2909 lines
83 KiB
C
2909 lines
83 KiB
C
|
/*
|
||
|
Madge Horizon ATM Adapter driver.
|
||
|
Copyright (C) 1995-1999 Madge Networks Ltd.
|
||
|
|
||
|
This program is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program; if not, write to the Free Software
|
||
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
|
||
|
The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
|
||
|
system and in the file COPYING in the Linux kernel source.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
IMPORTANT NOTE: Madge Networks no longer makes the adapters
|
||
|
supported by this driver and makes no commitment to maintain it.
|
||
|
*/
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/sched/signal.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/pci.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/atm.h>
|
||
|
#include <linux/atmdev.h>
|
||
|
#include <linux/sonet.h>
|
||
|
#include <linux/skbuff.h>
|
||
|
#include <linux/time.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/uio.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/ioport.h>
|
||
|
#include <linux/wait.h>
|
||
|
#include <linux/slab.h>
|
||
|
|
||
|
#include <asm/io.h>
|
||
|
#include <linux/atomic.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <asm/string.h>
|
||
|
#include <asm/byteorder.h>
|
||
|
|
||
|
#include "horizon.h"
|
||
|
|
||
|
#define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
|
||
|
#define description_string "Madge ATM Horizon [Ultra] driver"
|
||
|
#define version_string "1.2.1"
|
||
|
|
||
|
static inline void __init show_version (void) {
|
||
|
printk ("%s version %s\n", description_string, version_string);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
|
||
|
CREDITS
|
||
|
|
||
|
Driver and documentation by:
|
||
|
|
||
|
Chris Aston Madge Networks
|
||
|
Giuliano Procida Madge Networks
|
||
|
Simon Benham Madge Networks
|
||
|
Simon Johnson Madge Networks
|
||
|
Various Others Madge Networks
|
||
|
|
||
|
Some inspiration taken from other drivers by:
|
||
|
|
||
|
Alexandru Cucos UTBv
|
||
|
Kari Mettinen University of Helsinki
|
||
|
Werner Almesberger EPFL LRC
|
||
|
|
||
|
Theory of Operation
|
||
|
|
||
|
I Hardware, detection, initialisation and shutdown.
|
||
|
|
||
|
1. Supported Hardware
|
||
|
|
||
|
This driver should handle all variants of the PCI Madge ATM adapters
|
||
|
with the Horizon chipset. These are all PCI cards supporting PIO, BM
|
||
|
DMA and a form of MMIO (registers only, not internal RAM).
|
||
|
|
||
|
The driver is only known to work with SONET and UTP Horizon Ultra
|
||
|
cards at 155Mb/s. However, code is in place to deal with both the
|
||
|
original Horizon and 25Mb/s operation.
|
||
|
|
||
|
There are two revisions of the Horizon ASIC: the original and the
|
||
|
Ultra. Details of hardware bugs are in section III.
|
||
|
|
||
|
The ASIC version can be distinguished by chip markings but is NOT
|
||
|
indicated by the PCI revision (all adapters seem to have PCI rev 1).
|
||
|
|
||
|
I believe that:
|
||
|
|
||
|
Horizon => Collage 25 PCI Adapter (UTP and STP)
|
||
|
Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
|
||
|
Ambassador x => Collage 155 PCI Server (completely different)
|
||
|
|
||
|
Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
|
||
|
have a Madge B154 plus glue logic serializer. I have also found a
|
||
|
really ancient version of this with slightly different glue. It
|
||
|
comes with the revision 0 (140-025-01) ASIC.
|
||
|
|
||
|
Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
|
||
|
output (UTP) or an HP HFBR 5205 output (SONET). It has either
|
||
|
Madge's SAMBA framer or a SUNI-lite device (early versions). It
|
||
|
comes with the revision 1 (140-027-01) ASIC.
|
||
|
|
||
|
2. Detection
|
||
|
|
||
|
All Horizon-based cards present with the same PCI Vendor and Device
|
||
|
IDs. The standard Linux 2.2 PCI API is used to locate any cards and
|
||
|
to enable bus-mastering (with appropriate latency).
|
||
|
|
||
|
ATM_LAYER_STATUS in the control register distinguishes between the
|
||
|
two possible physical layers (25 and 155). It is not clear whether
|
||
|
the 155 cards can also operate at 25Mbps. We rely on the fact that a
|
||
|
card operates at 155 if and only if it has the newer Horizon Ultra
|
||
|
ASIC.
|
||
|
|
||
|
For 155 cards the two possible framers are probed for and then set
|
||
|
up for loop-timing.
|
||
|
|
||
|
3. Initialisation
|
||
|
|
||
|
The card is reset and then put into a known state. The physical
|
||
|
layer is configured for normal operation at the appropriate speed;
|
||
|
in the case of the 155 cards, the framer is initialised with
|
||
|
line-based timing; the internal RAM is zeroed and the allocation of
|
||
|
buffers for RX and TX is made; the Burnt In Address is read and
|
||
|
copied to the ATM ESI; various policy settings for RX (VPI bits,
|
||
|
unknown VCs, oam cells) are made. Ideally all policy items should be
|
||
|
configurable at module load (if not actually on-demand), however,
|
||
|
only the vpi vs vci bit allocation can be specified at insmod.
|
||
|
|
||
|
4. Shutdown
|
||
|
|
||
|
This is in response to module_cleaup. No VCs are in use and the card
|
||
|
should be idle; it is reset.
|
||
|
|
||
|
II Driver software (as it should be)
|
||
|
|
||
|
0. Traffic Parameters
|
||
|
|
||
|
The traffic classes (not an enumeration) are currently: ATM_NONE (no
|
||
|
traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
|
||
|
(compatible with everything). Together with (perhaps only some of)
|
||
|
the following items they make up the traffic specification.
|
||
|
|
||
|
struct atm_trafprm {
|
||
|
unsigned char traffic_class; traffic class (ATM_UBR, ...)
|
||
|
int max_pcr; maximum PCR in cells per second
|
||
|
int pcr; desired PCR in cells per second
|
||
|
int min_pcr; minimum PCR in cells per second
|
||
|
int max_cdv; maximum CDV in microseconds
|
||
|
int max_sdu; maximum SDU in bytes
|
||
|
};
|
||
|
|
||
|
Note that these denote bandwidth available not bandwidth used; the
|
||
|
possibilities according to ATMF are:
|
||
|
|
||
|
Real Time (cdv and max CDT given)
|
||
|
|
||
|
CBR(pcr) pcr bandwidth always available
|
||
|
rtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too
|
||
|
|
||
|
Non Real Time
|
||
|
|
||
|
nrtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too
|
||
|
UBR()
|
||
|
ABR(mcr,pcr) mcr bandwidth always available, up to pcr (depending) too
|
||
|
|
||
|
mbs is max burst size (bucket)
|
||
|
pcr and scr have associated cdvt values
|
||
|
mcr is like scr but has no cdtv
|
||
|
cdtv may differ at each hop
|
||
|
|
||
|
Some of the above items are qos items (as opposed to traffic
|
||
|
parameters). We have nothing to do with qos. All except ABR can have
|
||
|
their traffic parameters converted to GCRA parameters. The GCRA may
|
||
|
be implemented as a (real-number) leaky bucket. The GCRA can be used
|
||
|
in complicated ways by switches and in simpler ways by end-stations.
|
||
|
It can be used both to filter incoming cells and shape out-going
|
||
|
cells.
|
||
|
|
||
|
ATM Linux actually supports:
|
||
|
|
||
|
ATM_NONE() (no traffic in this direction)
|
||
|
ATM_UBR(max_frame_size)
|
||
|
ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
|
||
|
|
||
|
0 or ATM_MAX_PCR are used to indicate maximum available PCR
|
||
|
|
||
|
A traffic specification consists of the AAL type and separate
|
||
|
traffic specifications for either direction. In ATM Linux it is:
|
||
|
|
||
|
struct atm_qos {
|
||
|
struct atm_trafprm txtp;
|
||
|
struct atm_trafprm rxtp;
|
||
|
unsigned char aal;
|
||
|
};
|
||
|
|
||
|
AAL types are:
|
||
|
|
||
|
ATM_NO_AAL AAL not specified
|
||
|
ATM_AAL0 "raw" ATM cells
|
||
|
ATM_AAL1 AAL1 (CBR)
|
||
|
ATM_AAL2 AAL2 (VBR)
|
||
|
ATM_AAL34 AAL3/4 (data)
|
||
|
ATM_AAL5 AAL5 (data)
|
||
|
ATM_SAAL signaling AAL
|
||
|
|
||
|
The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
|
||
|
it does not implement AAL 3/4 SAR and it has a different notion of
|
||
|
"raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
|
||
|
supported by this driver.
|
||
|
|
||
|
The Horizon has limited support for ABR (including UBR), VBR and
|
||
|
CBR. Each TX channel has a bucket (containing up to 31 cell units)
|
||
|
and two timers (PCR and SCR) associated with it that can be used to
|
||
|
govern cell emissions and host notification (in the case of ABR this
|
||
|
is presumably so that RM cells may be emitted at appropriate times).
|
||
|
The timers may either be disabled or may be set to any of 240 values
|
||
|
(determined by the clock crystal, a fixed (?) per-device divider, a
|
||
|
configurable divider and a configurable timer preload value).
|
||
|
|
||
|
At the moment only UBR and CBR are supported by the driver. VBR will
|
||
|
be supported as soon as ATM for Linux supports it. ABR support is
|
||
|
very unlikely as RM cell handling is completely up to the driver.
|
||
|
|
||
|
1. TX (TX channel setup and TX transfer)
|
||
|
|
||
|
The TX half of the driver owns the TX Horizon registers. The TX
|
||
|
component in the IRQ handler is the BM completion handler. This can
|
||
|
only be entered when tx_busy is true (enforced by hardware). The
|
||
|
other TX component can only be entered when tx_busy is false
|
||
|
(enforced by driver). So TX is single-threaded.
|
||
|
|
||
|
Apart from a minor optimisation to not re-select the last channel,
|
||
|
the TX send component works as follows:
|
||
|
|
||
|
Atomic test and set tx_busy until we succeed; we should implement
|
||
|
some sort of timeout so that tx_busy will never be stuck at true.
|
||
|
|
||
|
If no TX channel is set up for this VC we wait for an idle one (if
|
||
|
necessary) and set it up.
|
||
|
|
||
|
At this point we have a TX channel ready for use. We wait for enough
|
||
|
buffers to become available then start a TX transmit (set the TX
|
||
|
descriptor, schedule transfer, exit).
|
||
|
|
||
|
The IRQ component handles TX completion (stats, free buffer, tx_busy
|
||
|
unset, exit). We also re-schedule further transfers for the same
|
||
|
frame if needed.
|
||
|
|
||
|
TX setup in more detail:
|
||
|
|
||
|
TX open is a nop, the relevant information is held in the hrz_vcc
|
||
|
(vcc->dev_data) structure and is "cached" on the card.
|
||
|
|
||
|
TX close gets the TX lock and clears the channel from the "cache".
|
||
|
|
||
|
2. RX (Data Available and RX transfer)
|
||
|
|
||
|
The RX half of the driver owns the RX registers. There are two RX
|
||
|
components in the IRQ handler: the data available handler deals with
|
||
|
fresh data that has arrived on the card, the BM completion handler
|
||
|
is very similar to the TX completion handler. The data available
|
||
|
handler grabs the rx_lock and it is only released once the data has
|
||
|
been discarded or completely transferred to the host. The BM
|
||
|
completion handler only runs when the lock is held; the data
|
||
|
available handler is locked out over the same period.
|
||
|
|
||
|
Data available on the card triggers an interrupt. If the data is not
|
||
|
suitable for our existing RX channels or we cannot allocate a buffer
|
||
|
it is flushed. Otherwise an RX receive is scheduled. Multiple RX
|
||
|
transfers may be scheduled for the same frame.
|
||
|
|
||
|
RX setup in more detail:
|
||
|
|
||
|
RX open...
|
||
|
RX close...
|
||
|
|
||
|
III Hardware Bugs
|
||
|
|
||
|
0. Byte vs Word addressing of adapter RAM.
|
||
|
|
||
|
A design feature; see the .h file (especially the memory map).
|
||
|
|
||
|
1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
|
||
|
|
||
|
The host must not start a transmit direction transfer at a
|
||
|
non-four-byte boundary in host memory. Instead the host should
|
||
|
perform a byte, or a two byte, or one byte followed by two byte
|
||
|
transfer in order to start the rest of the transfer on a four byte
|
||
|
boundary. RX is OK.
|
||
|
|
||
|
Simultaneous transmit and receive direction bus master transfers are
|
||
|
not allowed.
|
||
|
|
||
|
The simplest solution to these two is to always do PIO (never DMA)
|
||
|
in the TX direction on the original Horizon. More complicated
|
||
|
solutions are likely to hurt my brain.
|
||
|
|
||
|
2. Loss of buffer on close VC
|
||
|
|
||
|
When a VC is being closed, the buffer associated with it is not
|
||
|
returned to the pool. The host must store the reference to this
|
||
|
buffer and when opening a new VC then give it to that new VC.
|
||
|
|
||
|
The host intervention currently consists of stacking such a buffer
|
||
|
pointer at VC close and checking the stack at VC open.
|
||
|
|
||
|
3. Failure to close a VC
|
||
|
|
||
|
If a VC is currently receiving a frame then closing the VC may fail
|
||
|
and the frame continues to be received.
|
||
|
|
||
|
The solution is to make sure any received frames are flushed when
|
||
|
ready. This is currently done just before the solution to 2.
|
||
|
|
||
|
4. PCI bus (original Horizon only, fixed in Ultra)
|
||
|
|
||
|
Reading from the data port prior to initialisation will hang the PCI
|
||
|
bus. Just don't do that then! We don't.
|
||
|
|
||
|
IV To Do List
|
||
|
|
||
|
. Timer code may be broken.
|
||
|
|
||
|
. Allow users to specify buffer allocation split for TX and RX.
|
||
|
|
||
|
. Deal once and for all with buggy VC close.
|
||
|
|
||
|
. Handle interrupted and/or non-blocking operations.
|
||
|
|
||
|
. Change some macros to functions and move from .h to .c.
|
||
|
|
||
|
. Try to limit the number of TX frames each VC may have queued, in
|
||
|
order to reduce the chances of TX buffer exhaustion.
|
||
|
|
||
|
. Implement VBR (bucket and timers not understood) and ABR (need to
|
||
|
do RM cells manually); also no Linux support for either.
|
||
|
|
||
|
. Implement QoS changes on open VCs (involves extracting parts of VC open
|
||
|
and close into separate functions and using them to make changes).
|
||
|
|
||
|
*/
|
||
|
|
||
|
/********** globals **********/
|
||
|
|
||
|
static void do_housekeeping (struct timer_list *t);
|
||
|
|
||
|
static unsigned short debug = 0;
|
||
|
static unsigned short vpi_bits = 0;
|
||
|
static int max_tx_size = 9000;
|
||
|
static int max_rx_size = 9000;
|
||
|
static unsigned char pci_lat = 0;
|
||
|
|
||
|
/********** access functions **********/
|
||
|
|
||
|
/* Read / Write Horizon registers */
|
||
|
static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
|
||
|
outl (cpu_to_le32 (data), dev->iobase + reg);
|
||
|
}
|
||
|
|
||
|
static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
|
||
|
return le32_to_cpu (inl (dev->iobase + reg));
|
||
|
}
|
||
|
|
||
|
static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
|
||
|
outw (cpu_to_le16 (data), dev->iobase + reg);
|
||
|
}
|
||
|
|
||
|
static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
|
||
|
return le16_to_cpu (inw (dev->iobase + reg));
|
||
|
}
|
||
|
|
||
|
static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
|
||
|
outsb (dev->iobase + reg, addr, len);
|
||
|
}
|
||
|
|
||
|
static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
|
||
|
insb (dev->iobase + reg, addr, len);
|
||
|
}
|
||
|
|
||
|
/* Read / Write to a given address in Horizon buffer memory.
|
||
|
Interrupts must be disabled between the address register and data
|
||
|
port accesses as these must form an atomic operation. */
|
||
|
static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
|
||
|
// wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
|
||
|
wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
|
||
|
wr_regl (dev, MEMORY_PORT_OFF, data);
|
||
|
}
|
||
|
|
||
|
static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
|
||
|
// wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
|
||
|
wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
|
||
|
return rd_regl (dev, MEMORY_PORT_OFF);
|
||
|
}
|
||
|
|
||
|
static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
|
||
|
wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
|
||
|
wr_regl (dev, MEMORY_PORT_OFF, data);
|
||
|
}
|
||
|
|
||
|
static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
|
||
|
wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
|
||
|
return rd_regl (dev, MEMORY_PORT_OFF);
|
||
|
}
|
||
|
|
||
|
/********** specialised access functions **********/
|
||
|
|
||
|
/* RX */
|
||
|
|
||
|
static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
|
||
|
wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
|
||
|
while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
|
||
|
;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
|
||
|
wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
|
||
|
while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
|
||
|
;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* TX */
|
||
|
|
||
|
static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
|
||
|
wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Update or query one configuration parameter of a particular channel. */
|
||
|
|
||
|
static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
|
||
|
wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
|
||
|
chan * TX_CHANNEL_CONFIG_MULT | mode);
|
||
|
wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/********** dump functions **********/
|
||
|
|
||
|
static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
|
||
|
#ifdef DEBUG_HORIZON
|
||
|
unsigned int i;
|
||
|
unsigned char * data = skb->data;
|
||
|
PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
|
||
|
for (i=0; i<skb->len && i < 256;i++)
|
||
|
PRINTDM (DBG_DATA, "%02x ", data[i]);
|
||
|
PRINTDE (DBG_DATA,"");
|
||
|
#else
|
||
|
(void) prefix;
|
||
|
(void) vc;
|
||
|
(void) skb;
|
||
|
#endif
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static inline void dump_regs (hrz_dev * dev) {
|
||
|
#ifdef DEBUG_HORIZON
|
||
|
PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
|
||
|
PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
|
||
|
PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
|
||
|
PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
|
||
|
PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
|
||
|
PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
|
||
|
#else
|
||
|
(void) dev;
|
||
|
#endif
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static inline void dump_framer (hrz_dev * dev) {
|
||
|
#ifdef DEBUG_HORIZON
|
||
|
unsigned int i;
|
||
|
PRINTDB (DBG_REGS, "framer registers:");
|
||
|
for (i = 0; i < 0x10; ++i)
|
||
|
PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
|
||
|
PRINTDE (DBG_REGS,"");
|
||
|
#else
|
||
|
(void) dev;
|
||
|
#endif
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/********** VPI/VCI <-> (RX) channel conversions **********/
|
||
|
|
||
|
/* RX channels are 10 bit integers, these fns are quite paranoid */
|
||
|
|
||
|
static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
|
||
|
unsigned short vci_bits = 10 - vpi_bits;
|
||
|
if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
|
||
|
*channel = vpi<<vci_bits | vci;
|
||
|
return *channel ? 0 : -EINVAL;
|
||
|
}
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/********** decode RX queue entries **********/
|
||
|
|
||
|
static inline u16 rx_q_entry_to_length (u32 x) {
|
||
|
return x & RX_Q_ENTRY_LENGTH_MASK;
|
||
|
}
|
||
|
|
||
|
static inline u16 rx_q_entry_to_rx_channel (u32 x) {
|
||
|
return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
|
||
|
}
|
||
|
|
||
|
/* Cell Transmit Rate Values
|
||
|
*
|
||
|
* the cell transmit rate (cells per sec) can be set to a variety of
|
||
|
* different values by specifying two parameters: a timer preload from
|
||
|
* 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
|
||
|
* an exponent from 0 to 14; the special value 15 disables the timer).
|
||
|
*
|
||
|
* cellrate = baserate / (preload * 2^divider)
|
||
|
*
|
||
|
* The maximum cell rate that can be specified is therefore just the
|
||
|
* base rate. Halving the preload is equivalent to adding 1 to the
|
||
|
* divider and so values 1 to 8 of the preload are redundant except
|
||
|
* in the case of a maximal divider (14).
|
||
|
*
|
||
|
* Given a desired cell rate, an algorithm to determine the preload
|
||
|
* and divider is:
|
||
|
*
|
||
|
* a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
|
||
|
* b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
|
||
|
* if x <= 16 then set p = x, d = 0 (high rates), done
|
||
|
* c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
|
||
|
* know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
|
||
|
* we find the range (n will be between 1 and 14), set d = n
|
||
|
* d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
|
||
|
*
|
||
|
* The algorithm used below is a minor variant of the above.
|
||
|
*
|
||
|
* The base rate is derived from the oscillator frequency (Hz) using a
|
||
|
* fixed divider:
|
||
|
*
|
||
|
* baserate = freq / 32 in the case of some Unknown Card
|
||
|
* baserate = freq / 8 in the case of the Horizon 25
|
||
|
* baserate = freq / 8 in the case of the Horizon Ultra 155
|
||
|
*
|
||
|
* The Horizon cards have oscillators and base rates as follows:
|
||
|
*
|
||
|
* Card Oscillator Base Rate
|
||
|
* Unknown Card 33 MHz 1.03125 MHz (33 MHz = PCI freq)
|
||
|
* Horizon 25 32 MHz 4 MHz
|
||
|
* Horizon Ultra 155 40 MHz 5 MHz
|
||
|
*
|
||
|
* The following defines give the base rates in Hz. These were
|
||
|
* previously a factor of 100 larger, no doubt someone was using
|
||
|
* cps*100.
|
||
|
*/
|
||
|
|
||
|
#define BR_UKN 1031250l
|
||
|
#define BR_HRZ 4000000l
|
||
|
#define BR_ULT 5000000l
|
||
|
|
||
|
// d is an exponent
|
||
|
#define CR_MIND 0
|
||
|
#define CR_MAXD 14
|
||
|
|
||
|
// p ranges from 1 to a power of 2
|
||
|
#define CR_MAXPEXP 4
|
||
|
|
||
|
static int make_rate (const hrz_dev * dev, u32 c, rounding r,
|
||
|
u16 * bits, unsigned int * actual)
|
||
|
{
|
||
|
// note: rounding the rate down means rounding 'p' up
|
||
|
const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
|
||
|
|
||
|
u32 div = CR_MIND;
|
||
|
u32 pre;
|
||
|
|
||
|
// br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
|
||
|
// the tests below. We could think harder about exact possibilities
|
||
|
// of failure...
|
||
|
|
||
|
unsigned long br_man = br;
|
||
|
unsigned int br_exp = 0;
|
||
|
|
||
|
PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
|
||
|
r == round_up ? "up" : r == round_down ? "down" : "nearest");
|
||
|
|
||
|
// avoid div by zero
|
||
|
if (!c) {
|
||
|
PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
|
||
|
br_man = br_man >> 1;
|
||
|
++br_exp;
|
||
|
}
|
||
|
// (br >>br_exp) <<br_exp == br and
|
||
|
// br_exp <= CR_MAXPEXP+CR_MIND
|
||
|
|
||
|
if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
|
||
|
// Equivalent to: B <= (c << (MAXPEXP+MIND))
|
||
|
// take care of rounding
|
||
|
switch (r) {
|
||
|
case round_down:
|
||
|
pre = DIV_ROUND_UP(br, c<<div);
|
||
|
// but p must be non-zero
|
||
|
if (!pre)
|
||
|
pre = 1;
|
||
|
break;
|
||
|
case round_nearest:
|
||
|
pre = DIV_ROUND_CLOSEST(br, c<<div);
|
||
|
// but p must be non-zero
|
||
|
if (!pre)
|
||
|
pre = 1;
|
||
|
break;
|
||
|
default: /* round_up */
|
||
|
pre = br/(c<<div);
|
||
|
// but p must be non-zero
|
||
|
if (!pre)
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
|
||
|
goto got_it;
|
||
|
}
|
||
|
|
||
|
// at this point we have
|
||
|
// d == MIND and (c << (MAXPEXP+MIND)) < B
|
||
|
while (div < CR_MAXD) {
|
||
|
div++;
|
||
|
if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
|
||
|
// Equivalent to: B <= (c << (MAXPEXP+d))
|
||
|
// c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
|
||
|
// 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
|
||
|
// MAXP/2 < B/c2^d <= MAXP
|
||
|
// take care of rounding
|
||
|
switch (r) {
|
||
|
case round_down:
|
||
|
pre = DIV_ROUND_UP(br, c<<div);
|
||
|
break;
|
||
|
case round_nearest:
|
||
|
pre = DIV_ROUND_CLOSEST(br, c<<div);
|
||
|
break;
|
||
|
default: /* round_up */
|
||
|
pre = br/(c<<div);
|
||
|
}
|
||
|
PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
|
||
|
goto got_it;
|
||
|
}
|
||
|
}
|
||
|
// at this point we have
|
||
|
// d == MAXD and (c << (MAXPEXP+MAXD)) < B
|
||
|
// but we cannot go any higher
|
||
|
// take care of rounding
|
||
|
if (r == round_down)
|
||
|
return -EINVAL;
|
||
|
pre = 1 << CR_MAXPEXP;
|
||
|
PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
|
||
|
got_it:
|
||
|
// paranoia
|
||
|
if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
|
||
|
PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
|
||
|
div, pre);
|
||
|
return -EINVAL;
|
||
|
} else {
|
||
|
if (bits)
|
||
|
*bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
|
||
|
if (actual) {
|
||
|
*actual = DIV_ROUND_UP(br, pre<<div);
|
||
|
PRINTD (DBG_QOS, "actual rate: %u", *actual);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
|
||
|
u16 * bit_pattern, unsigned int * actual) {
|
||
|
unsigned int my_actual;
|
||
|
|
||
|
PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
|
||
|
c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
|
||
|
|
||
|
if (!actual)
|
||
|
// actual rate is not returned
|
||
|
actual = &my_actual;
|
||
|
|
||
|
if (make_rate (dev, c, round_nearest, bit_pattern, actual))
|
||
|
// should never happen as round_nearest always succeeds
|
||
|
return -1;
|
||
|
|
||
|
if (c - tol <= *actual && *actual <= c + tol)
|
||
|
// within tolerance
|
||
|
return 0;
|
||
|
else
|
||
|
// intolerant, try rounding instead
|
||
|
return make_rate (dev, c, r, bit_pattern, actual);
|
||
|
}
|
||
|
|
||
|
/********** Listen on a VC **********/
|
||
|
|
||
|
static int hrz_open_rx (hrz_dev * dev, u16 channel) {
|
||
|
// is there any guarantee that we don't get two simulataneous
|
||
|
// identical calls of this function from different processes? yes
|
||
|
// rate_lock
|
||
|
unsigned long flags;
|
||
|
u32 channel_type; // u16?
|
||
|
|
||
|
u16 buf_ptr = RX_CHANNEL_IDLE;
|
||
|
|
||
|
rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
|
||
|
|
||
|
PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
|
||
|
|
||
|
spin_lock_irqsave (&dev->mem_lock, flags);
|
||
|
channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
|
||
|
spin_unlock_irqrestore (&dev->mem_lock, flags);
|
||
|
|
||
|
// very serious error, should never occur
|
||
|
if (channel_type != RX_CHANNEL_DISABLED) {
|
||
|
PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
|
||
|
return -EBUSY; // clean up?
|
||
|
}
|
||
|
|
||
|
// Give back spare buffer
|
||
|
if (dev->noof_spare_buffers) {
|
||
|
buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
|
||
|
PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
|
||
|
// should never occur
|
||
|
if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
|
||
|
// but easy to recover from
|
||
|
PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
|
||
|
buf_ptr = RX_CHANNEL_IDLE;
|
||
|
}
|
||
|
} else {
|
||
|
PRINTD (DBG_VCC, "using IDLE buffer pointer");
|
||
|
}
|
||
|
|
||
|
// Channel is currently disabled so change its status to idle
|
||
|
|
||
|
// do we really need to save the flags again?
|
||
|
spin_lock_irqsave (&dev->mem_lock, flags);
|
||
|
|
||
|
wr_mem (dev, &rx_desc->wr_buf_type,
|
||
|
buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
|
||
|
if (buf_ptr != RX_CHANNEL_IDLE)
|
||
|
wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
|
||
|
|
||
|
spin_unlock_irqrestore (&dev->mem_lock, flags);
|
||
|
|
||
|
// rxer->rate = make_rate (qos->peak_cells);
|
||
|
|
||
|
PRINTD (DBG_FLOW, "hrz_open_rx ok");
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
/********** change vc rate for a given vc **********/
|
||
|
|
||
|
static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
|
||
|
rxer->rate = make_rate (qos->peak_cells);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/********** free an skb (as per ATM device driver documentation) **********/
|
||
|
|
||
|
static void hrz_kfree_skb (struct sk_buff * skb) {
|
||
|
if (ATM_SKB(skb)->vcc->pop) {
|
||
|
ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
|
||
|
} else {
|
||
|
dev_kfree_skb_any (skb);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/********** cancel listen on a VC **********/
|
||
|
|
||
|
static void hrz_close_rx (hrz_dev * dev, u16 vc) {
|
||
|
unsigned long flags;
|
||
|
|
||
|
u32 value;
|
||
|
|
||
|
u32 r1, r2;
|
||
|
|
||
|
rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
|
||
|
|
||
|
int was_idle = 0;
|
||
|
|
||
|
spin_lock_irqsave (&dev->mem_lock, flags);
|
||
|
value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
|
||
|
spin_unlock_irqrestore (&dev->mem_lock, flags);
|
||
|
|
||
|
if (value == RX_CHANNEL_DISABLED) {
|
||
|
// I suppose this could happen once we deal with _NONE traffic properly
|
||
|
PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
|
||
|
return;
|
||
|
}
|
||
|
if (value == RX_CHANNEL_IDLE)
|
||
|
was_idle = 1;
|
||
|
|
||
|
spin_lock_irqsave (&dev->mem_lock, flags);
|
||
|
|
||
|
for (;;) {
|
||
|
wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
|
||
|
|
||
|
if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
|
||
|
break;
|
||
|
|
||
|
was_idle = 0;
|
||
|
}
|
||
|
|
||
|
if (was_idle) {
|
||
|
spin_unlock_irqrestore (&dev->mem_lock, flags);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
WAIT_FLUSH_RX_COMPLETE(dev);
|
||
|
|
||
|
// XXX Is this all really necessary? We can rely on the rx_data_av
|
||
|
// handler to discard frames that remain queued for delivery. If the
|
||
|
// worry is that immediately reopening the channel (perhaps by a
|
||
|
// different process) may cause some data to be mis-delivered then
|
||
|
// there may still be a simpler solution (such as busy-waiting on
|
||
|
// rx_busy once the channel is disabled or before a new one is
|
||
|
// opened - does this leave any holes?). Arguably setting up and
|
||
|
// tearing down the TX and RX halves of each virtual circuit could
|
||
|
// most safely be done within ?x_busy protected regions.
|
||
|
|
||
|
// OK, current changes are that Simon's marker is disabled and we DO
|
||
|
// look for NULL rxer elsewhere. The code here seems flush frames
|
||
|
// and then remember the last dead cell belonging to the channel
|
||
|
// just disabled - the cell gets relinked at the next vc_open.
|
||
|
// However, when all VCs are closed or only a few opened there are a
|
||
|
// handful of buffers that are unusable.
|
||
|
|
||
|
// Does anyone feel like documenting spare_buffers properly?
|
||
|
// Does anyone feel like fixing this in a nicer way?
|
||
|
|
||
|
// Flush any data which is left in the channel
|
||
|
for (;;) {
|
||
|
// Change the rx channel port to something different to the RX
|
||
|
// channel we are trying to close to force Horizon to flush the rx
|
||
|
// channel read and write pointers.
|
||
|
|
||
|
u16 other = vc^(RX_CHANS/2);
|
||
|
|
||
|
SELECT_RX_CHANNEL (dev, other);
|
||
|
WAIT_UPDATE_COMPLETE (dev);
|
||
|
|
||
|
r1 = rd_mem (dev, &rx_desc->rd_buf_type);
|
||
|
|
||
|
// Select this RX channel. Flush doesn't seem to work unless we
|
||
|
// select an RX channel before hand
|
||
|
|
||
|
SELECT_RX_CHANNEL (dev, vc);
|
||
|
WAIT_UPDATE_COMPLETE (dev);
|
||
|
|
||
|
// Attempt to flush a frame on this RX channel
|
||
|
|
||
|
FLUSH_RX_CHANNEL (dev, vc);
|
||
|
WAIT_FLUSH_RX_COMPLETE (dev);
|
||
|
|
||
|
// Force Horizon to flush rx channel read and write pointers as before
|
||
|
|
||
|
SELECT_RX_CHANNEL (dev, other);
|
||
|
WAIT_UPDATE_COMPLETE (dev);
|
||
|
|
||
|
r2 = rd_mem (dev, &rx_desc->rd_buf_type);
|
||
|
|
||
|
PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
|
||
|
|
||
|
if (r1 == r2) {
|
||
|
dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
{
|
||
|
rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
|
||
|
rx_q_entry * rd_ptr = dev->rx_q_entry;
|
||
|
|
||
|
PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
|
||
|
|
||
|
while (rd_ptr != wr_ptr) {
|
||
|
u32 x = rd_mem (dev, (HDW *) rd_ptr);
|
||
|
|
||
|
if (vc == rx_q_entry_to_rx_channel (x)) {
|
||
|
x |= SIMONS_DODGEY_MARKER;
|
||
|
|
||
|
PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
|
||
|
|
||
|
wr_mem (dev, (HDW *) rd_ptr, x);
|
||
|
}
|
||
|
|
||
|
if (rd_ptr == dev->rx_q_wrap)
|
||
|
rd_ptr = dev->rx_q_reset;
|
||
|
else
|
||
|
rd_ptr++;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
spin_unlock_irqrestore (&dev->mem_lock, flags);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/********** schedule RX transfers **********/
|
||
|
|
||
|
// Note on tail recursion: a GCC developer said that it is not likely
|
||
|
// to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
|
||
|
// are sure it does as you may otherwise overflow the kernel stack.
|
||
|
|
||
|
// giving this fn a return value would help GCC, allegedly
|
||
|
|
||
|
static void rx_schedule (hrz_dev * dev, int irq) {
|
||
|
unsigned int rx_bytes;
|
||
|
|
||
|
int pio_instead = 0;
|
||
|
#ifndef TAILRECURSIONWORKS
|
||
|
pio_instead = 1;
|
||
|
while (pio_instead) {
|
||
|
#endif
|
||
|
// bytes waiting for RX transfer
|
||
|
rx_bytes = dev->rx_bytes;
|
||
|
|
||
|
#if 0
|
||
|
spin_count = 0;
|
||
|
while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
|
||
|
PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
|
||
|
if (++spin_count > 10) {
|
||
|
PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
|
||
|
wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
|
||
|
clear_bit (rx_busy, &dev->flags);
|
||
|
hrz_kfree_skb (dev->rx_skb);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// this code follows the TX code but (at the moment) there is only
|
||
|
// one region - the skb itself. I don't know if this will change,
|
||
|
// but it doesn't hurt to have the code here, disabled.
|
||
|
|
||
|
if (rx_bytes) {
|
||
|
// start next transfer within same region
|
||
|
if (rx_bytes <= MAX_PIO_COUNT) {
|
||
|
PRINTD (DBG_RX|DBG_BUS, "(pio)");
|
||
|
pio_instead = 1;
|
||
|
}
|
||
|
if (rx_bytes <= MAX_TRANSFER_COUNT) {
|
||
|
PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
|
||
|
dev->rx_bytes = 0;
|
||
|
} else {
|
||
|
PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
|
||
|
dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
|
||
|
rx_bytes = MAX_TRANSFER_COUNT;
|
||
|
}
|
||
|
} else {
|
||
|
// rx_bytes == 0 -- we're between regions
|
||
|
// regions remaining to transfer
|
||
|
#if 0
|
||
|
unsigned int rx_regions = dev->rx_regions;
|
||
|
#else
|
||
|
unsigned int rx_regions = 0;
|
||
|
#endif
|
||
|
|
||
|
if (rx_regions) {
|
||
|
#if 0
|
||
|
// start a new region
|
||
|
dev->rx_addr = dev->rx_iovec->iov_base;
|
||
|
rx_bytes = dev->rx_iovec->iov_len;
|
||
|
++dev->rx_iovec;
|
||
|
dev->rx_regions = rx_regions - 1;
|
||
|
|
||
|
if (rx_bytes <= MAX_PIO_COUNT) {
|
||
|
PRINTD (DBG_RX|DBG_BUS, "(pio)");
|
||
|
pio_instead = 1;
|
||
|
}
|
||
|
if (rx_bytes <= MAX_TRANSFER_COUNT) {
|
||
|
PRINTD (DBG_RX|DBG_BUS, "(full region)");
|
||
|
dev->rx_bytes = 0;
|
||
|
} else {
|
||
|
PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
|
||
|
dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
|
||
|
rx_bytes = MAX_TRANSFER_COUNT;
|
||
|
}
|
||
|
#endif
|
||
|
} else {
|
||
|
// rx_regions == 0
|
||
|
// that's all folks - end of frame
|
||
|
struct sk_buff * skb = dev->rx_skb;
|
||
|
// dev->rx_iovec = 0;
|
||
|
|
||
|
FLUSH_RX_CHANNEL (dev, dev->rx_channel);
|
||
|
|
||
|
dump_skb ("<<<", dev->rx_channel, skb);
|
||
|
|
||
|
PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
|
||
|
|
||
|
{
|
||
|
struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
|
||
|
// VC layer stats
|
||
|
atomic_inc(&vcc->stats->rx);
|
||
|
__net_timestamp(skb);
|
||
|
// end of our responsibility
|
||
|
vcc->push (vcc, skb);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// note: writing RX_COUNT clears any interrupt condition
|
||
|
if (rx_bytes) {
|
||
|
if (pio_instead) {
|
||
|
if (irq)
|
||
|
wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
|
||
|
rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
|
||
|
} else {
|
||
|
wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
|
||
|
wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
|
||
|
}
|
||
|
dev->rx_addr += rx_bytes;
|
||
|
} else {
|
||
|
if (irq)
|
||
|
wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
|
||
|
// allow another RX thread to start
|
||
|
YELLOW_LED_ON(dev);
|
||
|
clear_bit (rx_busy, &dev->flags);
|
||
|
PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
|
||
|
}
|
||
|
|
||
|
#ifdef TAILRECURSIONWORKS
|
||
|
// and we all bless optimised tail calls
|
||
|
if (pio_instead)
|
||
|
return rx_schedule (dev, 0);
|
||
|
return;
|
||
|
#else
|
||
|
// grrrrrrr!
|
||
|
irq = 0;
|
||
|
}
|
||
|
return;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/********** handle RX bus master complete events **********/
|
||
|
|
||
|
static void rx_bus_master_complete_handler (hrz_dev * dev) {
|
||
|
if (test_bit (rx_busy, &dev->flags)) {
|
||
|
rx_schedule (dev, 1);
|
||
|
} else {
|
||
|
PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
|
||
|
// clear interrupt condition on adapter
|
||
|
wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/********** (queue to) become the next TX thread **********/
|
||
|
|
||
|
static int tx_hold (hrz_dev * dev) {
|
||
|
PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
|
||
|
wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
|
||
|
PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
|
||
|
if (signal_pending (current))
|
||
|
return -1;
|
||
|
PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/********** allow another TX thread to start **********/
|
||
|
|
||
|
static inline void tx_release (hrz_dev * dev) {
|
||
|
clear_bit (tx_busy, &dev->flags);
|
||
|
PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
|
||
|
wake_up_interruptible (&dev->tx_queue);
|
||
|
}
|
||
|
|
||
|
/********** schedule TX transfers **********/
|
||
|
|
||
|
static void tx_schedule (hrz_dev * const dev, int irq) {
|
||
|
unsigned int tx_bytes;
|
||
|
|
||
|
int append_desc = 0;
|
||
|
|
||
|
int pio_instead = 0;
|
||
|
#ifndef TAILRECURSIONWORKS
|
||
|
pio_instead = 1;
|
||
|
while (pio_instead) {
|
||
|
#endif
|
||
|
// bytes in current region waiting for TX transfer
|
||
|
tx_bytes = dev->tx_bytes;
|
||
|
|
||
|
#if 0
|
||
|
spin_count = 0;
|
||
|
while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
|
||
|
PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
|
||
|
if (++spin_count > 10) {
|
||
|
PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
|
||
|
wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
|
||
|
tx_release (dev);
|
||
|
hrz_kfree_skb (dev->tx_skb);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if (tx_bytes) {
|
||
|
// start next transfer within same region
|
||
|
if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
|
||
|
PRINTD (DBG_TX|DBG_BUS, "(pio)");
|
||
|
pio_instead = 1;
|
||
|
}
|
||
|
if (tx_bytes <= MAX_TRANSFER_COUNT) {
|
||
|
PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
|
||
|
if (!dev->tx_iovec) {
|
||
|
// end of last region
|
||
|
append_desc = 1;
|
||
|
}
|
||
|
dev->tx_bytes = 0;
|
||
|
} else {
|
||
|
PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
|
||
|
dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
|
||
|
tx_bytes = MAX_TRANSFER_COUNT;
|
||
|
}
|
||
|
} else {
|
||
|
// tx_bytes == 0 -- we're between regions
|
||
|
// regions remaining to transfer
|
||
|
unsigned int tx_regions = dev->tx_regions;
|
||
|
|
||
|
if (tx_regions) {
|
||
|
// start a new region
|
||
|
dev->tx_addr = dev->tx_iovec->iov_base;
|
||
|
tx_bytes = dev->tx_iovec->iov_len;
|
||
|
++dev->tx_iovec;
|
||
|
dev->tx_regions = tx_regions - 1;
|
||
|
|
||
|
if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
|
||
|
PRINTD (DBG_TX|DBG_BUS, "(pio)");
|
||
|
pio_instead = 1;
|
||
|
}
|
||
|
if (tx_bytes <= MAX_TRANSFER_COUNT) {
|
||
|
PRINTD (DBG_TX|DBG_BUS, "(full region)");
|
||
|
dev->tx_bytes = 0;
|
||
|
} else {
|
||
|
PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
|
||
|
dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
|
||
|
tx_bytes = MAX_TRANSFER_COUNT;
|
||
|
}
|
||
|
} else {
|
||
|
// tx_regions == 0
|
||
|
// that's all folks - end of frame
|
||
|
struct sk_buff * skb = dev->tx_skb;
|
||
|
dev->tx_iovec = NULL;
|
||
|
|
||
|
// VC layer stats
|
||
|
atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
|
||
|
|
||
|
// free the skb
|
||
|
hrz_kfree_skb (skb);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// note: writing TX_COUNT clears any interrupt condition
|
||
|
if (tx_bytes) {
|
||
|
if (pio_instead) {
|
||
|
if (irq)
|
||
|
wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
|
||
|
wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
|
||
|
if (append_desc)
|
||
|
wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
|
||
|
} else {
|
||
|
wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
|
||
|
if (append_desc)
|
||
|
wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
|
||
|
wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
|
||
|
append_desc
|
||
|
? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
|
||
|
: tx_bytes);
|
||
|
}
|
||
|
dev->tx_addr += tx_bytes;
|
||
|
} else {
|
||
|
if (irq)
|
||
|
wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
|
||
|
YELLOW_LED_ON(dev);
|
||
|
tx_release (dev);
|
||
|
}
|
||
|
|
||
|
#ifdef TAILRECURSIONWORKS
|
||
|
// and we all bless optimised tail calls
|
||
|
if (pio_instead)
|
||
|
return tx_schedule (dev, 0);
|
||
|
return;
|
||
|
#else
|
||
|
// grrrrrrr!
|
||
|
irq = 0;
|
||
|
}
|
||
|
return;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/********** handle TX bus master complete events **********/
|
||
|
|
||
|
static void tx_bus_master_complete_handler (hrz_dev * dev) {
|
||
|
if (test_bit (tx_busy, &dev->flags)) {
|
||
|
tx_schedule (dev, 1);
|
||
|
} else {
|
||
|
PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
|
||
|
// clear interrupt condition on adapter
|
||
|
wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/********** move RX Q pointer to next item in circular buffer **********/
|
||
|
|
||
|
// called only from IRQ sub-handler
|
||
|
static u32 rx_queue_entry_next (hrz_dev * dev) {
|
||
|
u32 rx_queue_entry;
|
||
|
spin_lock (&dev->mem_lock);
|
||
|
rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
|
||
|
if (dev->rx_q_entry == dev->rx_q_wrap)
|
||
|
dev->rx_q_entry = dev->rx_q_reset;
|
||
|
else
|
||
|
dev->rx_q_entry++;
|
||
|
wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
|
||
|
spin_unlock (&dev->mem_lock);
|
||
|
return rx_queue_entry;
|
||
|
}
|
||
|
|
||
|
/********** handle RX data received by device **********/
|
||
|
|
||
|
// called from IRQ handler
|
||
|
static void rx_data_av_handler (hrz_dev * dev) {
|
||
|
u32 rx_queue_entry;
|
||
|
u32 rx_queue_entry_flags;
|
||
|
u16 rx_len;
|
||
|
u16 rx_channel;
|
||
|
|
||
|
PRINTD (DBG_FLOW, "hrz_data_av_handler");
|
||
|
|
||
|
// try to grab rx lock (not possible during RX bus mastering)
|
||
|
if (test_and_set_bit (rx_busy, &dev->flags)) {
|
||
|
PRINTD (DBG_RX, "locked out of rx lock");
|
||
|
return;
|
||
|
}
|
||
|
PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
|
||
|
// lock is cleared if we fail now, o/w after bus master completion
|
||
|
|
||
|
YELLOW_LED_OFF(dev);
|
||
|
|
||
|
rx_queue_entry = rx_queue_entry_next (dev);
|
||
|
|
||
|
rx_len = rx_q_entry_to_length (rx_queue_entry);
|
||
|
rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
|
||
|
|
||
|
WAIT_FLUSH_RX_COMPLETE (dev);
|
||
|
|
||
|
SELECT_RX_CHANNEL (dev, rx_channel);
|
||
|
|
||
|
PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
|
||
|
rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
|
||
|
|
||
|
if (!rx_len) {
|
||
|
// (at least) bus-mastering breaks if we try to handle a
|
||
|
// zero-length frame, besides AAL5 does not support them
|
||
|
PRINTK (KERN_ERR, "zero-length frame!");
|
||
|
rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
|
||
|
}
|
||
|
|
||
|
if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
|
||
|
PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
|
||
|
}
|
||
|
if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
|
||
|
struct atm_vcc * atm_vcc;
|
||
|
|
||
|
PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
|
||
|
|
||
|
atm_vcc = dev->rxer[rx_channel];
|
||
|
// if no vcc is assigned to this channel, we should drop the frame
|
||
|
// (is this what SIMONS etc. was trying to achieve?)
|
||
|
|
||
|
if (atm_vcc) {
|
||
|
|
||
|
if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
|
||
|
|
||
|
if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
|
||
|
|
||
|
struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
|
||
|
if (skb) {
|
||
|
// remember this so we can push it later
|
||
|
dev->rx_skb = skb;
|
||
|
// remember this so we can flush it later
|
||
|
dev->rx_channel = rx_channel;
|
||
|
|
||
|
// prepare socket buffer
|
||
|
skb_put (skb, rx_len);
|
||
|
ATM_SKB(skb)->vcc = atm_vcc;
|
||
|
|
||
|
// simple transfer
|
||
|
// dev->rx_regions = 0;
|
||
|
// dev->rx_iovec = 0;
|
||
|
dev->rx_bytes = rx_len;
|
||
|
dev->rx_addr = skb->data;
|
||
|
PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
|
||
|
skb->data, rx_len);
|
||
|
|
||
|
// do the business
|
||
|
rx_schedule (dev, 0);
|
||
|
return;
|
||
|
|
||
|
} else {
|
||
|
PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
|
||
|
// do we count this?
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
PRINTK (KERN_WARNING, "dropped over-size frame");
|
||
|
// do we count this?
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
|
||
|
// do we count this?
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
// Wait update complete ? SPONG
|
||
|
}
|
||
|
|
||
|
// RX was aborted
|
||
|
YELLOW_LED_ON(dev);
|
||
|
|
||
|
FLUSH_RX_CHANNEL (dev,rx_channel);
|
||
|
clear_bit (rx_busy, &dev->flags);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/********** interrupt handler **********/
|
||
|
|
||
|
static irqreturn_t interrupt_handler(int irq, void *dev_id)
|
||
|
{
|
||
|
hrz_dev *dev = dev_id;
|
||
|
u32 int_source;
|
||
|
unsigned int irq_ok;
|
||
|
|
||
|
PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
|
||
|
|
||
|
// definitely for us
|
||
|
irq_ok = 0;
|
||
|
while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
|
||
|
& INTERESTING_INTERRUPTS)) {
|
||
|
// In the interests of fairness, the handlers below are
|
||
|
// called in sequence and without immediate return to the head of
|
||
|
// the while loop. This is only of issue for slow hosts (or when
|
||
|
// debugging messages are on). Really slow hosts may find a fast
|
||
|
// sender keeps them permanently in the IRQ handler. :(
|
||
|
|
||
|
// (only an issue for slow hosts) RX completion goes before
|
||
|
// rx_data_av as the former implies rx_busy and so the latter
|
||
|
// would just abort. If it reschedules another transfer
|
||
|
// (continuing the same frame) then it will not clear rx_busy.
|
||
|
|
||
|
// (only an issue for slow hosts) TX completion goes before RX
|
||
|
// data available as it is a much shorter routine - there is the
|
||
|
// chance that any further transfers it schedules will be complete
|
||
|
// by the time of the return to the head of the while loop
|
||
|
|
||
|
if (int_source & RX_BUS_MASTER_COMPLETE) {
|
||
|
++irq_ok;
|
||
|
PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
|
||
|
rx_bus_master_complete_handler (dev);
|
||
|
}
|
||
|
if (int_source & TX_BUS_MASTER_COMPLETE) {
|
||
|
++irq_ok;
|
||
|
PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
|
||
|
tx_bus_master_complete_handler (dev);
|
||
|
}
|
||
|
if (int_source & RX_DATA_AV) {
|
||
|
++irq_ok;
|
||
|
PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
|
||
|
rx_data_av_handler (dev);
|
||
|
}
|
||
|
}
|
||
|
if (irq_ok) {
|
||
|
PRINTD (DBG_IRQ, "work done: %u", irq_ok);
|
||
|
} else {
|
||
|
PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
|
||
|
}
|
||
|
|
||
|
PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
|
||
|
if (irq_ok)
|
||
|
return IRQ_HANDLED;
|
||
|
return IRQ_NONE;
|
||
|
}
|
||
|
|
||
|
/********** housekeeping **********/
|
||
|
|
||
|
static void do_housekeeping (struct timer_list *t) {
|
||
|
// just stats at the moment
|
||
|
hrz_dev * dev = from_timer(dev, t, housekeeping);
|
||
|
|
||
|
// collect device-specific (not driver/atm-linux) stats here
|
||
|
dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
|
||
|
dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
|
||
|
dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
|
||
|
dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
|
||
|
|
||
|
mod_timer (&dev->housekeeping, jiffies + HZ/10);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/********** find an idle channel for TX and set it up **********/
|
||
|
|
||
|
// called with tx_busy set
|
||
|
static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
|
||
|
unsigned short idle_channels;
|
||
|
short tx_channel = -1;
|
||
|
unsigned int spin_count;
|
||
|
PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
|
||
|
|
||
|
// better would be to fail immediately, the caller can then decide whether
|
||
|
// to wait or drop (depending on whether this is UBR etc.)
|
||
|
spin_count = 0;
|
||
|
while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
|
||
|
PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
|
||
|
// delay a bit here
|
||
|
if (++spin_count > 100) {
|
||
|
PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
|
||
|
return -EBUSY;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// got an idle channel
|
||
|
{
|
||
|
// tx_idle ensures we look for idle channels in RR order
|
||
|
int chan = dev->tx_idle;
|
||
|
|
||
|
int keep_going = 1;
|
||
|
while (keep_going) {
|
||
|
if (idle_channels & (1<<chan)) {
|
||
|
tx_channel = chan;
|
||
|
keep_going = 0;
|
||
|
}
|
||
|
++chan;
|
||
|
if (chan == TX_CHANS)
|
||
|
chan = 0;
|
||
|
}
|
||
|
|
||
|
dev->tx_idle = chan;
|
||
|
}
|
||
|
|
||
|
// set up the channel we found
|
||
|
{
|
||
|
// Initialise the cell header in the transmit channel descriptor
|
||
|
// a.k.a. prepare the channel and remember that we have done so.
|
||
|
|
||
|
tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
|
||
|
u32 rd_ptr;
|
||
|
u32 wr_ptr;
|
||
|
u16 channel = vcc->channel;
|
||
|
|
||
|
unsigned long flags;
|
||
|
spin_lock_irqsave (&dev->mem_lock, flags);
|
||
|
|
||
|
// Update the transmit channel record.
|
||
|
dev->tx_channel_record[tx_channel] = channel;
|
||
|
|
||
|
// xBR channel
|
||
|
update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
|
||
|
vcc->tx_xbr_bits);
|
||
|
|
||
|
// Update the PCR counter preload value etc.
|
||
|
update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
|
||
|
vcc->tx_pcr_bits);
|
||
|
|
||
|
#if 0
|
||
|
if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
|
||
|
// SCR timer
|
||
|
update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
|
||
|
vcc->tx_scr_bits);
|
||
|
|
||
|
// Bucket size...
|
||
|
update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
|
||
|
vcc->tx_bucket_bits);
|
||
|
|
||
|
// ... and fullness
|
||
|
update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
|
||
|
vcc->tx_bucket_bits);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// Initialise the read and write buffer pointers
|
||
|
rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
|
||
|
wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
|
||
|
|
||
|
// idle TX channels should have identical pointers
|
||
|
if (rd_ptr != wr_ptr) {
|
||
|
PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
|
||
|
// spin_unlock... return -E...
|
||
|
// I wonder if gcc would get rid of one of the pointer aliases
|
||
|
}
|
||
|
PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
|
||
|
rd_ptr, wr_ptr);
|
||
|
|
||
|
switch (vcc->aal) {
|
||
|
case aal0:
|
||
|
PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
|
||
|
rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
|
||
|
wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
|
||
|
break;
|
||
|
case aal34:
|
||
|
PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
|
||
|
rd_ptr |= CHANNEL_TYPE_AAL3_4;
|
||
|
wr_ptr |= CHANNEL_TYPE_AAL3_4;
|
||
|
break;
|
||
|
case aal5:
|
||
|
rd_ptr |= CHANNEL_TYPE_AAL5;
|
||
|
wr_ptr |= CHANNEL_TYPE_AAL5;
|
||
|
// Initialise the CRC
|
||
|
wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
|
||
|
wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
|
||
|
|
||
|
// Write the Cell Header
|
||
|
// Payload Type, CLP and GFC would go here if non-zero
|
||
|
wr_mem (dev, &tx_desc->cell_header, channel);
|
||
|
|
||
|
spin_unlock_irqrestore (&dev->mem_lock, flags);
|
||
|
}
|
||
|
|
||
|
return tx_channel;
|
||
|
}
|
||
|
|
||
|
/********** send a frame **********/
|
||
|
|
||
|
static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
|
||
|
unsigned int spin_count;
|
||
|
int free_buffers;
|
||
|
hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
|
||
|
hrz_vcc * vcc = HRZ_VCC(atm_vcc);
|
||
|
u16 channel = vcc->channel;
|
||
|
|
||
|
u32 buffers_required;
|
||
|
|
||
|
/* signed for error return */
|
||
|
short tx_channel;
|
||
|
|
||
|
PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
|
||
|
channel, skb->data, skb->len);
|
||
|
|
||
|
dump_skb (">>>", channel, skb);
|
||
|
|
||
|
if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
|
||
|
PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
|
||
|
hrz_kfree_skb (skb);
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
// don't understand this
|
||
|
ATM_SKB(skb)->vcc = atm_vcc;
|
||
|
|
||
|
if (skb->len > atm_vcc->qos.txtp.max_sdu) {
|
||
|
PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
|
||
|
hrz_kfree_skb (skb);
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
if (!channel) {
|
||
|
PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
|
||
|
hrz_kfree_skb (skb);
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
{
|
||
|
// where would be a better place for this? housekeeping?
|
||
|
u16 status;
|
||
|
pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
|
||
|
if (status & PCI_STATUS_REC_MASTER_ABORT) {
|
||
|
PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
|
||
|
status &= ~PCI_STATUS_REC_MASTER_ABORT;
|
||
|
pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
|
||
|
if (test_bit (tx_busy, &dev->flags)) {
|
||
|
hrz_kfree_skb (dev->tx_skb);
|
||
|
tx_release (dev);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifdef DEBUG_HORIZON
|
||
|
/* wey-hey! */
|
||
|
if (channel == 1023) {
|
||
|
unsigned int i;
|
||
|
unsigned short d = 0;
|
||
|
char * s = skb->data;
|
||
|
if (*s++ == 'D') {
|
||
|
for (i = 0; i < 4; ++i)
|
||
|
d = (d << 4) | hex_to_bin(*s++);
|
||
|
PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// wait until TX is free and grab lock
|
||
|
if (tx_hold (dev)) {
|
||
|
hrz_kfree_skb (skb);
|
||
|
return -ERESTARTSYS;
|
||
|
}
|
||
|
|
||
|
// Wait for enough space to be available in transmit buffer memory.
|
||
|
|
||
|
// should be number of cells needed + 2 (according to hardware docs)
|
||
|
// = ((framelen+8)+47) / 48 + 2
|
||
|
// = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
|
||
|
buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
|
||
|
|
||
|
// replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
|
||
|
spin_count = 0;
|
||
|
while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
|
||
|
PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
|
||
|
free_buffers, buffers_required);
|
||
|
// what is the appropriate delay? implement a timeout? (depending on line speed?)
|
||
|
// mdelay (1);
|
||
|
// what happens if we kill (current_pid, SIGKILL) ?
|
||
|
schedule();
|
||
|
if (++spin_count > 1000) {
|
||
|
PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
|
||
|
free_buffers, buffers_required);
|
||
|
tx_release (dev);
|
||
|
hrz_kfree_skb (skb);
|
||
|
return -ERESTARTSYS;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Select a channel to transmit the frame on.
|
||
|
if (channel == dev->last_vc) {
|
||
|
PRINTD (DBG_TX, "last vc hack: hit");
|
||
|
tx_channel = dev->tx_last;
|
||
|
} else {
|
||
|
PRINTD (DBG_TX, "last vc hack: miss");
|
||
|
// Are we currently transmitting this VC on one of the channels?
|
||
|
for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
|
||
|
if (dev->tx_channel_record[tx_channel] == channel) {
|
||
|
PRINTD (DBG_TX, "vc already on channel: hit");
|
||
|
break;
|
||
|
}
|
||
|
if (tx_channel == TX_CHANS) {
|
||
|
PRINTD (DBG_TX, "vc already on channel: miss");
|
||
|
// Find and set up an idle channel.
|
||
|
tx_channel = setup_idle_tx_channel (dev, vcc);
|
||
|
if (tx_channel < 0) {
|
||
|
PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
|
||
|
tx_release (dev);
|
||
|
return tx_channel;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
PRINTD (DBG_TX, "got channel");
|
||
|
SELECT_TX_CHANNEL(dev, tx_channel);
|
||
|
|
||
|
dev->last_vc = channel;
|
||
|
dev->tx_last = tx_channel;
|
||
|
}
|
||
|
|
||
|
PRINTD (DBG_TX, "using channel %u", tx_channel);
|
||
|
|
||
|
YELLOW_LED_OFF(dev);
|
||
|
|
||
|
// TX start transfer
|
||
|
|
||
|
{
|
||
|
unsigned int tx_len = skb->len;
|
||
|
unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
|
||
|
// remember this so we can free it later
|
||
|
dev->tx_skb = skb;
|
||
|
|
||
|
if (tx_iovcnt) {
|
||
|
// scatter gather transfer
|
||
|
dev->tx_regions = tx_iovcnt;
|
||
|
dev->tx_iovec = NULL; /* @@@ needs rewritten */
|
||
|
dev->tx_bytes = 0;
|
||
|
PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
|
||
|
skb->data, tx_len);
|
||
|
tx_release (dev);
|
||
|
hrz_kfree_skb (skb);
|
||
|
return -EIO;
|
||
|
} else {
|
||
|
// simple transfer
|
||
|
dev->tx_regions = 0;
|
||
|
dev->tx_iovec = NULL;
|
||
|
dev->tx_bytes = tx_len;
|
||
|
dev->tx_addr = skb->data;
|
||
|
PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
|
||
|
skb->data, tx_len);
|
||
|
}
|
||
|
|
||
|
// and do the business
|
||
|
tx_schedule (dev, 0);
|
||
|
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/********** reset a card **********/
|
||
|
|
||
|
static void hrz_reset (const hrz_dev * dev) {
|
||
|
u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
|
||
|
|
||
|
// why not set RESET_HORIZON to one and wait for the card to
|
||
|
// reassert that bit as zero? Like so:
|
||
|
control_0_reg = control_0_reg & RESET_HORIZON;
|
||
|
wr_regl (dev, CONTROL_0_REG, control_0_reg);
|
||
|
while (control_0_reg & RESET_HORIZON)
|
||
|
control_0_reg = rd_regl (dev, CONTROL_0_REG);
|
||
|
|
||
|
// old reset code retained:
|
||
|
wr_regl (dev, CONTROL_0_REG, control_0_reg |
|
||
|
RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
|
||
|
// just guessing here
|
||
|
udelay (1000);
|
||
|
|
||
|
wr_regl (dev, CONTROL_0_REG, control_0_reg);
|
||
|
}
|
||
|
|
||
|
/********** read the burnt in address **********/
|
||
|
|
||
|
static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
|
||
|
{
|
||
|
wr_regl (dev, CONTROL_0_REG, ctrl);
|
||
|
udelay (5);
|
||
|
}
|
||
|
|
||
|
static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
|
||
|
{
|
||
|
// DI must be valid around rising SK edge
|
||
|
WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
|
||
|
WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
|
||
|
}
|
||
|
|
||
|
static u16 read_bia(const hrz_dev *dev, u16 addr)
|
||
|
{
|
||
|
u32 ctrl = rd_regl (dev, CONTROL_0_REG);
|
||
|
|
||
|
const unsigned int addr_bits = 6;
|
||
|
const unsigned int data_bits = 16;
|
||
|
|
||
|
unsigned int i;
|
||
|
|
||
|
u16 res;
|
||
|
|
||
|
ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
|
||
|
WRITE_IT_WAIT(dev, ctrl);
|
||
|
|
||
|
// wake Serial EEPROM and send 110 (READ) command
|
||
|
ctrl |= (SEEPROM_CS | SEEPROM_DI);
|
||
|
CLOCK_IT(dev, ctrl);
|
||
|
|
||
|
ctrl |= SEEPROM_DI;
|
||
|
CLOCK_IT(dev, ctrl);
|
||
|
|
||
|
ctrl &= ~SEEPROM_DI;
|
||
|
CLOCK_IT(dev, ctrl);
|
||
|
|
||
|
for (i=0; i<addr_bits; i++) {
|
||
|
if (addr & (1 << (addr_bits-1)))
|
||
|
ctrl |= SEEPROM_DI;
|
||
|
else
|
||
|
ctrl &= ~SEEPROM_DI;
|
||
|
|
||
|
CLOCK_IT(dev, ctrl);
|
||
|
|
||
|
addr = addr << 1;
|
||
|
}
|
||
|
|
||
|
// we could check that we have DO = 0 here
|
||
|
ctrl &= ~SEEPROM_DI;
|
||
|
|
||
|
res = 0;
|
||
|
for (i=0;i<data_bits;i++) {
|
||
|
res = res >> 1;
|
||
|
|
||
|
CLOCK_IT(dev, ctrl);
|
||
|
|
||
|
if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
|
||
|
res |= (1 << (data_bits-1));
|
||
|
}
|
||
|
|
||
|
ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
|
||
|
WRITE_IT_WAIT(dev, ctrl);
|
||
|
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
/********** initialise a card **********/
|
||
|
|
||
|
static int hrz_init(hrz_dev *dev)
|
||
|
{
|
||
|
int onefivefive;
|
||
|
|
||
|
u16 chan;
|
||
|
|
||
|
int buff_count;
|
||
|
|
||
|
HDW * mem;
|
||
|
|
||
|
cell_buf * tx_desc;
|
||
|
cell_buf * rx_desc;
|
||
|
|
||
|
u32 ctrl;
|
||
|
|
||
|
ctrl = rd_regl (dev, CONTROL_0_REG);
|
||
|
PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
|
||
|
onefivefive = ctrl & ATM_LAYER_STATUS;
|
||
|
|
||
|
if (onefivefive)
|
||
|
printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
|
||
|
else
|
||
|
printk (DEV_LABEL ": Horizon (at 25 MBps)");
|
||
|
|
||
|
printk (":");
|
||
|
// Reset the card to get everything in a known state
|
||
|
|
||
|
printk (" reset");
|
||
|
hrz_reset (dev);
|
||
|
|
||
|
// Clear all the buffer memory
|
||
|
|
||
|
printk (" clearing memory");
|
||
|
|
||
|
for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
|
||
|
wr_mem (dev, mem, 0);
|
||
|
|
||
|
printk (" tx channels");
|
||
|
|
||
|
// All transmit eight channels are set up as AAL5 ABR channels with
|
||
|
// a 16us cell spacing. Why?
|
||
|
|
||
|
// Channel 0 gets the free buffer at 100h, channel 1 gets the free
|
||
|
// buffer at 110h etc.
|
||
|
|
||
|
for (chan = 0; chan < TX_CHANS; ++chan) {
|
||
|
tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
|
||
|
cell_buf * buf = &memmap->inittxbufs[chan];
|
||
|
|
||
|
// initialise the read and write buffer pointers
|
||
|
wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
|
||
|
wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
|
||
|
|
||
|
// set the status of the initial buffers to empty
|
||
|
wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
|
||
|
}
|
||
|
|
||
|
// Use space bufn3 at the moment for tx buffers
|
||
|
|
||
|
printk (" tx buffers");
|
||
|
|
||
|
tx_desc = memmap->bufn3;
|
||
|
|
||
|
wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
|
||
|
|
||
|
for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
|
||
|
wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
|
||
|
tx_desc++;
|
||
|
}
|
||
|
|
||
|
wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
|
||
|
|
||
|
// Initialise the transmit free buffer count
|
||
|
wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
|
||
|
|
||
|
printk (" rx channels");
|
||
|
|
||
|
// Initialise all of the receive channels to be AAL5 disabled with
|
||
|
// an interrupt threshold of 0
|
||
|
|
||
|
for (chan = 0; chan < RX_CHANS; ++chan) {
|
||
|
rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
|
||
|
|
||
|
wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
|
||
|
}
|
||
|
|
||
|
printk (" rx buffers");
|
||
|
|
||
|
// Use space bufn4 at the moment for rx buffers
|
||
|
|
||
|
rx_desc = memmap->bufn4;
|
||
|
|
||
|
wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
|
||
|
|
||
|
for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
|
||
|
wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
|
||
|
|
||
|
rx_desc++;
|
||
|
}
|
||
|
|
||
|
wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
|
||
|
|
||
|
// Initialise the receive free buffer count
|
||
|
wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
|
||
|
|
||
|
// Initialize Horizons registers
|
||
|
|
||
|
// TX config
|
||
|
wr_regw (dev, TX_CONFIG_OFF,
|
||
|
ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
|
||
|
|
||
|
// RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
|
||
|
wr_regw (dev, RX_CONFIG_OFF,
|
||
|
DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
|
||
|
|
||
|
// RX line config
|
||
|
wr_regw (dev, RX_LINE_CONFIG_OFF,
|
||
|
LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
|
||
|
|
||
|
// Set the max AAL5 cell count to be just enough to contain the
|
||
|
// largest AAL5 frame that the user wants to receive
|
||
|
wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
|
||
|
DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
|
||
|
|
||
|
// Enable receive
|
||
|
wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
|
||
|
|
||
|
printk (" control");
|
||
|
|
||
|
// Drive the OE of the LEDs then turn the green LED on
|
||
|
ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
|
||
|
wr_regl (dev, CONTROL_0_REG, ctrl);
|
||
|
|
||
|
// Test for a 155-capable card
|
||
|
|
||
|
if (onefivefive) {
|
||
|
// Select 155 mode... make this a choice (or: how do we detect
|
||
|
// external line speed and switch?)
|
||
|
ctrl |= ATM_LAYER_SELECT;
|
||
|
wr_regl (dev, CONTROL_0_REG, ctrl);
|
||
|
|
||
|
// test SUNI-lite vs SAMBA
|
||
|
|
||
|
// Register 0x00 in the SUNI will have some of bits 3-7 set, and
|
||
|
// they will always be zero for the SAMBA. Ha! Bloody hardware
|
||
|
// engineers. It'll never work.
|
||
|
|
||
|
if (rd_framer (dev, 0) & 0x00f0) {
|
||
|
// SUNI
|
||
|
printk (" SUNI");
|
||
|
|
||
|
// Reset, just in case
|
||
|
wr_framer (dev, 0x00, 0x0080);
|
||
|
wr_framer (dev, 0x00, 0x0000);
|
||
|
|
||
|
// Configure transmit FIFO
|
||
|
wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
|
||
|
|
||
|
// Set line timed mode
|
||
|
wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
|
||
|
} else {
|
||
|
// SAMBA
|
||
|
printk (" SAMBA");
|
||
|
|
||
|
// Reset, just in case
|
||
|
wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
|
||
|
wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
|
||
|
|
||
|
// Turn off diagnostic loopback and enable line-timed mode
|
||
|
wr_framer (dev, 0, 0x0002);
|
||
|
|
||
|
// Turn on transmit outputs
|
||
|
wr_framer (dev, 2, 0x0B80);
|
||
|
}
|
||
|
} else {
|
||
|
// Select 25 mode
|
||
|
ctrl &= ~ATM_LAYER_SELECT;
|
||
|
|
||
|
// Madge B154 setup
|
||
|
// none required?
|
||
|
}
|
||
|
|
||
|
printk (" LEDs");
|
||
|
|
||
|
GREEN_LED_ON(dev);
|
||
|
YELLOW_LED_ON(dev);
|
||
|
|
||
|
printk (" ESI=");
|
||
|
|
||
|
{
|
||
|
u16 b = 0;
|
||
|
int i;
|
||
|
u8 * esi = dev->atm_dev->esi;
|
||
|
|
||
|
// in the card I have, EEPROM
|
||
|
// addresses 0, 1, 2 contain 0
|
||
|
// addresess 5, 6 etc. contain ffff
|
||
|
// NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
|
||
|
// the read_bia routine gets the BIA in Ethernet bit order
|
||
|
|
||
|
for (i=0; i < ESI_LEN; ++i) {
|
||
|
if (i % 2 == 0)
|
||
|
b = read_bia (dev, i/2 + 2);
|
||
|
else
|
||
|
b = b >> 8;
|
||
|
esi[i] = b & 0xFF;
|
||
|
printk ("%02x", esi[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Enable RX_Q and ?X_COMPLETE interrupts only
|
||
|
wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
|
||
|
printk (" IRQ on");
|
||
|
|
||
|
printk (".\n");
|
||
|
|
||
|
return onefivefive;
|
||
|
}
|
||
|
|
||
|
/********** check max_sdu **********/
|
||
|
|
||
|
static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
|
||
|
PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
|
||
|
|
||
|
switch (aal) {
|
||
|
case aal0:
|
||
|
if (!(tp->max_sdu)) {
|
||
|
PRINTD (DBG_QOS, "defaulting max_sdu");
|
||
|
tp->max_sdu = ATM_AAL0_SDU;
|
||
|
} else if (tp->max_sdu != ATM_AAL0_SDU) {
|
||
|
PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
break;
|
||
|
case aal34:
|
||
|
if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
|
||
|
PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
|
||
|
tp->max_sdu = ATM_MAX_AAL34_PDU;
|
||
|
}
|
||
|
break;
|
||
|
case aal5:
|
||
|
if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
|
||
|
PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
|
||
|
tp->max_sdu = max_frame_size;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/********** check pcr **********/
|
||
|
|
||
|
// something like this should be part of ATM Linux
|
||
|
static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
|
||
|
// we are assuming non-UBR, and non-special values of pcr
|
||
|
if (tp->min_pcr == ATM_MAX_PCR)
|
||
|
PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
|
||
|
else if (tp->min_pcr < 0)
|
||
|
PRINTD (DBG_QOS, "luser gave negative min_pcr");
|
||
|
else if (tp->min_pcr && tp->min_pcr > pcr)
|
||
|
PRINTD (DBG_QOS, "pcr less than min_pcr");
|
||
|
else
|
||
|
// !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
|
||
|
// easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
|
||
|
// [this would get rid of next two conditionals]
|
||
|
if ((0) && tp->max_pcr == ATM_MAX_PCR)
|
||
|
PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
|
||
|
else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
|
||
|
PRINTD (DBG_QOS, "luser gave negative max_pcr");
|
||
|
else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
|
||
|
PRINTD (DBG_QOS, "pcr greater than max_pcr");
|
||
|
else {
|
||
|
// each limit unspecified or not violated
|
||
|
PRINTD (DBG_QOS, "xBR(pcr) OK");
|
||
|
return 0;
|
||
|
}
|
||
|
PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
|
||
|
pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/********** open VC **********/
|
||
|
|
||
|
static int hrz_open (struct atm_vcc *atm_vcc)
|
||
|
{
|
||
|
int error;
|
||
|
u16 channel;
|
||
|
|
||
|
struct atm_qos * qos;
|
||
|
struct atm_trafprm * txtp;
|
||
|
struct atm_trafprm * rxtp;
|
||
|
|
||
|
hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
|
||
|
hrz_vcc vcc;
|
||
|
hrz_vcc * vccp; // allocated late
|
||
|
short vpi = atm_vcc->vpi;
|
||
|
int vci = atm_vcc->vci;
|
||
|
PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
|
||
|
|
||
|
#ifdef ATM_VPI_UNSPEC
|
||
|
// UNSPEC is deprecated, remove this code eventually
|
||
|
if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
|
||
|
PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
error = vpivci_to_channel (&channel, vpi, vci);
|
||
|
if (error) {
|
||
|
PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
vcc.channel = channel;
|
||
|
// max speed for the moment
|
||
|
vcc.tx_rate = 0x0;
|
||
|
|
||
|
qos = &atm_vcc->qos;
|
||
|
|
||
|
// check AAL and remember it
|
||
|
switch (qos->aal) {
|
||
|
case ATM_AAL0:
|
||
|
// we would if it were 48 bytes and not 52!
|
||
|
PRINTD (DBG_QOS|DBG_VCC, "AAL0");
|
||
|
vcc.aal = aal0;
|
||
|
break;
|
||
|
case ATM_AAL34:
|
||
|
// we would if I knew how do the SAR!
|
||
|
PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
|
||
|
vcc.aal = aal34;
|
||
|
break;
|
||
|
case ATM_AAL5:
|
||
|
PRINTD (DBG_QOS|DBG_VCC, "AAL5");
|
||
|
vcc.aal = aal5;
|
||
|
break;
|
||
|
default:
|
||
|
PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
// TX traffic parameters
|
||
|
|
||
|
// there are two, interrelated problems here: 1. the reservation of
|
||
|
// PCR is not a binary choice, we are given bounds and/or a
|
||
|
// desirable value; 2. the device is only capable of certain values,
|
||
|
// most of which are not integers. It is almost certainly acceptable
|
||
|
// to be off by a maximum of 1 to 10 cps.
|
||
|
|
||
|
// Pragmatic choice: always store an integral PCR as that which has
|
||
|
// been allocated, even if we allocate a little (or a lot) less,
|
||
|
// after rounding. The actual allocation depends on what we can
|
||
|
// manage with our rate selection algorithm. The rate selection
|
||
|
// algorithm is given an integral PCR and a tolerance and told
|
||
|
// whether it should round the value up or down if the tolerance is
|
||
|
// exceeded; it returns: a) the actual rate selected (rounded up to
|
||
|
// the nearest integer), b) a bit pattern to feed to the timer
|
||
|
// register, and c) a failure value if no applicable rate exists.
|
||
|
|
||
|
// Part of the job is done by atm_pcr_goal which gives us a PCR
|
||
|
// specification which says: EITHER grab the maximum available PCR
|
||
|
// (and perhaps a lower bound which we musn't pass), OR grab this
|
||
|
// amount, rounding down if you have to (and perhaps a lower bound
|
||
|
// which we musn't pass) OR grab this amount, rounding up if you
|
||
|
// have to (and perhaps an upper bound which we musn't pass). If any
|
||
|
// bounds ARE passed we fail. Note that rounding is only rounding to
|
||
|
// match device limitations, we do not round down to satisfy
|
||
|
// bandwidth availability even if this would not violate any given
|
||
|
// lower bound.
|
||
|
|
||
|
// Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
|
||
|
// (say) so this is not even a binary fixpoint cell rate (but this
|
||
|
// device can do it). To avoid this sort of hassle we use a
|
||
|
// tolerance parameter (currently fixed at 10 cps).
|
||
|
|
||
|
PRINTD (DBG_QOS, "TX:");
|
||
|
|
||
|
txtp = &qos->txtp;
|
||
|
|
||
|
// set up defaults for no traffic
|
||
|
vcc.tx_rate = 0;
|
||
|
// who knows what would actually happen if you try and send on this?
|
||
|
vcc.tx_xbr_bits = IDLE_RATE_TYPE;
|
||
|
vcc.tx_pcr_bits = CLOCK_DISABLE;
|
||
|
#if 0
|
||
|
vcc.tx_scr_bits = CLOCK_DISABLE;
|
||
|
vcc.tx_bucket_bits = 0;
|
||
|
#endif
|
||
|
|
||
|
if (txtp->traffic_class != ATM_NONE) {
|
||
|
error = check_max_sdu (vcc.aal, txtp, max_tx_size);
|
||
|
if (error) {
|
||
|
PRINTD (DBG_QOS, "TX max_sdu check failed");
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
switch (txtp->traffic_class) {
|
||
|
case ATM_UBR: {
|
||
|
// we take "the PCR" as a rate-cap
|
||
|
// not reserved
|
||
|
vcc.tx_rate = 0;
|
||
|
make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
|
||
|
vcc.tx_xbr_bits = ABR_RATE_TYPE;
|
||
|
break;
|
||
|
}
|
||
|
#if 0
|
||
|
case ATM_ABR: {
|
||
|
// reserve min, allow up to max
|
||
|
vcc.tx_rate = 0; // ?
|
||
|
make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
|
||
|
vcc.tx_xbr_bits = ABR_RATE_TYPE;
|
||
|
break;
|
||
|
}
|
||
|
#endif
|
||
|
case ATM_CBR: {
|
||
|
int pcr = atm_pcr_goal (txtp);
|
||
|
rounding r;
|
||
|
if (!pcr) {
|
||
|
// down vs. up, remaining bandwidth vs. unlimited bandwidth!!
|
||
|
// should really have: once someone gets unlimited bandwidth
|
||
|
// that no more non-UBR channels can be opened until the
|
||
|
// unlimited one closes?? For the moment, round_down means
|
||
|
// greedy people actually get something and not nothing
|
||
|
r = round_down;
|
||
|
// slight race (no locking) here so we may get -EAGAIN
|
||
|
// later; the greedy bastards would deserve it :)
|
||
|
PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
|
||
|
pcr = dev->tx_avail;
|
||
|
} else if (pcr < 0) {
|
||
|
r = round_down;
|
||
|
pcr = -pcr;
|
||
|
} else {
|
||
|
r = round_up;
|
||
|
}
|
||
|
error = make_rate_with_tolerance (dev, pcr, r, 10,
|
||
|
&vcc.tx_pcr_bits, &vcc.tx_rate);
|
||
|
if (error) {
|
||
|
PRINTD (DBG_QOS, "could not make rate from TX PCR");
|
||
|
return error;
|
||
|
}
|
||
|
// not really clear what further checking is needed
|
||
|
error = atm_pcr_check (txtp, vcc.tx_rate);
|
||
|
if (error) {
|
||
|
PRINTD (DBG_QOS, "TX PCR failed consistency check");
|
||
|
return error;
|
||
|
}
|
||
|
vcc.tx_xbr_bits = CBR_RATE_TYPE;
|
||
|
break;
|
||
|
}
|
||
|
#if 0
|
||
|
case ATM_VBR: {
|
||
|
int pcr = atm_pcr_goal (txtp);
|
||
|
// int scr = atm_scr_goal (txtp);
|
||
|
int scr = pcr/2; // just for fun
|
||
|
unsigned int mbs = 60; // just for fun
|
||
|
rounding pr;
|
||
|
rounding sr;
|
||
|
unsigned int bucket;
|
||
|
if (!pcr) {
|
||
|
pr = round_nearest;
|
||
|
pcr = 1<<30;
|
||
|
} else if (pcr < 0) {
|
||
|
pr = round_down;
|
||
|
pcr = -pcr;
|
||
|
} else {
|
||
|
pr = round_up;
|
||
|
}
|
||
|
error = make_rate_with_tolerance (dev, pcr, pr, 10,
|
||
|
&vcc.tx_pcr_bits, 0);
|
||
|
if (!scr) {
|
||
|
// see comments for PCR with CBR above
|
||
|
sr = round_down;
|
||
|
// slight race (no locking) here so we may get -EAGAIN
|
||
|
// later; the greedy bastards would deserve it :)
|
||
|
PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
|
||
|
scr = dev->tx_avail;
|
||
|
} else if (scr < 0) {
|
||
|
sr = round_down;
|
||
|
scr = -scr;
|
||
|
} else {
|
||
|
sr = round_up;
|
||
|
}
|
||
|
error = make_rate_with_tolerance (dev, scr, sr, 10,
|
||
|
&vcc.tx_scr_bits, &vcc.tx_rate);
|
||
|
if (error) {
|
||
|
PRINTD (DBG_QOS, "could not make rate from TX SCR");
|
||
|
return error;
|
||
|
}
|
||
|
// not really clear what further checking is needed
|
||
|
// error = atm_scr_check (txtp, vcc.tx_rate);
|
||
|
if (error) {
|
||
|
PRINTD (DBG_QOS, "TX SCR failed consistency check");
|
||
|
return error;
|
||
|
}
|
||
|
// bucket calculations (from a piece of paper...) cell bucket
|
||
|
// capacity must be largest integer smaller than m(p-s)/p + 1
|
||
|
// where m = max burst size, p = pcr, s = scr
|
||
|
bucket = mbs*(pcr-scr)/pcr;
|
||
|
if (bucket*pcr != mbs*(pcr-scr))
|
||
|
bucket += 1;
|
||
|
if (bucket > BUCKET_MAX_SIZE) {
|
||
|
PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
|
||
|
bucket, BUCKET_MAX_SIZE);
|
||
|
bucket = BUCKET_MAX_SIZE;
|
||
|
}
|
||
|
vcc.tx_xbr_bits = VBR_RATE_TYPE;
|
||
|
vcc.tx_bucket_bits = bucket;
|
||
|
break;
|
||
|
}
|
||
|
#endif
|
||
|
default: {
|
||
|
PRINTD (DBG_QOS, "unsupported TX traffic class");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// RX traffic parameters
|
||
|
|
||
|
PRINTD (DBG_QOS, "RX:");
|
||
|
|
||
|
rxtp = &qos->rxtp;
|
||
|
|
||
|
// set up defaults for no traffic
|
||
|
vcc.rx_rate = 0;
|
||
|
|
||
|
if (rxtp->traffic_class != ATM_NONE) {
|
||
|
error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
|
||
|
if (error) {
|
||
|
PRINTD (DBG_QOS, "RX max_sdu check failed");
|
||
|
return error;
|
||
|
}
|
||
|
switch (rxtp->traffic_class) {
|
||
|
case ATM_UBR: {
|
||
|
// not reserved
|
||
|
break;
|
||
|
}
|
||
|
#if 0
|
||
|
case ATM_ABR: {
|
||
|
// reserve min
|
||
|
vcc.rx_rate = 0; // ?
|
||
|
break;
|
||
|
}
|
||
|
#endif
|
||
|
case ATM_CBR: {
|
||
|
int pcr = atm_pcr_goal (rxtp);
|
||
|
if (!pcr) {
|
||
|
// slight race (no locking) here so we may get -EAGAIN
|
||
|
// later; the greedy bastards would deserve it :)
|
||
|
PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
|
||
|
pcr = dev->rx_avail;
|
||
|
} else if (pcr < 0) {
|
||
|
pcr = -pcr;
|
||
|
}
|
||
|
vcc.rx_rate = pcr;
|
||
|
// not really clear what further checking is needed
|
||
|
error = atm_pcr_check (rxtp, vcc.rx_rate);
|
||
|
if (error) {
|
||
|
PRINTD (DBG_QOS, "RX PCR failed consistency check");
|
||
|
return error;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
#if 0
|
||
|
case ATM_VBR: {
|
||
|
// int scr = atm_scr_goal (rxtp);
|
||
|
int scr = 1<<16; // just for fun
|
||
|
if (!scr) {
|
||
|
// slight race (no locking) here so we may get -EAGAIN
|
||
|
// later; the greedy bastards would deserve it :)
|
||
|
PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
|
||
|
scr = dev->rx_avail;
|
||
|
} else if (scr < 0) {
|
||
|
scr = -scr;
|
||
|
}
|
||
|
vcc.rx_rate = scr;
|
||
|
// not really clear what further checking is needed
|
||
|
// error = atm_scr_check (rxtp, vcc.rx_rate);
|
||
|
if (error) {
|
||
|
PRINTD (DBG_QOS, "RX SCR failed consistency check");
|
||
|
return error;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
#endif
|
||
|
default: {
|
||
|
PRINTD (DBG_QOS, "unsupported RX traffic class");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// late abort useful for diagnostics
|
||
|
if (vcc.aal != aal5) {
|
||
|
PRINTD (DBG_QOS, "AAL not supported");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
// get space for our vcc stuff and copy parameters into it
|
||
|
vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
|
||
|
if (!vccp) {
|
||
|
PRINTK (KERN_ERR, "out of memory!");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
*vccp = vcc;
|
||
|
|
||
|
// clear error and grab cell rate resource lock
|
||
|
error = 0;
|
||
|
spin_lock (&dev->rate_lock);
|
||
|
|
||
|
if (vcc.tx_rate > dev->tx_avail) {
|
||
|
PRINTD (DBG_QOS, "not enough TX PCR left");
|
||
|
error = -EAGAIN;
|
||
|
}
|
||
|
|
||
|
if (vcc.rx_rate > dev->rx_avail) {
|
||
|
PRINTD (DBG_QOS, "not enough RX PCR left");
|
||
|
error = -EAGAIN;
|
||
|
}
|
||
|
|
||
|
if (!error) {
|
||
|
// really consume cell rates
|
||
|
dev->tx_avail -= vcc.tx_rate;
|
||
|
dev->rx_avail -= vcc.rx_rate;
|
||
|
PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
|
||
|
vcc.tx_rate, vcc.rx_rate);
|
||
|
}
|
||
|
|
||
|
// release lock and exit on error
|
||
|
spin_unlock (&dev->rate_lock);
|
||
|
if (error) {
|
||
|
PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
|
||
|
kfree (vccp);
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
// this is "immediately before allocating the connection identifier
|
||
|
// in hardware" - so long as the next call does not fail :)
|
||
|
set_bit(ATM_VF_ADDR,&atm_vcc->flags);
|
||
|
|
||
|
// any errors here are very serious and should never occur
|
||
|
|
||
|
if (rxtp->traffic_class != ATM_NONE) {
|
||
|
if (dev->rxer[channel]) {
|
||
|
PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
|
||
|
error = -EBUSY;
|
||
|
}
|
||
|
if (!error)
|
||
|
error = hrz_open_rx (dev, channel);
|
||
|
if (error) {
|
||
|
kfree (vccp);
|
||
|
return error;
|
||
|
}
|
||
|
// this link allows RX frames through
|
||
|
dev->rxer[channel] = atm_vcc;
|
||
|
}
|
||
|
|
||
|
// success, set elements of atm_vcc
|
||
|
atm_vcc->dev_data = (void *) vccp;
|
||
|
|
||
|
// indicate readiness
|
||
|
set_bit(ATM_VF_READY,&atm_vcc->flags);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/********** close VC **********/
|
||
|
|
||
|
static void hrz_close (struct atm_vcc * atm_vcc) {
|
||
|
hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
|
||
|
hrz_vcc * vcc = HRZ_VCC(atm_vcc);
|
||
|
u16 channel = vcc->channel;
|
||
|
PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
|
||
|
|
||
|
// indicate unreadiness
|
||
|
clear_bit(ATM_VF_READY,&atm_vcc->flags);
|
||
|
|
||
|
if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
|
||
|
unsigned int i;
|
||
|
|
||
|
// let any TX on this channel that has started complete
|
||
|
// no restart, just keep trying
|
||
|
while (tx_hold (dev))
|
||
|
;
|
||
|
// remove record of any tx_channel having been setup for this channel
|
||
|
for (i = 0; i < TX_CHANS; ++i)
|
||
|
if (dev->tx_channel_record[i] == channel) {
|
||
|
dev->tx_channel_record[i] = -1;
|
||
|
break;
|
||
|
}
|
||
|
if (dev->last_vc == channel)
|
||
|
dev->tx_last = -1;
|
||
|
tx_release (dev);
|
||
|
}
|
||
|
|
||
|
if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
|
||
|
// disable RXing - it tries quite hard
|
||
|
hrz_close_rx (dev, channel);
|
||
|
// forget the vcc - no more skbs will be pushed
|
||
|
if (atm_vcc != dev->rxer[channel])
|
||
|
PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
|
||
|
"arghhh! we're going to die!",
|
||
|
atm_vcc, dev->rxer[channel]);
|
||
|
dev->rxer[channel] = NULL;
|
||
|
}
|
||
|
|
||
|
// atomically release our rate reservation
|
||
|
spin_lock (&dev->rate_lock);
|
||
|
PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
|
||
|
vcc->tx_rate, vcc->rx_rate);
|
||
|
dev->tx_avail += vcc->tx_rate;
|
||
|
dev->rx_avail += vcc->rx_rate;
|
||
|
spin_unlock (&dev->rate_lock);
|
||
|
|
||
|
// free our structure
|
||
|
kfree (vcc);
|
||
|
// say the VPI/VCI is free again
|
||
|
clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
|
||
|
void *optval, int optlen) {
|
||
|
hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
|
||
|
PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
|
||
|
switch (level) {
|
||
|
case SOL_SOCKET:
|
||
|
switch (optname) {
|
||
|
// case SO_BCTXOPT:
|
||
|
// break;
|
||
|
// case SO_BCRXOPT:
|
||
|
// break;
|
||
|
default:
|
||
|
return -ENOPROTOOPT;
|
||
|
};
|
||
|
break;
|
||
|
}
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
|
||
|
void *optval, unsigned int optlen) {
|
||
|
hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
|
||
|
PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
|
||
|
switch (level) {
|
||
|
case SOL_SOCKET:
|
||
|
switch (optname) {
|
||
|
// case SO_BCTXOPT:
|
||
|
// break;
|
||
|
// case SO_BCRXOPT:
|
||
|
// break;
|
||
|
default:
|
||
|
return -ENOPROTOOPT;
|
||
|
};
|
||
|
break;
|
||
|
}
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if 0
|
||
|
static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
|
||
|
hrz_dev * dev = HRZ_DEV(atm_dev);
|
||
|
PRINTD (DBG_FLOW, "hrz_ioctl");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
|
||
|
hrz_dev * dev = HRZ_DEV(atm_dev);
|
||
|
PRINTD (DBG_FLOW, "hrz_phy_get");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
|
||
|
unsigned long addr) {
|
||
|
hrz_dev * dev = HRZ_DEV(atm_dev);
|
||
|
PRINTD (DBG_FLOW, "hrz_phy_put");
|
||
|
}
|
||
|
|
||
|
static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
|
||
|
hrz_dev * dev = HRZ_DEV(vcc->dev);
|
||
|
PRINTD (DBG_FLOW, "hrz_change_qos");
|
||
|
return -1;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/********** proc file contents **********/
|
||
|
|
||
|
static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
|
||
|
hrz_dev * dev = HRZ_DEV(atm_dev);
|
||
|
int left = *pos;
|
||
|
PRINTD (DBG_FLOW, "hrz_proc_read");
|
||
|
|
||
|
/* more diagnostics here? */
|
||
|
|
||
|
#if 0
|
||
|
if (!left--) {
|
||
|
unsigned int count = sprintf (page, "vbr buckets:");
|
||
|
unsigned int i;
|
||
|
for (i = 0; i < TX_CHANS; ++i)
|
||
|
count += sprintf (page, " %u/%u",
|
||
|
query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
|
||
|
query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
|
||
|
count += sprintf (page+count, ".\n");
|
||
|
return count;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if (!left--)
|
||
|
return sprintf (page,
|
||
|
"cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
|
||
|
dev->tx_cell_count, dev->rx_cell_count,
|
||
|
dev->hec_error_count, dev->unassigned_cell_count);
|
||
|
|
||
|
if (!left--)
|
||
|
return sprintf (page,
|
||
|
"free cell buffers: TX %hu, RX %hu+%hu.\n",
|
||
|
rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
|
||
|
rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
|
||
|
dev->noof_spare_buffers);
|
||
|
|
||
|
if (!left--)
|
||
|
return sprintf (page,
|
||
|
"cps remaining: TX %u, RX %u\n",
|
||
|
dev->tx_avail, dev->rx_avail);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct atmdev_ops hrz_ops = {
|
||
|
.open = hrz_open,
|
||
|
.close = hrz_close,
|
||
|
.send = hrz_send,
|
||
|
.proc_read = hrz_proc_read,
|
||
|
.owner = THIS_MODULE,
|
||
|
};
|
||
|
|
||
|
static int hrz_probe(struct pci_dev *pci_dev,
|
||
|
const struct pci_device_id *pci_ent)
|
||
|
{
|
||
|
hrz_dev * dev;
|
||
|
int err = 0;
|
||
|
|
||
|
// adapter slot free, read resources from PCI configuration space
|
||
|
u32 iobase = pci_resource_start (pci_dev, 0);
|
||
|
u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
|
||
|
unsigned int irq;
|
||
|
unsigned char lat;
|
||
|
|
||
|
PRINTD (DBG_FLOW, "hrz_probe");
|
||
|
|
||
|
if (pci_enable_device(pci_dev))
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* XXX DEV_LABEL is a guess */
|
||
|
if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
|
||
|
err = -EINVAL;
|
||
|
goto out_disable;
|
||
|
}
|
||
|
|
||
|
dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
|
||
|
if (!dev) {
|
||
|
// perhaps we should be nice: deregister all adapters and abort?
|
||
|
PRINTD(DBG_ERR, "out of memory");
|
||
|
err = -ENOMEM;
|
||
|
goto out_release;
|
||
|
}
|
||
|
|
||
|
pci_set_drvdata(pci_dev, dev);
|
||
|
|
||
|
// grab IRQ and install handler - move this someplace more sensible
|
||
|
irq = pci_dev->irq;
|
||
|
if (request_irq(irq,
|
||
|
interrupt_handler,
|
||
|
IRQF_SHARED, /* irqflags guess */
|
||
|
DEV_LABEL, /* name guess */
|
||
|
dev)) {
|
||
|
PRINTD(DBG_WARN, "request IRQ failed!");
|
||
|
err = -EINVAL;
|
||
|
goto out_free;
|
||
|
}
|
||
|
|
||
|
PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
|
||
|
iobase, irq, membase);
|
||
|
|
||
|
dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
|
||
|
NULL);
|
||
|
if (!(dev->atm_dev)) {
|
||
|
PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
|
||
|
err = -EINVAL;
|
||
|
goto out_free_irq;
|
||
|
}
|
||
|
|
||
|
PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
|
||
|
dev->atm_dev->number, dev, dev->atm_dev);
|
||
|
dev->atm_dev->dev_data = (void *) dev;
|
||
|
dev->pci_dev = pci_dev;
|
||
|
|
||
|
// enable bus master accesses
|
||
|
pci_set_master(pci_dev);
|
||
|
|
||
|
// frobnicate latency (upwards, usually)
|
||
|
pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
|
||
|
if (pci_lat) {
|
||
|
PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
|
||
|
"changing", lat, pci_lat);
|
||
|
pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
|
||
|
} else if (lat < MIN_PCI_LATENCY) {
|
||
|
PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
|
||
|
"increasing", lat, MIN_PCI_LATENCY);
|
||
|
pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
|
||
|
}
|
||
|
|
||
|
dev->iobase = iobase;
|
||
|
dev->irq = irq;
|
||
|
dev->membase = membase;
|
||
|
|
||
|
dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
|
||
|
dev->rx_q_wrap = &memmap->rx_q_entries[RX_CHANS-1];
|
||
|
|
||
|
// these next three are performance hacks
|
||
|
dev->last_vc = -1;
|
||
|
dev->tx_last = -1;
|
||
|
dev->tx_idle = 0;
|
||
|
|
||
|
dev->tx_regions = 0;
|
||
|
dev->tx_bytes = 0;
|
||
|
dev->tx_skb = NULL;
|
||
|
dev->tx_iovec = NULL;
|
||
|
|
||
|
dev->tx_cell_count = 0;
|
||
|
dev->rx_cell_count = 0;
|
||
|
dev->hec_error_count = 0;
|
||
|
dev->unassigned_cell_count = 0;
|
||
|
|
||
|
dev->noof_spare_buffers = 0;
|
||
|
|
||
|
{
|
||
|
unsigned int i;
|
||
|
for (i = 0; i < TX_CHANS; ++i)
|
||
|
dev->tx_channel_record[i] = -1;
|
||
|
}
|
||
|
|
||
|
dev->flags = 0;
|
||
|
|
||
|
// Allocate cell rates and remember ASIC version
|
||
|
// Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
|
||
|
// Copper: (WRONG) we want 6 into the above, close to 25Mb/s
|
||
|
// Copper: (plagarise!) 25600000/8/270*260/53 - n/53
|
||
|
|
||
|
if (hrz_init(dev)) {
|
||
|
// to be really pedantic, this should be ATM_OC3c_PCR
|
||
|
dev->tx_avail = ATM_OC3_PCR;
|
||
|
dev->rx_avail = ATM_OC3_PCR;
|
||
|
set_bit(ultra, &dev->flags); // NOT "|= ultra" !
|
||
|
} else {
|
||
|
dev->tx_avail = ((25600000/8)*26)/(27*53);
|
||
|
dev->rx_avail = ((25600000/8)*26)/(27*53);
|
||
|
PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
|
||
|
}
|
||
|
|
||
|
// rate changes spinlock
|
||
|
spin_lock_init(&dev->rate_lock);
|
||
|
|
||
|
// on-board memory access spinlock; we want atomic reads and
|
||
|
// writes to adapter memory (handles IRQ and SMP)
|
||
|
spin_lock_init(&dev->mem_lock);
|
||
|
|
||
|
init_waitqueue_head(&dev->tx_queue);
|
||
|
|
||
|
// vpi in 0..4, vci in 6..10
|
||
|
dev->atm_dev->ci_range.vpi_bits = vpi_bits;
|
||
|
dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
|
||
|
|
||
|
timer_setup(&dev->housekeeping, do_housekeeping, 0);
|
||
|
mod_timer(&dev->housekeeping, jiffies);
|
||
|
|
||
|
out:
|
||
|
return err;
|
||
|
|
||
|
out_free_irq:
|
||
|
free_irq(irq, dev);
|
||
|
out_free:
|
||
|
kfree(dev);
|
||
|
out_release:
|
||
|
release_region(iobase, HRZ_IO_EXTENT);
|
||
|
out_disable:
|
||
|
pci_disable_device(pci_dev);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
static void hrz_remove_one(struct pci_dev *pci_dev)
|
||
|
{
|
||
|
hrz_dev *dev;
|
||
|
|
||
|
dev = pci_get_drvdata(pci_dev);
|
||
|
|
||
|
PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
|
||
|
del_timer_sync(&dev->housekeeping);
|
||
|
hrz_reset(dev);
|
||
|
atm_dev_deregister(dev->atm_dev);
|
||
|
free_irq(dev->irq, dev);
|
||
|
release_region(dev->iobase, HRZ_IO_EXTENT);
|
||
|
kfree(dev);
|
||
|
|
||
|
pci_disable_device(pci_dev);
|
||
|
}
|
||
|
|
||
|
static void __init hrz_check_args (void) {
|
||
|
#ifdef DEBUG_HORIZON
|
||
|
PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
|
||
|
#else
|
||
|
if (debug)
|
||
|
PRINTK (KERN_NOTICE, "no debug support in this image");
|
||
|
#endif
|
||
|
|
||
|
if (vpi_bits > HRZ_MAX_VPI)
|
||
|
PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
|
||
|
vpi_bits = HRZ_MAX_VPI);
|
||
|
|
||
|
if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
|
||
|
PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
|
||
|
max_tx_size = TX_AAL5_LIMIT);
|
||
|
|
||
|
if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
|
||
|
PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
|
||
|
max_rx_size = RX_AAL5_LIMIT);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
MODULE_AUTHOR(maintainer_string);
|
||
|
MODULE_DESCRIPTION(description_string);
|
||
|
MODULE_LICENSE("GPL");
|
||
|
module_param(debug, ushort, 0644);
|
||
|
module_param(vpi_bits, ushort, 0);
|
||
|
module_param(max_tx_size, int, 0);
|
||
|
module_param(max_rx_size, int, 0);
|
||
|
module_param(pci_lat, byte, 0);
|
||
|
MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
|
||
|
MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
|
||
|
MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
|
||
|
MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
|
||
|
MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
|
||
|
|
||
|
static const struct pci_device_id hrz_pci_tbl[] = {
|
||
|
{ PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
|
||
|
0, 0, 0 },
|
||
|
{ 0, }
|
||
|
};
|
||
|
|
||
|
MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
|
||
|
|
||
|
static struct pci_driver hrz_driver = {
|
||
|
.name = "horizon",
|
||
|
.probe = hrz_probe,
|
||
|
.remove = hrz_remove_one,
|
||
|
.id_table = hrz_pci_tbl,
|
||
|
};
|
||
|
|
||
|
/********** module entry **********/
|
||
|
|
||
|
static int __init hrz_module_init (void) {
|
||
|
BUILD_BUG_ON(sizeof(struct MEMMAP) != 128*1024/4);
|
||
|
|
||
|
show_version();
|
||
|
|
||
|
// check arguments
|
||
|
hrz_check_args();
|
||
|
|
||
|
// get the juice
|
||
|
return pci_register_driver(&hrz_driver);
|
||
|
}
|
||
|
|
||
|
/********** module exit **********/
|
||
|
|
||
|
static void __exit hrz_module_exit (void) {
|
||
|
PRINTD (DBG_FLOW, "cleanup_module");
|
||
|
|
||
|
pci_unregister_driver(&hrz_driver);
|
||
|
}
|
||
|
|
||
|
module_init(hrz_module_init);
|
||
|
module_exit(hrz_module_exit);
|