -= len) {
|
||
|
len = count;
|
||
|
if (len > NVRW_CNT)
|
||
|
len = NVRW_CNT;
|
||
|
|
||
|
memcpy(nvram_buf, p, len);
|
||
|
|
||
|
if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
|
||
|
len) != 0) || len != done) {
|
||
|
spin_unlock_irqrestore(&nvram_lock, flags);
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
p += len;
|
||
|
i += len;
|
||
|
}
|
||
|
spin_unlock_irqrestore(&nvram_lock, flags);
|
||
|
|
||
|
*index = i;
|
||
|
return p - buf;
|
||
|
}
|
||
|
|
||
|
static ssize_t pSeries_nvram_get_size(void)
|
||
|
{
|
||
|
return nvram_size ? nvram_size : -ENODEV;
|
||
|
}
|
||
|
|
||
|
/* nvram_write_error_log
|
||
|
*
|
||
|
* We need to buffer the error logs into nvram to ensure that we have
|
||
|
* the failure information to decode.
|
||
|
*/
|
||
|
int nvram_write_error_log(char * buff, int length,
|
||
|
unsigned int err_type, unsigned int error_log_cnt)
|
||
|
{
|
||
|
int rc = nvram_write_os_partition(&rtas_log_partition, buff, length,
|
||
|
err_type, error_log_cnt);
|
||
|
if (!rc) {
|
||
|
last_unread_rtas_event = ktime_get_real_seconds();
|
||
|
#ifdef CONFIG_PSTORE
|
||
|
last_rtas_event = ktime_get_real_seconds();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* nvram_read_error_log
|
||
|
*
|
||
|
* Reads nvram for error log for at most 'length'
|
||
|
*/
|
||
|
int nvram_read_error_log(char *buff, int length,
|
||
|
unsigned int *err_type, unsigned int *error_log_cnt)
|
||
|
{
|
||
|
return nvram_read_partition(&rtas_log_partition, buff, length,
|
||
|
err_type, error_log_cnt);
|
||
|
}
|
||
|
|
||
|
/* This doesn't actually zero anything, but it sets the event_logged
|
||
|
* word to tell that this event is safely in syslog.
|
||
|
*/
|
||
|
int nvram_clear_error_log(void)
|
||
|
{
|
||
|
loff_t tmp_index;
|
||
|
int clear_word = ERR_FLAG_ALREADY_LOGGED;
|
||
|
int rc;
|
||
|
|
||
|
if (rtas_log_partition.index == -1)
|
||
|
return -1;
|
||
|
|
||
|
tmp_index = rtas_log_partition.index;
|
||
|
|
||
|
rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
|
||
|
if (rc <= 0) {
|
||
|
printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
last_unread_rtas_event = 0;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Are we using the ibm,rtas-log for oops/panic reports? And if so,
|
||
|
* would logging this oops/panic overwrite an RTAS event that rtas_errd
|
||
|
* hasn't had a chance to read and process? Return 1 if so, else 0.
|
||
|
*
|
||
|
* We assume that if rtas_errd hasn't read the RTAS event in
|
||
|
* NVRAM_RTAS_READ_TIMEOUT seconds, it's probably not going to.
|
||
|
*/
|
||
|
int clobbering_unread_rtas_event(void)
|
||
|
{
|
||
|
return (oops_log_partition.index == rtas_log_partition.index
|
||
|
&& last_unread_rtas_event
|
||
|
&& ktime_get_real_seconds() - last_unread_rtas_event <=
|
||
|
NVRAM_RTAS_READ_TIMEOUT);
|
||
|
}
|
||
|
|
||
|
static int __init pseries_nvram_init_log_partitions(void)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
/* Scan nvram for partitions */
|
||
|
nvram_scan_partitions();
|
||
|
|
||
|
rc = nvram_init_os_partition(&rtas_log_partition);
|
||
|
nvram_init_oops_partition(rc == 0);
|
||
|
return 0;
|
||
|
}
|
||
|
machine_arch_initcall(pseries, pseries_nvram_init_log_partitions);
|
||
|
|
||
|
int __init pSeries_nvram_init(void)
|
||
|
{
|
||
|
struct device_node *nvram;
|
||
|
const __be32 *nbytes_p;
|
||
|
unsigned int proplen;
|
||
|
|
||
|
nvram = of_find_node_by_type(NULL, "nvram");
|
||
|
if (nvram == NULL)
|
||
|
return -ENODEV;
|
||
|
|
||
|
nbytes_p = of_get_property(nvram, "#bytes", &proplen);
|
||
|
if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
|
||
|
of_node_put(nvram);
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
nvram_size = be32_to_cpup(nbytes_p);
|
||
|
|
||
|
nvram_fetch = rtas_token("nvram-fetch");
|
||
|
nvram_store = rtas_token("nvram-store");
|
||
|
printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
|
||
|
of_node_put(nvram);
|
||
|
|
||
|
ppc_md.nvram_read = pSeries_nvram_read;
|
||
|
ppc_md.nvram_write = pSeries_nvram_write;
|
||
|
ppc_md.nvram_size = pSeries_nvram_get_size;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|