kernel_samsung_a34x-permissive/arch/x86/crypto/sha1-mb/sha1_x8_avx2.S

493 lines
13 KiB
ArmAsm
Raw Normal View History

/*
* Multi-buffer SHA1 algorithm hash compute routine
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2014 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* Contact Information:
* James Guilford <james.guilford@intel.com>
* Tim Chen <tim.c.chen@linux.intel.com>
*
* BSD LICENSE
*
* Copyright(c) 2014 Intel Corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/linkage.h>
#include "sha1_mb_mgr_datastruct.S"
## code to compute oct SHA1 using SSE-256
## outer calling routine takes care of save and restore of XMM registers
## Function clobbers: rax, rcx, rdx, rbx, rsi, rdi, r9-r15# ymm0-15
##
## Linux clobbers: rax rbx rcx rdx rsi r9 r10 r11 r12 r13 r14 r15
## Linux preserves: rdi rbp r8
##
## clobbers ymm0-15
# TRANSPOSE8 r0, r1, r2, r3, r4, r5, r6, r7, t0, t1
# "transpose" data in {r0...r7} using temps {t0...t1}
# Input looks like: {r0 r1 r2 r3 r4 r5 r6 r7}
# r0 = {a7 a6 a5 a4 a3 a2 a1 a0}
# r1 = {b7 b6 b5 b4 b3 b2 b1 b0}
# r2 = {c7 c6 c5 c4 c3 c2 c1 c0}
# r3 = {d7 d6 d5 d4 d3 d2 d1 d0}
# r4 = {e7 e6 e5 e4 e3 e2 e1 e0}
# r5 = {f7 f6 f5 f4 f3 f2 f1 f0}
# r6 = {g7 g6 g5 g4 g3 g2 g1 g0}
# r7 = {h7 h6 h5 h4 h3 h2 h1 h0}
#
# Output looks like: {r0 r1 r2 r3 r4 r5 r6 r7}
# r0 = {h0 g0 f0 e0 d0 c0 b0 a0}
# r1 = {h1 g1 f1 e1 d1 c1 b1 a1}
# r2 = {h2 g2 f2 e2 d2 c2 b2 a2}
# r3 = {h3 g3 f3 e3 d3 c3 b3 a3}
# r4 = {h4 g4 f4 e4 d4 c4 b4 a4}
# r5 = {h5 g5 f5 e5 d5 c5 b5 a5}
# r6 = {h6 g6 f6 e6 d6 c6 b6 a6}
# r7 = {h7 g7 f7 e7 d7 c7 b7 a7}
#
.macro TRANSPOSE8 r0 r1 r2 r3 r4 r5 r6 r7 t0 t1
# process top half (r0..r3) {a...d}
vshufps $0x44, \r1, \r0, \t0 # t0 = {b5 b4 a5 a4 b1 b0 a1 a0}
vshufps $0xEE, \r1, \r0, \r0 # r0 = {b7 b6 a7 a6 b3 b2 a3 a2}
vshufps $0x44, \r3, \r2, \t1 # t1 = {d5 d4 c5 c4 d1 d0 c1 c0}
vshufps $0xEE, \r3, \r2, \r2 # r2 = {d7 d6 c7 c6 d3 d2 c3 c2}
vshufps $0xDD, \t1, \t0, \r3 # r3 = {d5 c5 b5 a5 d1 c1 b1 a1}
vshufps $0x88, \r2, \r0, \r1 # r1 = {d6 c6 b6 a6 d2 c2 b2 a2}
vshufps $0xDD, \r2, \r0, \r0 # r0 = {d7 c7 b7 a7 d3 c3 b3 a3}
vshufps $0x88, \t1, \t0, \t0 # t0 = {d4 c4 b4 a4 d0 c0 b0 a0}
# use r2 in place of t0
# process bottom half (r4..r7) {e...h}
vshufps $0x44, \r5, \r4, \r2 # r2 = {f5 f4 e5 e4 f1 f0 e1 e0}
vshufps $0xEE, \r5, \r4, \r4 # r4 = {f7 f6 e7 e6 f3 f2 e3 e2}
vshufps $0x44, \r7, \r6, \t1 # t1 = {h5 h4 g5 g4 h1 h0 g1 g0}
vshufps $0xEE, \r7, \r6, \r6 # r6 = {h7 h6 g7 g6 h3 h2 g3 g2}
vshufps $0xDD, \t1, \r2, \r7 # r7 = {h5 g5 f5 e5 h1 g1 f1 e1}
vshufps $0x88, \r6, \r4, \r5 # r5 = {h6 g6 f6 e6 h2 g2 f2 e2}
vshufps $0xDD, \r6, \r4, \r4 # r4 = {h7 g7 f7 e7 h3 g3 f3 e3}
vshufps $0x88, \t1, \r2, \t1 # t1 = {h4 g4 f4 e4 h0 g0 f0 e0}
vperm2f128 $0x13, \r1, \r5, \r6 # h6...a6
vperm2f128 $0x02, \r1, \r5, \r2 # h2...a2
vperm2f128 $0x13, \r3, \r7, \r5 # h5...a5
vperm2f128 $0x02, \r3, \r7, \r1 # h1...a1
vperm2f128 $0x13, \r0, \r4, \r7 # h7...a7
vperm2f128 $0x02, \r0, \r4, \r3 # h3...a3
vperm2f128 $0x13, \t0, \t1, \r4 # h4...a4
vperm2f128 $0x02, \t0, \t1, \r0 # h0...a0
.endm
##
## Magic functions defined in FIPS 180-1
##
# macro MAGIC_F0 F,B,C,D,T ## F = (D ^ (B & (C ^ D)))
.macro MAGIC_F0 regF regB regC regD regT
vpxor \regD, \regC, \regF
vpand \regB, \regF, \regF
vpxor \regD, \regF, \regF
.endm
# macro MAGIC_F1 F,B,C,D,T ## F = (B ^ C ^ D)
.macro MAGIC_F1 regF regB regC regD regT
vpxor \regC, \regD, \regF
vpxor \regB, \regF, \regF
.endm
# macro MAGIC_F2 F,B,C,D,T ## F = ((B & C) | (B & D) | (C & D))
.macro MAGIC_F2 regF regB regC regD regT
vpor \regC, \regB, \regF
vpand \regC, \regB, \regT
vpand \regD, \regF, \regF
vpor \regT, \regF, \regF
.endm
# macro MAGIC_F3 F,B,C,D,T ## F = (B ^ C ^ D)
.macro MAGIC_F3 regF regB regC regD regT
MAGIC_F1 \regF,\regB,\regC,\regD,\regT
.endm
# PROLD reg, imm, tmp
.macro PROLD reg imm tmp
vpsrld $(32-\imm), \reg, \tmp
vpslld $\imm, \reg, \reg
vpor \tmp, \reg, \reg
.endm
.macro PROLD_nd reg imm tmp src
vpsrld $(32-\imm), \src, \tmp
vpslld $\imm, \src, \reg
vpor \tmp, \reg, \reg
.endm
.macro SHA1_STEP_00_15 regA regB regC regD regE regT regF memW immCNT MAGIC
vpaddd \immCNT, \regE, \regE
vpaddd \memW*32(%rsp), \regE, \regE
PROLD_nd \regT, 5, \regF, \regA
vpaddd \regT, \regE, \regE
\MAGIC \regF, \regB, \regC, \regD, \regT
PROLD \regB, 30, \regT
vpaddd \regF, \regE, \regE
.endm
.macro SHA1_STEP_16_79 regA regB regC regD regE regT regF memW immCNT MAGIC
vpaddd \immCNT, \regE, \regE
offset = ((\memW - 14) & 15) * 32
vmovdqu offset(%rsp), W14
vpxor W14, W16, W16
offset = ((\memW - 8) & 15) * 32
vpxor offset(%rsp), W16, W16
offset = ((\memW - 3) & 15) * 32
vpxor offset(%rsp), W16, W16
vpsrld $(32-1), W16, \regF
vpslld $1, W16, W16
vpor W16, \regF, \regF
ROTATE_W
offset = ((\memW - 0) & 15) * 32
vmovdqu \regF, offset(%rsp)
vpaddd \regF, \regE, \regE
PROLD_nd \regT, 5, \regF, \regA
vpaddd \regT, \regE, \regE
\MAGIC \regF,\regB,\regC,\regD,\regT ## FUN = MAGIC_Fi(B,C,D)
PROLD \regB,30, \regT
vpaddd \regF, \regE, \regE
.endm
########################################################################
########################################################################
########################################################################
## FRAMESZ plus pushes must be an odd multiple of 8
YMM_SAVE = (15-15)*32
FRAMESZ = 32*16 + YMM_SAVE
_YMM = FRAMESZ - YMM_SAVE
#define VMOVPS vmovups
IDX = %rax
inp0 = %r9
inp1 = %r10
inp2 = %r11
inp3 = %r12
inp4 = %r13
inp5 = %r14
inp6 = %r15
inp7 = %rcx
arg1 = %rdi
arg2 = %rsi
RSP_SAVE = %rdx
# ymm0 A
# ymm1 B
# ymm2 C
# ymm3 D
# ymm4 E
# ymm5 F AA
# ymm6 T0 BB
# ymm7 T1 CC
# ymm8 T2 DD
# ymm9 T3 EE
# ymm10 T4 TMP
# ymm11 T5 FUN
# ymm12 T6 K
# ymm13 T7 W14
# ymm14 T8 W15
# ymm15 T9 W16
A = %ymm0
B = %ymm1
C = %ymm2
D = %ymm3
E = %ymm4
F = %ymm5
T0 = %ymm6
T1 = %ymm7
T2 = %ymm8
T3 = %ymm9
T4 = %ymm10
T5 = %ymm11
T6 = %ymm12
T7 = %ymm13
T8 = %ymm14
T9 = %ymm15
AA = %ymm5
BB = %ymm6
CC = %ymm7
DD = %ymm8
EE = %ymm9
TMP = %ymm10
FUN = %ymm11
K = %ymm12
W14 = %ymm13
W15 = %ymm14
W16 = %ymm15
.macro ROTATE_ARGS
TMP_ = E
E = D
D = C
C = B
B = A
A = TMP_
.endm
.macro ROTATE_W
TMP_ = W16
W16 = W15
W15 = W14
W14 = TMP_
.endm
# 8 streams x 5 32bit words per digest x 4 bytes per word
#define DIGEST_SIZE (8*5*4)
.align 32
# void sha1_x8_avx2(void **input_data, UINT128 *digest, UINT32 size)
# arg 1 : pointer to array[4] of pointer to input data
# arg 2 : size (in blocks) ;; assumed to be >= 1
#
ENTRY(sha1_x8_avx2)
# save callee-saved clobbered registers to comply with C function ABI
push %r12
push %r13
push %r14
push %r15
#save rsp
mov %rsp, RSP_SAVE
sub $FRAMESZ, %rsp
#align rsp to 32 Bytes
and $~0x1F, %rsp
## Initialize digests
vmovdqu 0*32(arg1), A
vmovdqu 1*32(arg1), B
vmovdqu 2*32(arg1), C
vmovdqu 3*32(arg1), D
vmovdqu 4*32(arg1), E
## transpose input onto stack
mov _data_ptr+0*8(arg1),inp0
mov _data_ptr+1*8(arg1),inp1
mov _data_ptr+2*8(arg1),inp2
mov _data_ptr+3*8(arg1),inp3
mov _data_ptr+4*8(arg1),inp4
mov _data_ptr+5*8(arg1),inp5
mov _data_ptr+6*8(arg1),inp6
mov _data_ptr+7*8(arg1),inp7
xor IDX, IDX
lloop:
vmovdqu PSHUFFLE_BYTE_FLIP_MASK(%rip), F
I=0
.rep 2
VMOVPS (inp0, IDX), T0
VMOVPS (inp1, IDX), T1
VMOVPS (inp2, IDX), T2
VMOVPS (inp3, IDX), T3
VMOVPS (inp4, IDX), T4
VMOVPS (inp5, IDX), T5
VMOVPS (inp6, IDX), T6
VMOVPS (inp7, IDX), T7
TRANSPOSE8 T0, T1, T2, T3, T4, T5, T6, T7, T8, T9
vpshufb F, T0, T0
vmovdqu T0, (I*8)*32(%rsp)
vpshufb F, T1, T1
vmovdqu T1, (I*8+1)*32(%rsp)
vpshufb F, T2, T2
vmovdqu T2, (I*8+2)*32(%rsp)
vpshufb F, T3, T3
vmovdqu T3, (I*8+3)*32(%rsp)
vpshufb F, T4, T4
vmovdqu T4, (I*8+4)*32(%rsp)
vpshufb F, T5, T5
vmovdqu T5, (I*8+5)*32(%rsp)
vpshufb F, T6, T6
vmovdqu T6, (I*8+6)*32(%rsp)
vpshufb F, T7, T7
vmovdqu T7, (I*8+7)*32(%rsp)
add $32, IDX
I = (I+1)
.endr
# save old digests
vmovdqu A,AA
vmovdqu B,BB
vmovdqu C,CC
vmovdqu D,DD
vmovdqu E,EE
##
## perform 0-79 steps
##
vmovdqu K00_19(%rip), K
## do rounds 0...15
I = 0
.rep 16
SHA1_STEP_00_15 A,B,C,D,E, TMP,FUN, I, K, MAGIC_F0
ROTATE_ARGS
I = (I+1)
.endr
## do rounds 16...19
vmovdqu ((16 - 16) & 15) * 32 (%rsp), W16
vmovdqu ((16 - 15) & 15) * 32 (%rsp), W15
.rep 4
SHA1_STEP_16_79 A,B,C,D,E, TMP,FUN, I, K, MAGIC_F0
ROTATE_ARGS
I = (I+1)
.endr
## do rounds 20...39
vmovdqu K20_39(%rip), K
.rep 20
SHA1_STEP_16_79 A,B,C,D,E, TMP,FUN, I, K, MAGIC_F1
ROTATE_ARGS
I = (I+1)
.endr
## do rounds 40...59
vmovdqu K40_59(%rip), K
.rep 20
SHA1_STEP_16_79 A,B,C,D,E, TMP,FUN, I, K, MAGIC_F2
ROTATE_ARGS
I = (I+1)
.endr
## do rounds 60...79
vmovdqu K60_79(%rip), K
.rep 20
SHA1_STEP_16_79 A,B,C,D,E, TMP,FUN, I, K, MAGIC_F3
ROTATE_ARGS
I = (I+1)
.endr
vpaddd AA,A,A
vpaddd BB,B,B
vpaddd CC,C,C
vpaddd DD,D,D
vpaddd EE,E,E
sub $1, arg2
jne lloop
# write out digests
vmovdqu A, 0*32(arg1)
vmovdqu B, 1*32(arg1)
vmovdqu C, 2*32(arg1)
vmovdqu D, 3*32(arg1)
vmovdqu E, 4*32(arg1)
# update input pointers
add IDX, inp0
add IDX, inp1
add IDX, inp2
add IDX, inp3
add IDX, inp4
add IDX, inp5
add IDX, inp6
add IDX, inp7
mov inp0, _data_ptr (arg1)
mov inp1, _data_ptr + 1*8(arg1)
mov inp2, _data_ptr + 2*8(arg1)
mov inp3, _data_ptr + 3*8(arg1)
mov inp4, _data_ptr + 4*8(arg1)
mov inp5, _data_ptr + 5*8(arg1)
mov inp6, _data_ptr + 6*8(arg1)
mov inp7, _data_ptr + 7*8(arg1)
################
## Postamble
mov RSP_SAVE, %rsp
# restore callee-saved clobbered registers
pop %r15
pop %r14
pop %r13
pop %r12
ret
ENDPROC(sha1_x8_avx2)
.section .rodata.cst32.K00_19, "aM", @progbits, 32
.align 32
K00_19:
.octa 0x5A8279995A8279995A8279995A827999
.octa 0x5A8279995A8279995A8279995A827999
.section .rodata.cst32.K20_39, "aM", @progbits, 32
.align 32
K20_39:
.octa 0x6ED9EBA16ED9EBA16ED9EBA16ED9EBA1
.octa 0x6ED9EBA16ED9EBA16ED9EBA16ED9EBA1
.section .rodata.cst32.K40_59, "aM", @progbits, 32
.align 32
K40_59:
.octa 0x8F1BBCDC8F1BBCDC8F1BBCDC8F1BBCDC
.octa 0x8F1BBCDC8F1BBCDC8F1BBCDC8F1BBCDC
.section .rodata.cst32.K60_79, "aM", @progbits, 32
.align 32
K60_79:
.octa 0xCA62C1D6CA62C1D6CA62C1D6CA62C1D6
.octa 0xCA62C1D6CA62C1D6CA62C1D6CA62C1D6
.section .rodata.cst32.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 32
.align 32
PSHUFFLE_BYTE_FLIP_MASK:
.octa 0x0c0d0e0f08090a0b0405060700010203
.octa 0x0c0d0e0f08090a0b0405060700010203