216 lines
6.6 KiB
C
216 lines
6.6 KiB
C
|
/* ----------------------------------------------------------------------- *
|
||
|
*
|
||
|
* Copyright 2014 Intel Corporation; author: H. Peter Anvin
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms and conditions of the GNU General Public License,
|
||
|
* version 2, as published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||
|
* more details.
|
||
|
*
|
||
|
* ----------------------------------------------------------------------- */
|
||
|
|
||
|
/*
|
||
|
* The IRET instruction, when returning to a 16-bit segment, only
|
||
|
* restores the bottom 16 bits of the user space stack pointer. This
|
||
|
* causes some 16-bit software to break, but it also leaks kernel state
|
||
|
* to user space.
|
||
|
*
|
||
|
* This works around this by creating percpu "ministacks", each of which
|
||
|
* is mapped 2^16 times 64K apart. When we detect that the return SS is
|
||
|
* on the LDT, we copy the IRET frame to the ministack and use the
|
||
|
* relevant alias to return to userspace. The ministacks are mapped
|
||
|
* readonly, so if the IRET fault we promote #GP to #DF which is an IST
|
||
|
* vector and thus has its own stack; we then do the fixup in the #DF
|
||
|
* handler.
|
||
|
*
|
||
|
* This file sets up the ministacks and the related page tables. The
|
||
|
* actual ministack invocation is in entry_64.S.
|
||
|
*/
|
||
|
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/init_task.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/percpu.h>
|
||
|
#include <linux/gfp.h>
|
||
|
#include <linux/random.h>
|
||
|
#include <asm/pgtable.h>
|
||
|
#include <asm/pgalloc.h>
|
||
|
#include <asm/setup.h>
|
||
|
#include <asm/espfix.h>
|
||
|
|
||
|
/*
|
||
|
* Note: we only need 6*8 = 48 bytes for the espfix stack, but round
|
||
|
* it up to a cache line to avoid unnecessary sharing.
|
||
|
*/
|
||
|
#define ESPFIX_STACK_SIZE (8*8UL)
|
||
|
#define ESPFIX_STACKS_PER_PAGE (PAGE_SIZE/ESPFIX_STACK_SIZE)
|
||
|
|
||
|
/* There is address space for how many espfix pages? */
|
||
|
#define ESPFIX_PAGE_SPACE (1UL << (P4D_SHIFT-PAGE_SHIFT-16))
|
||
|
|
||
|
#define ESPFIX_MAX_CPUS (ESPFIX_STACKS_PER_PAGE * ESPFIX_PAGE_SPACE)
|
||
|
#if CONFIG_NR_CPUS > ESPFIX_MAX_CPUS
|
||
|
# error "Need more virtual address space for the ESPFIX hack"
|
||
|
#endif
|
||
|
|
||
|
#define PGALLOC_GFP (GFP_KERNEL | __GFP_ZERO)
|
||
|
|
||
|
/* This contains the *bottom* address of the espfix stack */
|
||
|
DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_stack);
|
||
|
DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_waddr);
|
||
|
|
||
|
/* Initialization mutex - should this be a spinlock? */
|
||
|
static DEFINE_MUTEX(espfix_init_mutex);
|
||
|
|
||
|
/* Page allocation bitmap - each page serves ESPFIX_STACKS_PER_PAGE CPUs */
|
||
|
#define ESPFIX_MAX_PAGES DIV_ROUND_UP(CONFIG_NR_CPUS, ESPFIX_STACKS_PER_PAGE)
|
||
|
static void *espfix_pages[ESPFIX_MAX_PAGES];
|
||
|
|
||
|
static __page_aligned_bss pud_t espfix_pud_page[PTRS_PER_PUD]
|
||
|
__aligned(PAGE_SIZE);
|
||
|
|
||
|
static unsigned int page_random, slot_random;
|
||
|
|
||
|
/*
|
||
|
* This returns the bottom address of the espfix stack for a specific CPU.
|
||
|
* The math allows for a non-power-of-two ESPFIX_STACK_SIZE, in which case
|
||
|
* we have to account for some amount of padding at the end of each page.
|
||
|
*/
|
||
|
static inline unsigned long espfix_base_addr(unsigned int cpu)
|
||
|
{
|
||
|
unsigned long page, slot;
|
||
|
unsigned long addr;
|
||
|
|
||
|
page = (cpu / ESPFIX_STACKS_PER_PAGE) ^ page_random;
|
||
|
slot = (cpu + slot_random) % ESPFIX_STACKS_PER_PAGE;
|
||
|
addr = (page << PAGE_SHIFT) + (slot * ESPFIX_STACK_SIZE);
|
||
|
addr = (addr & 0xffffUL) | ((addr & ~0xffffUL) << 16);
|
||
|
addr += ESPFIX_BASE_ADDR;
|
||
|
return addr;
|
||
|
}
|
||
|
|
||
|
#define PTE_STRIDE (65536/PAGE_SIZE)
|
||
|
#define ESPFIX_PTE_CLONES (PTRS_PER_PTE/PTE_STRIDE)
|
||
|
#define ESPFIX_PMD_CLONES PTRS_PER_PMD
|
||
|
#define ESPFIX_PUD_CLONES (65536/(ESPFIX_PTE_CLONES*ESPFIX_PMD_CLONES))
|
||
|
|
||
|
#define PGTABLE_PROT ((_KERNPG_TABLE & ~_PAGE_RW) | _PAGE_NX)
|
||
|
|
||
|
static void init_espfix_random(void)
|
||
|
{
|
||
|
unsigned long rand;
|
||
|
|
||
|
/*
|
||
|
* This is run before the entropy pools are initialized,
|
||
|
* but this is hopefully better than nothing.
|
||
|
*/
|
||
|
if (!arch_get_random_long(&rand)) {
|
||
|
/* The constant is an arbitrary large prime */
|
||
|
rand = rdtsc();
|
||
|
rand *= 0xc345c6b72fd16123UL;
|
||
|
}
|
||
|
|
||
|
slot_random = rand % ESPFIX_STACKS_PER_PAGE;
|
||
|
page_random = (rand / ESPFIX_STACKS_PER_PAGE)
|
||
|
& (ESPFIX_PAGE_SPACE - 1);
|
||
|
}
|
||
|
|
||
|
void __init init_espfix_bsp(void)
|
||
|
{
|
||
|
pgd_t *pgd;
|
||
|
p4d_t *p4d;
|
||
|
|
||
|
/* Install the espfix pud into the kernel page directory */
|
||
|
pgd = &init_top_pgt[pgd_index(ESPFIX_BASE_ADDR)];
|
||
|
p4d = p4d_alloc(&init_mm, pgd, ESPFIX_BASE_ADDR);
|
||
|
p4d_populate(&init_mm, p4d, espfix_pud_page);
|
||
|
|
||
|
/* Randomize the locations */
|
||
|
init_espfix_random();
|
||
|
|
||
|
/* The rest is the same as for any other processor */
|
||
|
init_espfix_ap(0);
|
||
|
}
|
||
|
|
||
|
void init_espfix_ap(int cpu)
|
||
|
{
|
||
|
unsigned int page;
|
||
|
unsigned long addr;
|
||
|
pud_t pud, *pud_p;
|
||
|
pmd_t pmd, *pmd_p;
|
||
|
pte_t pte, *pte_p;
|
||
|
int n, node;
|
||
|
void *stack_page;
|
||
|
pteval_t ptemask;
|
||
|
|
||
|
/* We only have to do this once... */
|
||
|
if (likely(per_cpu(espfix_stack, cpu)))
|
||
|
return; /* Already initialized */
|
||
|
|
||
|
addr = espfix_base_addr(cpu);
|
||
|
page = cpu/ESPFIX_STACKS_PER_PAGE;
|
||
|
|
||
|
/* Did another CPU already set this up? */
|
||
|
stack_page = READ_ONCE(espfix_pages[page]);
|
||
|
if (likely(stack_page))
|
||
|
goto done;
|
||
|
|
||
|
mutex_lock(&espfix_init_mutex);
|
||
|
|
||
|
/* Did we race on the lock? */
|
||
|
stack_page = READ_ONCE(espfix_pages[page]);
|
||
|
if (stack_page)
|
||
|
goto unlock_done;
|
||
|
|
||
|
node = cpu_to_node(cpu);
|
||
|
ptemask = __supported_pte_mask;
|
||
|
|
||
|
pud_p = &espfix_pud_page[pud_index(addr)];
|
||
|
pud = *pud_p;
|
||
|
if (!pud_present(pud)) {
|
||
|
struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0);
|
||
|
|
||
|
pmd_p = (pmd_t *)page_address(page);
|
||
|
pud = __pud(__pa(pmd_p) | (PGTABLE_PROT & ptemask));
|
||
|
paravirt_alloc_pmd(&init_mm, __pa(pmd_p) >> PAGE_SHIFT);
|
||
|
for (n = 0; n < ESPFIX_PUD_CLONES; n++)
|
||
|
set_pud(&pud_p[n], pud);
|
||
|
}
|
||
|
|
||
|
pmd_p = pmd_offset(&pud, addr);
|
||
|
pmd = *pmd_p;
|
||
|
if (!pmd_present(pmd)) {
|
||
|
struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0);
|
||
|
|
||
|
pte_p = (pte_t *)page_address(page);
|
||
|
pmd = __pmd(__pa(pte_p) | (PGTABLE_PROT & ptemask));
|
||
|
paravirt_alloc_pte(&init_mm, __pa(pte_p) >> PAGE_SHIFT);
|
||
|
for (n = 0; n < ESPFIX_PMD_CLONES; n++)
|
||
|
set_pmd(&pmd_p[n], pmd);
|
||
|
}
|
||
|
|
||
|
pte_p = pte_offset_kernel(&pmd, addr);
|
||
|
stack_page = page_address(alloc_pages_node(node, GFP_KERNEL, 0));
|
||
|
/*
|
||
|
* __PAGE_KERNEL_* includes _PAGE_GLOBAL, which we want since
|
||
|
* this is mapped to userspace.
|
||
|
*/
|
||
|
pte = __pte(__pa(stack_page) | ((__PAGE_KERNEL_RO | _PAGE_ENC) & ptemask));
|
||
|
for (n = 0; n < ESPFIX_PTE_CLONES; n++)
|
||
|
set_pte(&pte_p[n*PTE_STRIDE], pte);
|
||
|
|
||
|
/* Job is done for this CPU and any CPU which shares this page */
|
||
|
WRITE_ONCE(espfix_pages[page], stack_page);
|
||
|
|
||
|
unlock_done:
|
||
|
mutex_unlock(&espfix_init_mutex);
|
||
|
done:
|
||
|
per_cpu(espfix_stack, cpu) = addr;
|
||
|
per_cpu(espfix_waddr, cpu) = (unsigned long)stack_page
|
||
|
+ (addr & ~PAGE_MASK);
|
||
|
}
|