kernel_samsung_a34x-permissive/drivers/gpu/drm/selftests/test-drm_mm.c

2383 lines
53 KiB
C
Raw Normal View History

/*
* Test cases for the drm_mm range manager
*/
#define pr_fmt(fmt) "drm_mm: " fmt
#include <linux/module.h>
#include <linux/prime_numbers.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/vmalloc.h>
#include <drm/drm_mm.h>
#include "../lib/drm_random.h"
#define TESTS "drm_mm_selftests.h"
#include "drm_selftest.h"
static unsigned int random_seed;
static unsigned int max_iterations = 8192;
static unsigned int max_prime = 128;
enum {
BEST,
BOTTOMUP,
TOPDOWN,
EVICT,
};
static const struct insert_mode {
const char *name;
enum drm_mm_insert_mode mode;
} insert_modes[] = {
[BEST] = { "best", DRM_MM_INSERT_BEST },
[BOTTOMUP] = { "bottom-up", DRM_MM_INSERT_LOW },
[TOPDOWN] = { "top-down", DRM_MM_INSERT_HIGH },
[EVICT] = { "evict", DRM_MM_INSERT_EVICT },
{}
}, evict_modes[] = {
{ "bottom-up", DRM_MM_INSERT_LOW },
{ "top-down", DRM_MM_INSERT_HIGH },
{}
};
static int igt_sanitycheck(void *ignored)
{
pr_info("%s - ok!\n", __func__);
return 0;
}
static bool assert_no_holes(const struct drm_mm *mm)
{
struct drm_mm_node *hole;
u64 hole_start, hole_end;
unsigned long count;
count = 0;
drm_mm_for_each_hole(hole, mm, hole_start, hole_end)
count++;
if (count) {
pr_err("Expected to find no holes (after reserve), found %lu instead\n", count);
return false;
}
drm_mm_for_each_node(hole, mm) {
if (drm_mm_hole_follows(hole)) {
pr_err("Hole follows node, expected none!\n");
return false;
}
}
return true;
}
static bool assert_one_hole(const struct drm_mm *mm, u64 start, u64 end)
{
struct drm_mm_node *hole;
u64 hole_start, hole_end;
unsigned long count;
bool ok = true;
if (end <= start)
return true;
count = 0;
drm_mm_for_each_hole(hole, mm, hole_start, hole_end) {
if (start != hole_start || end != hole_end) {
if (ok)
pr_err("empty mm has incorrect hole, found (%llx, %llx), expect (%llx, %llx)\n",
hole_start, hole_end,
start, end);
ok = false;
}
count++;
}
if (count != 1) {
pr_err("Expected to find one hole, found %lu instead\n", count);
ok = false;
}
return ok;
}
static bool assert_continuous(const struct drm_mm *mm, u64 size)
{
struct drm_mm_node *node, *check, *found;
unsigned long n;
u64 addr;
if (!assert_no_holes(mm))
return false;
n = 0;
addr = 0;
drm_mm_for_each_node(node, mm) {
if (node->start != addr) {
pr_err("node[%ld] list out of order, expected %llx found %llx\n",
n, addr, node->start);
return false;
}
if (node->size != size) {
pr_err("node[%ld].size incorrect, expected %llx, found %llx\n",
n, size, node->size);
return false;
}
if (drm_mm_hole_follows(node)) {
pr_err("node[%ld] is followed by a hole!\n", n);
return false;
}
found = NULL;
drm_mm_for_each_node_in_range(check, mm, addr, addr + size) {
if (node != check) {
pr_err("lookup return wrong node, expected start %llx, found %llx\n",
node->start, check->start);
return false;
}
found = check;
}
if (!found) {
pr_err("lookup failed for node %llx + %llx\n",
addr, size);
return false;
}
addr += size;
n++;
}
return true;
}
static u64 misalignment(struct drm_mm_node *node, u64 alignment)
{
u64 rem;
if (!alignment)
return 0;
div64_u64_rem(node->start, alignment, &rem);
return rem;
}
static bool assert_node(struct drm_mm_node *node, struct drm_mm *mm,
u64 size, u64 alignment, unsigned long color)
{
bool ok = true;
if (!drm_mm_node_allocated(node) || node->mm != mm) {
pr_err("node not allocated\n");
ok = false;
}
if (node->size != size) {
pr_err("node has wrong size, found %llu, expected %llu\n",
node->size, size);
ok = false;
}
if (misalignment(node, alignment)) {
pr_err("node is misaligned, start %llx rem %llu, expected alignment %llu\n",
node->start, misalignment(node, alignment), alignment);
ok = false;
}
if (node->color != color) {
pr_err("node has wrong color, found %lu, expected %lu\n",
node->color, color);
ok = false;
}
return ok;
}
#define show_mm(mm) do { \
struct drm_printer __p = drm_debug_printer(__func__); \
drm_mm_print((mm), &__p); } while (0)
static int igt_init(void *ignored)
{
const unsigned int size = 4096;
struct drm_mm mm;
struct drm_mm_node tmp;
int ret = -EINVAL;
/* Start with some simple checks on initialising the struct drm_mm */
memset(&mm, 0, sizeof(mm));
if (drm_mm_initialized(&mm)) {
pr_err("zeroed mm claims to be initialized\n");
return ret;
}
memset(&mm, 0xff, sizeof(mm));
drm_mm_init(&mm, 0, size);
if (!drm_mm_initialized(&mm)) {
pr_err("mm claims not to be initialized\n");
goto out;
}
if (!drm_mm_clean(&mm)) {
pr_err("mm not empty on creation\n");
goto out;
}
/* After creation, it should all be one massive hole */
if (!assert_one_hole(&mm, 0, size)) {
ret = -EINVAL;
goto out;
}
memset(&tmp, 0, sizeof(tmp));
tmp.start = 0;
tmp.size = size;
ret = drm_mm_reserve_node(&mm, &tmp);
if (ret) {
pr_err("failed to reserve whole drm_mm\n");
goto out;
}
/* After filling the range entirely, there should be no holes */
if (!assert_no_holes(&mm)) {
ret = -EINVAL;
goto out;
}
/* And then after emptying it again, the massive hole should be back */
drm_mm_remove_node(&tmp);
if (!assert_one_hole(&mm, 0, size)) {
ret = -EINVAL;
goto out;
}
out:
if (ret)
show_mm(&mm);
drm_mm_takedown(&mm);
return ret;
}
static int igt_debug(void *ignored)
{
struct drm_mm mm;
struct drm_mm_node nodes[2];
int ret;
/* Create a small drm_mm with a couple of nodes and a few holes, and
* check that the debug iterator doesn't explode over a trivial drm_mm.
*/
drm_mm_init(&mm, 0, 4096);
memset(nodes, 0, sizeof(nodes));
nodes[0].start = 512;
nodes[0].size = 1024;
ret = drm_mm_reserve_node(&mm, &nodes[0]);
if (ret) {
pr_err("failed to reserve node[0] {start=%lld, size=%lld)\n",
nodes[0].start, nodes[0].size);
return ret;
}
nodes[1].size = 1024;
nodes[1].start = 4096 - 512 - nodes[1].size;
ret = drm_mm_reserve_node(&mm, &nodes[1]);
if (ret) {
pr_err("failed to reserve node[1] {start=%lld, size=%lld)\n",
nodes[1].start, nodes[1].size);
return ret;
}
show_mm(&mm);
return 0;
}
static struct drm_mm_node *set_node(struct drm_mm_node *node,
u64 start, u64 size)
{
node->start = start;
node->size = size;
return node;
}
static bool expect_reserve_fail(struct drm_mm *mm, struct drm_mm_node *node)
{
int err;
err = drm_mm_reserve_node(mm, node);
if (likely(err == -ENOSPC))
return true;
if (!err) {
pr_err("impossible reserve succeeded, node %llu + %llu\n",
node->start, node->size);
drm_mm_remove_node(node);
} else {
pr_err("impossible reserve failed with wrong error %d [expected %d], node %llu + %llu\n",
err, -ENOSPC, node->start, node->size);
}
return false;
}
static bool check_reserve_boundaries(struct drm_mm *mm,
unsigned int count,
u64 size)
{
const struct boundary {
u64 start, size;
const char *name;
} boundaries[] = {
#define B(st, sz) { (st), (sz), "{ " #st ", " #sz "}" }
B(0, 0),
B(-size, 0),
B(size, 0),
B(size * count, 0),
B(-size, size),
B(-size, -size),
B(-size, 2*size),
B(0, -size),
B(size, -size),
B(count*size, size),
B(count*size, -size),
B(count*size, count*size),
B(count*size, -count*size),
B(count*size, -(count+1)*size),
B((count+1)*size, size),
B((count+1)*size, -size),
B((count+1)*size, -2*size),
#undef B
};
struct drm_mm_node tmp = {};
int n;
for (n = 0; n < ARRAY_SIZE(boundaries); n++) {
if (!expect_reserve_fail(mm,
set_node(&tmp,
boundaries[n].start,
boundaries[n].size))) {
pr_err("boundary[%d:%s] failed, count=%u, size=%lld\n",
n, boundaries[n].name, count, size);
return false;
}
}
return true;
}
static int __igt_reserve(unsigned int count, u64 size)
{
DRM_RND_STATE(prng, random_seed);
struct drm_mm mm;
struct drm_mm_node tmp, *nodes, *node, *next;
unsigned int *order, n, m, o = 0;
int ret, err;
/* For exercising drm_mm_reserve_node(), we want to check that
* reservations outside of the drm_mm range are rejected, and to
* overlapping and otherwise already occupied ranges. Afterwards,
* the tree and nodes should be intact.
*/
DRM_MM_BUG_ON(!count);
DRM_MM_BUG_ON(!size);
ret = -ENOMEM;
order = drm_random_order(count, &prng);
if (!order)
goto err;
nodes = vzalloc(array_size(count, sizeof(*nodes)));
if (!nodes)
goto err_order;
ret = -EINVAL;
drm_mm_init(&mm, 0, count * size);
if (!check_reserve_boundaries(&mm, count, size))
goto out;
for (n = 0; n < count; n++) {
nodes[n].start = order[n] * size;
nodes[n].size = size;
err = drm_mm_reserve_node(&mm, &nodes[n]);
if (err) {
pr_err("reserve failed, step %d, start %llu\n",
n, nodes[n].start);
ret = err;
goto out;
}
if (!drm_mm_node_allocated(&nodes[n])) {
pr_err("reserved node not allocated! step %d, start %llu\n",
n, nodes[n].start);
goto out;
}
if (!expect_reserve_fail(&mm, &nodes[n]))
goto out;
}
/* After random insertion the nodes should be in order */
if (!assert_continuous(&mm, size))
goto out;
/* Repeated use should then fail */
drm_random_reorder(order, count, &prng);
for (n = 0; n < count; n++) {
if (!expect_reserve_fail(&mm,
set_node(&tmp, order[n] * size, 1)))
goto out;
/* Remove and reinsert should work */
drm_mm_remove_node(&nodes[order[n]]);
err = drm_mm_reserve_node(&mm, &nodes[order[n]]);
if (err) {
pr_err("reserve failed, step %d, start %llu\n",
n, nodes[n].start);
ret = err;
goto out;
}
}
if (!assert_continuous(&mm, size))
goto out;
/* Overlapping use should then fail */
for (n = 0; n < count; n++) {
if (!expect_reserve_fail(&mm, set_node(&tmp, 0, size*count)))
goto out;
}
for (n = 0; n < count; n++) {
if (!expect_reserve_fail(&mm,
set_node(&tmp,
size * n,
size * (count - n))))
goto out;
}
/* Remove several, reinsert, check full */
for_each_prime_number(n, min(max_prime, count)) {
for (m = 0; m < n; m++) {
node = &nodes[order[(o + m) % count]];
drm_mm_remove_node(node);
}
for (m = 0; m < n; m++) {
node = &nodes[order[(o + m) % count]];
err = drm_mm_reserve_node(&mm, node);
if (err) {
pr_err("reserve failed, step %d/%d, start %llu\n",
m, n, node->start);
ret = err;
goto out;
}
}
o += n;
if (!assert_continuous(&mm, size))
goto out;
}
ret = 0;
out:
drm_mm_for_each_node_safe(node, next, &mm)
drm_mm_remove_node(node);
drm_mm_takedown(&mm);
vfree(nodes);
err_order:
kfree(order);
err:
return ret;
}
static int igt_reserve(void *ignored)
{
const unsigned int count = min_t(unsigned int, BIT(10), max_iterations);
int n, ret;
for_each_prime_number_from(n, 1, 54) {
u64 size = BIT_ULL(n);
ret = __igt_reserve(count, size - 1);
if (ret)
return ret;
ret = __igt_reserve(count, size);
if (ret)
return ret;
ret = __igt_reserve(count, size + 1);
if (ret)
return ret;
cond_resched();
}
return 0;
}
static bool expect_insert(struct drm_mm *mm, struct drm_mm_node *node,
u64 size, u64 alignment, unsigned long color,
const struct insert_mode *mode)
{
int err;
err = drm_mm_insert_node_generic(mm, node,
size, alignment, color,
mode->mode);
if (err) {
pr_err("insert (size=%llu, alignment=%llu, color=%lu, mode=%s) failed with err=%d\n",
size, alignment, color, mode->name, err);
return false;
}
if (!assert_node(node, mm, size, alignment, color)) {
drm_mm_remove_node(node);
return false;
}
return true;
}
static bool expect_insert_fail(struct drm_mm *mm, u64 size)
{
struct drm_mm_node tmp = {};
int err;
err = drm_mm_insert_node(mm, &tmp, size);
if (likely(err == -ENOSPC))
return true;
if (!err) {
pr_err("impossible insert succeeded, node %llu + %llu\n",
tmp.start, tmp.size);
drm_mm_remove_node(&tmp);
} else {
pr_err("impossible insert failed with wrong error %d [expected %d], size %llu\n",
err, -ENOSPC, size);
}
return false;
}
static int __igt_insert(unsigned int count, u64 size, bool replace)
{
DRM_RND_STATE(prng, random_seed);
const struct insert_mode *mode;
struct drm_mm mm;
struct drm_mm_node *nodes, *node, *next;
unsigned int *order, n, m, o = 0;
int ret;
/* Fill a range with lots of nodes, check it doesn't fail too early */
DRM_MM_BUG_ON(!count);
DRM_MM_BUG_ON(!size);
ret = -ENOMEM;
nodes = vmalloc(array_size(count, sizeof(*nodes)));
if (!nodes)
goto err;
order = drm_random_order(count, &prng);
if (!order)
goto err_nodes;
ret = -EINVAL;
drm_mm_init(&mm, 0, count * size);
for (mode = insert_modes; mode->name; mode++) {
for (n = 0; n < count; n++) {
struct drm_mm_node tmp;
node = replace ? &tmp : &nodes[n];
memset(node, 0, sizeof(*node));
if (!expect_insert(&mm, node, size, 0, n, mode)) {
pr_err("%s insert failed, size %llu step %d\n",
mode->name, size, n);
goto out;
}
if (replace) {
drm_mm_replace_node(&tmp, &nodes[n]);
if (drm_mm_node_allocated(&tmp)) {
pr_err("replaced old-node still allocated! step %d\n",
n);
goto out;
}
if (!assert_node(&nodes[n], &mm, size, 0, n)) {
pr_err("replaced node did not inherit parameters, size %llu step %d\n",
size, n);
goto out;
}
if (tmp.start != nodes[n].start) {
pr_err("replaced node mismatch location expected [%llx + %llx], found [%llx + %llx]\n",
tmp.start, size,
nodes[n].start, nodes[n].size);
goto out;
}
}
}
/* After random insertion the nodes should be in order */
if (!assert_continuous(&mm, size))
goto out;
/* Repeated use should then fail */
if (!expect_insert_fail(&mm, size))
goto out;
/* Remove one and reinsert, as the only hole it should refill itself */
for (n = 0; n < count; n++) {
u64 addr = nodes[n].start;
drm_mm_remove_node(&nodes[n]);
if (!expect_insert(&mm, &nodes[n], size, 0, n, mode)) {
pr_err("%s reinsert failed, size %llu step %d\n",
mode->name, size, n);
goto out;
}
if (nodes[n].start != addr) {
pr_err("%s reinsert node moved, step %d, expected %llx, found %llx\n",
mode->name, n, addr, nodes[n].start);
goto out;
}
if (!assert_continuous(&mm, size))
goto out;
}
/* Remove several, reinsert, check full */
for_each_prime_number(n, min(max_prime, count)) {
for (m = 0; m < n; m++) {
node = &nodes[order[(o + m) % count]];
drm_mm_remove_node(node);
}
for (m = 0; m < n; m++) {
node = &nodes[order[(o + m) % count]];
if (!expect_insert(&mm, node, size, 0, n, mode)) {
pr_err("%s multiple reinsert failed, size %llu step %d\n",
mode->name, size, n);
goto out;
}
}
o += n;
if (!assert_continuous(&mm, size))
goto out;
if (!expect_insert_fail(&mm, size))
goto out;
}
drm_mm_for_each_node_safe(node, next, &mm)
drm_mm_remove_node(node);
DRM_MM_BUG_ON(!drm_mm_clean(&mm));
cond_resched();
}
ret = 0;
out:
drm_mm_for_each_node_safe(node, next, &mm)
drm_mm_remove_node(node);
drm_mm_takedown(&mm);
kfree(order);
err_nodes:
vfree(nodes);
err:
return ret;
}
static int igt_insert(void *ignored)
{
const unsigned int count = min_t(unsigned int, BIT(10), max_iterations);
unsigned int n;
int ret;
for_each_prime_number_from(n, 1, 54) {
u64 size = BIT_ULL(n);
ret = __igt_insert(count, size - 1, false);
if (ret)
return ret;
ret = __igt_insert(count, size, false);
if (ret)
return ret;
ret = __igt_insert(count, size + 1, false);
if (ret)
return ret;
cond_resched();
}
return 0;
}
static int igt_replace(void *ignored)
{
const unsigned int count = min_t(unsigned int, BIT(10), max_iterations);
unsigned int n;
int ret;
/* Reuse igt_insert to exercise replacement by inserting a dummy node,
* then replacing it with the intended node. We want to check that
* the tree is intact and all the information we need is carried
* across to the target node.
*/
for_each_prime_number_from(n, 1, 54) {
u64 size = BIT_ULL(n);
ret = __igt_insert(count, size - 1, true);
if (ret)
return ret;
ret = __igt_insert(count, size, true);
if (ret)
return ret;
ret = __igt_insert(count, size + 1, true);
if (ret)
return ret;
cond_resched();
}
return 0;
}
static bool expect_insert_in_range(struct drm_mm *mm, struct drm_mm_node *node,
u64 size, u64 alignment, unsigned long color,
u64 range_start, u64 range_end,
const struct insert_mode *mode)
{
int err;
err = drm_mm_insert_node_in_range(mm, node,
size, alignment, color,
range_start, range_end,
mode->mode);
if (err) {
pr_err("insert (size=%llu, alignment=%llu, color=%lu, mode=%s) nto range [%llx, %llx] failed with err=%d\n",
size, alignment, color, mode->name,
range_start, range_end, err);
return false;
}
if (!assert_node(node, mm, size, alignment, color)) {
drm_mm_remove_node(node);
return false;
}
return true;
}
static bool expect_insert_in_range_fail(struct drm_mm *mm,
u64 size,
u64 range_start,
u64 range_end)
{
struct drm_mm_node tmp = {};
int err;
err = drm_mm_insert_node_in_range(mm, &tmp,
size, 0, 0,
range_start, range_end,
0);
if (likely(err == -ENOSPC))
return true;
if (!err) {
pr_err("impossible insert succeeded, node %llx + %llu, range [%llx, %llx]\n",
tmp.start, tmp.size, range_start, range_end);
drm_mm_remove_node(&tmp);
} else {
pr_err("impossible insert failed with wrong error %d [expected %d], size %llu, range [%llx, %llx]\n",
err, -ENOSPC, size, range_start, range_end);
}
return false;
}
static bool assert_contiguous_in_range(struct drm_mm *mm,
u64 size,
u64 start,
u64 end)
{
struct drm_mm_node *node;
unsigned int n;
if (!expect_insert_in_range_fail(mm, size, start, end))
return false;
n = div64_u64(start + size - 1, size);
drm_mm_for_each_node(node, mm) {
if (node->start < start || node->start + node->size > end) {
pr_err("node %d out of range, address [%llx + %llu], range [%llx, %llx]\n",
n, node->start, node->start + node->size, start, end);
return false;
}
if (node->start != n * size) {
pr_err("node %d out of order, expected start %llx, found %llx\n",
n, n * size, node->start);
return false;
}
if (node->size != size) {
pr_err("node %d has wrong size, expected size %llx, found %llx\n",
n, size, node->size);
return false;
}
if (drm_mm_hole_follows(node) &&
drm_mm_hole_node_end(node) < end) {
pr_err("node %d is followed by a hole!\n", n);
return false;
}
n++;
}
if (start > 0) {
node = __drm_mm_interval_first(mm, 0, start - 1);
if (node->allocated) {
pr_err("node before start: node=%llx+%llu, start=%llx\n",
node->start, node->size, start);
return false;
}
}
if (end < U64_MAX) {
node = __drm_mm_interval_first(mm, end, U64_MAX);
if (node->allocated) {
pr_err("node after end: node=%llx+%llu, end=%llx\n",
node->start, node->size, end);
return false;
}
}
return true;
}
static int __igt_insert_range(unsigned int count, u64 size, u64 start, u64 end)
{
const struct insert_mode *mode;
struct drm_mm mm;
struct drm_mm_node *nodes, *node, *next;
unsigned int n, start_n, end_n;
int ret;
DRM_MM_BUG_ON(!count);
DRM_MM_BUG_ON(!size);
DRM_MM_BUG_ON(end <= start);
/* Very similar to __igt_insert(), but now instead of populating the
* full range of the drm_mm, we try to fill a small portion of it.
*/
ret = -ENOMEM;
nodes = vzalloc(array_size(count, sizeof(*nodes)));
if (!nodes)
goto err;
ret = -EINVAL;
drm_mm_init(&mm, 0, count * size);
start_n = div64_u64(start + size - 1, size);
end_n = div64_u64(end - size, size);
for (mode = insert_modes; mode->name; mode++) {
for (n = start_n; n <= end_n; n++) {
if (!expect_insert_in_range(&mm, &nodes[n],
size, size, n,
start, end, mode)) {
pr_err("%s insert failed, size %llu, step %d [%d, %d], range [%llx, %llx]\n",
mode->name, size, n,
start_n, end_n,
start, end);
goto out;
}
}
if (!assert_contiguous_in_range(&mm, size, start, end)) {
pr_err("%s: range [%llx, %llx] not full after initialisation, size=%llu\n",
mode->name, start, end, size);
goto out;
}
/* Remove one and reinsert, it should refill itself */
for (n = start_n; n <= end_n; n++) {
u64 addr = nodes[n].start;
drm_mm_remove_node(&nodes[n]);
if (!expect_insert_in_range(&mm, &nodes[n],
size, size, n,
start, end, mode)) {
pr_err("%s reinsert failed, step %d\n", mode->name, n);
goto out;
}
if (nodes[n].start != addr) {
pr_err("%s reinsert node moved, step %d, expected %llx, found %llx\n",
mode->name, n, addr, nodes[n].start);
goto out;
}
}
if (!assert_contiguous_in_range(&mm, size, start, end)) {
pr_err("%s: range [%llx, %llx] not full after reinsertion, size=%llu\n",
mode->name, start, end, size);
goto out;
}
drm_mm_for_each_node_safe(node, next, &mm)
drm_mm_remove_node(node);
DRM_MM_BUG_ON(!drm_mm_clean(&mm));
cond_resched();
}
ret = 0;
out:
drm_mm_for_each_node_safe(node, next, &mm)
drm_mm_remove_node(node);
drm_mm_takedown(&mm);
vfree(nodes);
err:
return ret;
}
static int insert_outside_range(void)
{
struct drm_mm mm;
const unsigned int start = 1024;
const unsigned int end = 2048;
const unsigned int size = end - start;
drm_mm_init(&mm, start, size);
if (!expect_insert_in_range_fail(&mm, 1, 0, start))
return -EINVAL;
if (!expect_insert_in_range_fail(&mm, size,
start - size/2, start + (size+1)/2))
return -EINVAL;
if (!expect_insert_in_range_fail(&mm, size,
end - (size+1)/2, end + size/2))
return -EINVAL;
if (!expect_insert_in_range_fail(&mm, 1, end, end + size))
return -EINVAL;
drm_mm_takedown(&mm);
return 0;
}
static int igt_insert_range(void *ignored)
{
const unsigned int count = min_t(unsigned int, BIT(13), max_iterations);
unsigned int n;
int ret;
/* Check that requests outside the bounds of drm_mm are rejected. */
ret = insert_outside_range();
if (ret)
return ret;
for_each_prime_number_from(n, 1, 50) {
const u64 size = BIT_ULL(n);
const u64 max = count * size;
ret = __igt_insert_range(count, size, 0, max);
if (ret)
return ret;
ret = __igt_insert_range(count, size, 1, max);
if (ret)
return ret;
ret = __igt_insert_range(count, size, 0, max - 1);
if (ret)
return ret;
ret = __igt_insert_range(count, size, 0, max/2);
if (ret)
return ret;
ret = __igt_insert_range(count, size, max/2, max);
if (ret)
return ret;
ret = __igt_insert_range(count, size, max/4+1, 3*max/4-1);
if (ret)
return ret;
cond_resched();
}
return 0;
}
static int igt_align(void *ignored)
{
const struct insert_mode *mode;
const unsigned int max_count = min(8192u, max_prime);
struct drm_mm mm;
struct drm_mm_node *nodes, *node, *next;
unsigned int prime;
int ret = -EINVAL;
/* For each of the possible insertion modes, we pick a few
* arbitrary alignments and check that the inserted node
* meets our requirements.
*/
nodes = vzalloc(array_size(max_count, sizeof(*nodes)));
if (!nodes)
goto err;
drm_mm_init(&mm, 1, U64_MAX - 2);
for (mode = insert_modes; mode->name; mode++) {
unsigned int i = 0;
for_each_prime_number_from(prime, 1, max_count) {
u64 size = next_prime_number(prime);
if (!expect_insert(&mm, &nodes[i],
size, prime, i,
mode)) {
pr_err("%s insert failed with alignment=%d",
mode->name, prime);
goto out;
}
i++;
}
drm_mm_for_each_node_safe(node, next, &mm)
drm_mm_remove_node(node);
DRM_MM_BUG_ON(!drm_mm_clean(&mm));
cond_resched();
}
ret = 0;
out:
drm_mm_for_each_node_safe(node, next, &mm)
drm_mm_remove_node(node);
drm_mm_takedown(&mm);
vfree(nodes);
err:
return ret;
}
static int igt_align_pot(int max)
{
struct drm_mm mm;
struct drm_mm_node *node, *next;
int bit;
int ret = -EINVAL;
/* Check that we can align to the full u64 address space */
drm_mm_init(&mm, 1, U64_MAX - 2);
for (bit = max - 1; bit; bit--) {
u64 align, size;
node = kzalloc(sizeof(*node), GFP_KERNEL);
if (!node) {
ret = -ENOMEM;
goto out;
}
align = BIT_ULL(bit);
size = BIT_ULL(bit-1) + 1;
if (!expect_insert(&mm, node,
size, align, bit,
&insert_modes[0])) {
pr_err("insert failed with alignment=%llx [%d]",
align, bit);
goto out;
}
cond_resched();
}
ret = 0;
out:
drm_mm_for_each_node_safe(node, next, &mm) {
drm_mm_remove_node(node);
kfree(node);
}
drm_mm_takedown(&mm);
return ret;
}
static int igt_align32(void *ignored)
{
return igt_align_pot(32);
}
static int igt_align64(void *ignored)
{
return igt_align_pot(64);
}
static void show_scan(const struct drm_mm_scan *scan)
{
pr_info("scan: hit [%llx, %llx], size=%lld, align=%lld, color=%ld\n",
scan->hit_start, scan->hit_end,
scan->size, scan->alignment, scan->color);
}
static void show_holes(const struct drm_mm *mm, int count)
{
u64 hole_start, hole_end;
struct drm_mm_node *hole;
drm_mm_for_each_hole(hole, mm, hole_start, hole_end) {
struct drm_mm_node *next = list_next_entry(hole, node_list);
const char *node1 = NULL, *node2 = NULL;
if (hole->allocated)
node1 = kasprintf(GFP_KERNEL,
"[%llx + %lld, color=%ld], ",
hole->start, hole->size, hole->color);
if (next->allocated)
node2 = kasprintf(GFP_KERNEL,
", [%llx + %lld, color=%ld]",
next->start, next->size, next->color);
pr_info("%sHole [%llx - %llx, size %lld]%s\n",
node1,
hole_start, hole_end, hole_end - hole_start,
node2);
kfree(node2);
kfree(node1);
if (!--count)
break;
}
}
struct evict_node {
struct drm_mm_node node;
struct list_head link;
};
static bool evict_nodes(struct drm_mm_scan *scan,
struct evict_node *nodes,
unsigned int *order,
unsigned int count,
bool use_color,
struct list_head *evict_list)
{
struct evict_node *e, *en;
unsigned int i;
for (i = 0; i < count; i++) {
e = &nodes[order ? order[i] : i];
list_add(&e->link, evict_list);
if (drm_mm_scan_add_block(scan, &e->node))
break;
}
list_for_each_entry_safe(e, en, evict_list, link) {
if (!drm_mm_scan_remove_block(scan, &e->node))
list_del(&e->link);
}
if (list_empty(evict_list)) {
pr_err("Failed to find eviction: size=%lld [avail=%d], align=%lld (color=%lu)\n",
scan->size, count, scan->alignment, scan->color);
return false;
}
list_for_each_entry(e, evict_list, link)
drm_mm_remove_node(&e->node);
if (use_color) {
struct drm_mm_node *node;
while ((node = drm_mm_scan_color_evict(scan))) {
e = container_of(node, typeof(*e), node);
drm_mm_remove_node(&e->node);
list_add(&e->link, evict_list);
}
} else {
if (drm_mm_scan_color_evict(scan)) {
pr_err("drm_mm_scan_color_evict unexpectedly reported overlapping nodes!\n");
return false;
}
}
return true;
}
static bool evict_nothing(struct drm_mm *mm,
unsigned int total_size,
struct evict_node *nodes)
{
struct drm_mm_scan scan;
LIST_HEAD(evict_list);
struct evict_node *e;
struct drm_mm_node *node;
unsigned int n;
drm_mm_scan_init(&scan, mm, 1, 0, 0, 0);
for (n = 0; n < total_size; n++) {
e = &nodes[n];
list_add(&e->link, &evict_list);
drm_mm_scan_add_block(&scan, &e->node);
}
list_for_each_entry(e, &evict_list, link)
drm_mm_scan_remove_block(&scan, &e->node);
for (n = 0; n < total_size; n++) {
e = &nodes[n];
if (!drm_mm_node_allocated(&e->node)) {
pr_err("node[%d] no longer allocated!\n", n);
return false;
}
e->link.next = NULL;
}
drm_mm_for_each_node(node, mm) {
e = container_of(node, typeof(*e), node);
e->link.next = &e->link;
}
for (n = 0; n < total_size; n++) {
e = &nodes[n];
if (!e->link.next) {
pr_err("node[%d] no longer connected!\n", n);
return false;
}
}
return assert_continuous(mm, nodes[0].node.size);
}
static bool evict_everything(struct drm_mm *mm,
unsigned int total_size,
struct evict_node *nodes)
{
struct drm_mm_scan scan;
LIST_HEAD(evict_list);
struct evict_node *e;
unsigned int n;
int err;
drm_mm_scan_init(&scan, mm, total_size, 0, 0, 0);
for (n = 0; n < total_size; n++) {
e = &nodes[n];
list_add(&e->link, &evict_list);
if (drm_mm_scan_add_block(&scan, &e->node))
break;
}
err = 0;
list_for_each_entry(e, &evict_list, link) {
if (!drm_mm_scan_remove_block(&scan, &e->node)) {
if (!err) {
pr_err("Node %lld not marked for eviction!\n",
e->node.start);
err = -EINVAL;
}
}
}
if (err)
return false;
list_for_each_entry(e, &evict_list, link)
drm_mm_remove_node(&e->node);
if (!assert_one_hole(mm, 0, total_size))
return false;
list_for_each_entry(e, &evict_list, link) {
err = drm_mm_reserve_node(mm, &e->node);
if (err) {
pr_err("Failed to reinsert node after eviction: start=%llx\n",
e->node.start);
return false;
}
}
return assert_continuous(mm, nodes[0].node.size);
}
static int evict_something(struct drm_mm *mm,
u64 range_start, u64 range_end,
struct evict_node *nodes,
unsigned int *order,
unsigned int count,
unsigned int size,
unsigned int alignment,
const struct insert_mode *mode)
{
struct drm_mm_scan scan;
LIST_HEAD(evict_list);
struct evict_node *e;
struct drm_mm_node tmp;
int err;
drm_mm_scan_init_with_range(&scan, mm,
size, alignment, 0,
range_start, range_end,
mode->mode);
if (!evict_nodes(&scan,
nodes, order, count, false,
&evict_list))
return -EINVAL;
memset(&tmp, 0, sizeof(tmp));
err = drm_mm_insert_node_generic(mm, &tmp, size, alignment, 0,
DRM_MM_INSERT_EVICT);
if (err) {
pr_err("Failed to insert into eviction hole: size=%d, align=%d\n",
size, alignment);
show_scan(&scan);
show_holes(mm, 3);
return err;
}
if (tmp.start < range_start || tmp.start + tmp.size > range_end) {
pr_err("Inserted [address=%llu + %llu] did not fit into the request range [%llu, %llu]\n",
tmp.start, tmp.size, range_start, range_end);
err = -EINVAL;
}
if (!assert_node(&tmp, mm, size, alignment, 0) ||
drm_mm_hole_follows(&tmp)) {
pr_err("Inserted did not fill the eviction hole: size=%lld [%d], align=%d [rem=%lld], start=%llx, hole-follows?=%d\n",
tmp.size, size,
alignment, misalignment(&tmp, alignment),
tmp.start, drm_mm_hole_follows(&tmp));
err = -EINVAL;
}
drm_mm_remove_node(&tmp);
if (err)
return err;
list_for_each_entry(e, &evict_list, link) {
err = drm_mm_reserve_node(mm, &e->node);
if (err) {
pr_err("Failed to reinsert node after eviction: start=%llx\n",
e->node.start);
return err;
}
}
if (!assert_continuous(mm, nodes[0].node.size)) {
pr_err("range is no longer continuous\n");
return -EINVAL;
}
return 0;
}
static int igt_evict(void *ignored)
{
DRM_RND_STATE(prng, random_seed);
const unsigned int size = 8192;
const struct insert_mode *mode;
struct drm_mm mm;
struct evict_node *nodes;
struct drm_mm_node *node, *next;
unsigned int *order, n;
int ret, err;
/* Here we populate a full drm_mm and then try and insert a new node
* by evicting other nodes in a random order. The drm_mm_scan should
* pick the first matching hole it finds from the random list. We
* repeat that for different allocation strategies, alignments and
* sizes to try and stress the hole finder.
*/
ret = -ENOMEM;
nodes = vzalloc(array_size(size, sizeof(*nodes)));
if (!nodes)
goto err;
order = drm_random_order(size, &prng);
if (!order)
goto err_nodes;
ret = -EINVAL;
drm_mm_init(&mm, 0, size);
for (n = 0; n < size; n++) {
err = drm_mm_insert_node(&mm, &nodes[n].node, 1);
if (err) {
pr_err("insert failed, step %d\n", n);
ret = err;
goto out;
}
}
/* First check that using the scanner doesn't break the mm */
if (!evict_nothing(&mm, size, nodes)) {
pr_err("evict_nothing() failed\n");
goto out;
}
if (!evict_everything(&mm, size, nodes)) {
pr_err("evict_everything() failed\n");
goto out;
}
for (mode = evict_modes; mode->name; mode++) {
for (n = 1; n <= size; n <<= 1) {
drm_random_reorder(order, size, &prng);
err = evict_something(&mm, 0, U64_MAX,
nodes, order, size,
n, 1,
mode);
if (err) {
pr_err("%s evict_something(size=%u) failed\n",
mode->name, n);
ret = err;
goto out;
}
}
for (n = 1; n < size; n <<= 1) {
drm_random_reorder(order, size, &prng);
err = evict_something(&mm, 0, U64_MAX,
nodes, order, size,
size/2, n,
mode);
if (err) {
pr_err("%s evict_something(size=%u, alignment=%u) failed\n",
mode->name, size/2, n);
ret = err;
goto out;
}
}
for_each_prime_number_from(n, 1, min(size, max_prime)) {
unsigned int nsize = (size - n + 1) / 2;
DRM_MM_BUG_ON(!nsize);
drm_random_reorder(order, size, &prng);
err = evict_something(&mm, 0, U64_MAX,
nodes, order, size,
nsize, n,
mode);
if (err) {
pr_err("%s evict_something(size=%u, alignment=%u) failed\n",
mode->name, nsize, n);
ret = err;
goto out;
}
}
cond_resched();
}
ret = 0;
out:
drm_mm_for_each_node_safe(node, next, &mm)
drm_mm_remove_node(node);
drm_mm_takedown(&mm);
kfree(order);
err_nodes:
vfree(nodes);
err:
return ret;
}
static int igt_evict_range(void *ignored)
{
DRM_RND_STATE(prng, random_seed);
const unsigned int size = 8192;
const unsigned int range_size = size / 2;
const unsigned int range_start = size / 4;
const unsigned int range_end = range_start + range_size;
const struct insert_mode *mode;
struct drm_mm mm;
struct evict_node *nodes;
struct drm_mm_node *node, *next;
unsigned int *order, n;
int ret, err;
/* Like igt_evict() but now we are limiting the search to a
* small portion of the full drm_mm.
*/
ret = -ENOMEM;
nodes = vzalloc(array_size(size, sizeof(*nodes)));
if (!nodes)
goto err;
order = drm_random_order(size, &prng);
if (!order)
goto err_nodes;
ret = -EINVAL;
drm_mm_init(&mm, 0, size);
for (n = 0; n < size; n++) {
err = drm_mm_insert_node(&mm, &nodes[n].node, 1);
if (err) {
pr_err("insert failed, step %d\n", n);
ret = err;
goto out;
}
}
for (mode = evict_modes; mode->name; mode++) {
for (n = 1; n <= range_size; n <<= 1) {
drm_random_reorder(order, size, &prng);
err = evict_something(&mm, range_start, range_end,
nodes, order, size,
n, 1,
mode);
if (err) {
pr_err("%s evict_something(size=%u) failed with range [%u, %u]\n",
mode->name, n, range_start, range_end);
goto out;
}
}
for (n = 1; n <= range_size; n <<= 1) {
drm_random_reorder(order, size, &prng);
err = evict_something(&mm, range_start, range_end,
nodes, order, size,
range_size/2, n,
mode);
if (err) {
pr_err("%s evict_something(size=%u, alignment=%u) failed with range [%u, %u]\n",
mode->name, range_size/2, n, range_start, range_end);
goto out;
}
}
for_each_prime_number_from(n, 1, min(range_size, max_prime)) {
unsigned int nsize = (range_size - n + 1) / 2;
DRM_MM_BUG_ON(!nsize);
drm_random_reorder(order, size, &prng);
err = evict_something(&mm, range_start, range_end,
nodes, order, size,
nsize, n,
mode);
if (err) {
pr_err("%s evict_something(size=%u, alignment=%u) failed with range [%u, %u]\n",
mode->name, nsize, n, range_start, range_end);
goto out;
}
}
cond_resched();
}
ret = 0;
out:
drm_mm_for_each_node_safe(node, next, &mm)
drm_mm_remove_node(node);
drm_mm_takedown(&mm);
kfree(order);
err_nodes:
vfree(nodes);
err:
return ret;
}
static unsigned int node_index(const struct drm_mm_node *node)
{
return div64_u64(node->start, node->size);
}
static int igt_topdown(void *ignored)
{
const struct insert_mode *topdown = &insert_modes[TOPDOWN];
DRM_RND_STATE(prng, random_seed);
const unsigned int count = 8192;
unsigned int size;
unsigned long *bitmap = NULL;
struct drm_mm mm;
struct drm_mm_node *nodes, *node, *next;
unsigned int *order, n, m, o = 0;
int ret;
/* When allocating top-down, we expect to be returned a node
* from a suitable hole at the top of the drm_mm. We check that
* the returned node does match the highest available slot.
*/
ret = -ENOMEM;
nodes = vzalloc(array_size(count, sizeof(*nodes)));
if (!nodes)
goto err;
bitmap = kcalloc(count / BITS_PER_LONG, sizeof(unsigned long),
GFP_KERNEL);
if (!bitmap)
goto err_nodes;
order = drm_random_order(count, &prng);
if (!order)
goto err_bitmap;
ret = -EINVAL;
for (size = 1; size <= 64; size <<= 1) {
drm_mm_init(&mm, 0, size*count);
for (n = 0; n < count; n++) {
if (!expect_insert(&mm, &nodes[n],
size, 0, n,
topdown)) {
pr_err("insert failed, size %u step %d\n", size, n);
goto out;
}
if (drm_mm_hole_follows(&nodes[n])) {
pr_err("hole after topdown insert %d, start=%llx\n, size=%u",
n, nodes[n].start, size);
goto out;
}
if (!assert_one_hole(&mm, 0, size*(count - n - 1)))
goto out;
}
if (!assert_continuous(&mm, size))
goto out;
drm_random_reorder(order, count, &prng);
for_each_prime_number_from(n, 1, min(count, max_prime)) {
for (m = 0; m < n; m++) {
node = &nodes[order[(o + m) % count]];
drm_mm_remove_node(node);
__set_bit(node_index(node), bitmap);
}
for (m = 0; m < n; m++) {
unsigned int last;
node = &nodes[order[(o + m) % count]];
if (!expect_insert(&mm, node,
size, 0, 0,
topdown)) {
pr_err("insert failed, step %d/%d\n", m, n);
goto out;
}
if (drm_mm_hole_follows(node)) {
pr_err("hole after topdown insert %d/%d, start=%llx\n",
m, n, node->start);
goto out;
}
last = find_last_bit(bitmap, count);
if (node_index(node) != last) {
pr_err("node %d/%d, size %d, not inserted into upmost hole, expected %d, found %d\n",
m, n, size, last, node_index(node));
goto out;
}
__clear_bit(last, bitmap);
}
DRM_MM_BUG_ON(find_first_bit(bitmap, count) != count);
o += n;
}
drm_mm_for_each_node_safe(node, next, &mm)
drm_mm_remove_node(node);
DRM_MM_BUG_ON(!drm_mm_clean(&mm));
cond_resched();
}
ret = 0;
out:
drm_mm_for_each_node_safe(node, next, &mm)
drm_mm_remove_node(node);
drm_mm_takedown(&mm);
kfree(order);
err_bitmap:
kfree(bitmap);
err_nodes:
vfree(nodes);
err:
return ret;
}
static int igt_bottomup(void *ignored)
{
const struct insert_mode *bottomup = &insert_modes[BOTTOMUP];
DRM_RND_STATE(prng, random_seed);
const unsigned int count = 8192;
unsigned int size;
unsigned long *bitmap;
struct drm_mm mm;
struct drm_mm_node *nodes, *node, *next;
unsigned int *order, n, m, o = 0;
int ret;
/* Like igt_topdown, but instead of searching for the last hole,
* we search for the first.
*/
ret = -ENOMEM;
nodes = vzalloc(array_size(count, sizeof(*nodes)));
if (!nodes)
goto err;
bitmap = kcalloc(count / BITS_PER_LONG, sizeof(unsigned long),
GFP_KERNEL);
if (!bitmap)
goto err_nodes;
order = drm_random_order(count, &prng);
if (!order)
goto err_bitmap;
ret = -EINVAL;
for (size = 1; size <= 64; size <<= 1) {
drm_mm_init(&mm, 0, size*count);
for (n = 0; n < count; n++) {
if (!expect_insert(&mm, &nodes[n],
size, 0, n,
bottomup)) {
pr_err("bottomup insert failed, size %u step %d\n", size, n);
goto out;
}
if (!assert_one_hole(&mm, size*(n + 1), size*count))
goto out;
}
if (!assert_continuous(&mm, size))
goto out;
drm_random_reorder(order, count, &prng);
for_each_prime_number_from(n, 1, min(count, max_prime)) {
for (m = 0; m < n; m++) {
node = &nodes[order[(o + m) % count]];
drm_mm_remove_node(node);
__set_bit(node_index(node), bitmap);
}
for (m = 0; m < n; m++) {
unsigned int first;
node = &nodes[order[(o + m) % count]];
if (!expect_insert(&mm, node,
size, 0, 0,
bottomup)) {
pr_err("insert failed, step %d/%d\n", m, n);
goto out;
}
first = find_first_bit(bitmap, count);
if (node_index(node) != first) {
pr_err("node %d/%d not inserted into bottom hole, expected %d, found %d\n",
m, n, first, node_index(node));
goto out;
}
__clear_bit(first, bitmap);
}
DRM_MM_BUG_ON(find_first_bit(bitmap, count) != count);
o += n;
}
drm_mm_for_each_node_safe(node, next, &mm)
drm_mm_remove_node(node);
DRM_MM_BUG_ON(!drm_mm_clean(&mm));
cond_resched();
}
ret = 0;
out:
drm_mm_for_each_node_safe(node, next, &mm)
drm_mm_remove_node(node);
drm_mm_takedown(&mm);
kfree(order);
err_bitmap:
kfree(bitmap);
err_nodes:
vfree(nodes);
err:
return ret;
}
static int __igt_once(unsigned int mode)
{
struct drm_mm mm;
struct drm_mm_node rsvd_lo, rsvd_hi, node;
int err;
drm_mm_init(&mm, 0, 7);
memset(&rsvd_lo, 0, sizeof(rsvd_lo));
rsvd_lo.start = 1;
rsvd_lo.size = 1;
err = drm_mm_reserve_node(&mm, &rsvd_lo);
if (err) {
pr_err("Could not reserve low node\n");
goto err;
}
memset(&rsvd_hi, 0, sizeof(rsvd_hi));
rsvd_hi.start = 5;
rsvd_hi.size = 1;
err = drm_mm_reserve_node(&mm, &rsvd_hi);
if (err) {
pr_err("Could not reserve low node\n");
goto err_lo;
}
if (!drm_mm_hole_follows(&rsvd_lo) || !drm_mm_hole_follows(&rsvd_hi)) {
pr_err("Expected a hole after lo and high nodes!\n");
err = -EINVAL;
goto err_hi;
}
memset(&node, 0, sizeof(node));
err = drm_mm_insert_node_generic(&mm, &node,
2, 0, 0,
mode | DRM_MM_INSERT_ONCE);
if (!err) {
pr_err("Unexpectedly inserted the node into the wrong hole: node.start=%llx\n",
node.start);
err = -EINVAL;
goto err_node;
}
err = drm_mm_insert_node_generic(&mm, &node, 2, 0, 0, mode);
if (err) {
pr_err("Could not insert the node into the available hole!\n");
err = -EINVAL;
goto err_hi;
}
err_node:
drm_mm_remove_node(&node);
err_hi:
drm_mm_remove_node(&rsvd_hi);
err_lo:
drm_mm_remove_node(&rsvd_lo);
err:
drm_mm_takedown(&mm);
return err;
}
static int igt_lowest(void *ignored)
{
return __igt_once(DRM_MM_INSERT_LOW);
}
static int igt_highest(void *ignored)
{
return __igt_once(DRM_MM_INSERT_HIGH);
}
static void separate_adjacent_colors(const struct drm_mm_node *node,
unsigned long color,
u64 *start,
u64 *end)
{
if (node->allocated && node->color != color)
++*start;
node = list_next_entry(node, node_list);
if (node->allocated && node->color != color)
--*end;
}
static bool colors_abutt(const struct drm_mm_node *node)
{
if (!drm_mm_hole_follows(node) &&
list_next_entry(node, node_list)->allocated) {
pr_err("colors abutt; %ld [%llx + %llx] is next to %ld [%llx + %llx]!\n",
node->color, node->start, node->size,
list_next_entry(node, node_list)->color,
list_next_entry(node, node_list)->start,
list_next_entry(node, node_list)->size);
return true;
}
return false;
}
static int igt_color(void *ignored)
{
const unsigned int count = min(4096u, max_iterations);
const struct insert_mode *mode;
struct drm_mm mm;
struct drm_mm_node *node, *nn;
unsigned int n;
int ret = -EINVAL, err;
/* Color adjustment complicates everything. First we just check
* that when we insert a node we apply any color_adjustment callback.
* The callback we use should ensure that there is a gap between
* any two nodes, and so after each insertion we check that those
* holes are inserted and that they are preserved.
*/
drm_mm_init(&mm, 0, U64_MAX);
for (n = 1; n <= count; n++) {
node = kzalloc(sizeof(*node), GFP_KERNEL);
if (!node) {
ret = -ENOMEM;
goto out;
}
if (!expect_insert(&mm, node,
n, 0, n,
&insert_modes[0])) {
pr_err("insert failed, step %d\n", n);
kfree(node);
goto out;
}
}
drm_mm_for_each_node_safe(node, nn, &mm) {
if (node->color != node->size) {
pr_err("invalid color stored: expected %lld, found %ld\n",
node->size, node->color);
goto out;
}
drm_mm_remove_node(node);
kfree(node);
}
/* Now, let's start experimenting with applying a color callback */
mm.color_adjust = separate_adjacent_colors;
for (mode = insert_modes; mode->name; mode++) {
u64 last;
node = kzalloc(sizeof(*node), GFP_KERNEL);
if (!node) {
ret = -ENOMEM;
goto out;
}
node->size = 1 + 2*count;
node->color = node->size;
err = drm_mm_reserve_node(&mm, node);
if (err) {
pr_err("initial reserve failed!\n");
ret = err;
goto out;
}
last = node->start + node->size;
for (n = 1; n <= count; n++) {
int rem;
node = kzalloc(sizeof(*node), GFP_KERNEL);
if (!node) {
ret = -ENOMEM;
goto out;
}
node->start = last;
node->size = n + count;
node->color = node->size;
err = drm_mm_reserve_node(&mm, node);
if (err != -ENOSPC) {
pr_err("reserve %d did not report color overlap! err=%d\n",
n, err);
goto out;
}
node->start += n + 1;
rem = misalignment(node, n + count);
node->start += n + count - rem;
err = drm_mm_reserve_node(&mm, node);
if (err) {
pr_err("reserve %d failed, err=%d\n", n, err);
ret = err;
goto out;
}
last = node->start + node->size;
}
for (n = 1; n <= count; n++) {
node = kzalloc(sizeof(*node), GFP_KERNEL);
if (!node) {
ret = -ENOMEM;
goto out;
}
if (!expect_insert(&mm, node,
n, n, n,
mode)) {
pr_err("%s insert failed, step %d\n",
mode->name, n);
kfree(node);
goto out;
}
}
drm_mm_for_each_node_safe(node, nn, &mm) {
u64 rem;
if (node->color != node->size) {
pr_err("%s invalid color stored: expected %lld, found %ld\n",
mode->name, node->size, node->color);
goto out;
}
if (colors_abutt(node))
goto out;
div64_u64_rem(node->start, node->size, &rem);
if (rem) {
pr_err("%s colored node misaligned, start=%llx expected alignment=%lld [rem=%lld]\n",
mode->name, node->start, node->size, rem);
goto out;
}
drm_mm_remove_node(node);
kfree(node);
}
cond_resched();
}
ret = 0;
out:
drm_mm_for_each_node_safe(node, nn, &mm) {
drm_mm_remove_node(node);
kfree(node);
}
drm_mm_takedown(&mm);
return ret;
}
static int evict_color(struct drm_mm *mm,
u64 range_start, u64 range_end,
struct evict_node *nodes,
unsigned int *order,
unsigned int count,
unsigned int size,
unsigned int alignment,
unsigned long color,
const struct insert_mode *mode)
{
struct drm_mm_scan scan;
LIST_HEAD(evict_list);
struct evict_node *e;
struct drm_mm_node tmp;
int err;
drm_mm_scan_init_with_range(&scan, mm,
size, alignment, color,
range_start, range_end,
mode->mode);
if (!evict_nodes(&scan,
nodes, order, count, true,
&evict_list))
return -EINVAL;
memset(&tmp, 0, sizeof(tmp));
err = drm_mm_insert_node_generic(mm, &tmp, size, alignment, color,
DRM_MM_INSERT_EVICT);
if (err) {
pr_err("Failed to insert into eviction hole: size=%d, align=%d, color=%lu, err=%d\n",
size, alignment, color, err);
show_scan(&scan);
show_holes(mm, 3);
return err;
}
if (tmp.start < range_start || tmp.start + tmp.size > range_end) {
pr_err("Inserted [address=%llu + %llu] did not fit into the request range [%llu, %llu]\n",
tmp.start, tmp.size, range_start, range_end);
err = -EINVAL;
}
if (colors_abutt(&tmp))
err = -EINVAL;
if (!assert_node(&tmp, mm, size, alignment, color)) {
pr_err("Inserted did not fit the eviction hole: size=%lld [%d], align=%d [rem=%lld], start=%llx\n",
tmp.size, size,
alignment, misalignment(&tmp, alignment), tmp.start);
err = -EINVAL;
}
drm_mm_remove_node(&tmp);
if (err)
return err;
list_for_each_entry(e, &evict_list, link) {
err = drm_mm_reserve_node(mm, &e->node);
if (err) {
pr_err("Failed to reinsert node after eviction: start=%llx\n",
e->node.start);
return err;
}
}
cond_resched();
return 0;
}
static int igt_color_evict(void *ignored)
{
DRM_RND_STATE(prng, random_seed);
const unsigned int total_size = min(8192u, max_iterations);
const struct insert_mode *mode;
unsigned long color = 0;
struct drm_mm mm;
struct evict_node *nodes;
struct drm_mm_node *node, *next;
unsigned int *order, n;
int ret, err;
/* Check that the drm_mm_scan also honours color adjustment when
* choosing its victims to create a hole. Our color_adjust does not
* allow two nodes to be placed together without an intervening hole
* enlarging the set of victims that must be evicted.
*/
ret = -ENOMEM;
nodes = vzalloc(array_size(total_size, sizeof(*nodes)));
if (!nodes)
goto err;
order = drm_random_order(total_size, &prng);
if (!order)
goto err_nodes;
ret = -EINVAL;
drm_mm_init(&mm, 0, 2*total_size - 1);
mm.color_adjust = separate_adjacent_colors;
for (n = 0; n < total_size; n++) {
if (!expect_insert(&mm, &nodes[n].node,
1, 0, color++,
&insert_modes[0])) {
pr_err("insert failed, step %d\n", n);
goto out;
}
}
for (mode = evict_modes; mode->name; mode++) {
for (n = 1; n <= total_size; n <<= 1) {
drm_random_reorder(order, total_size, &prng);
err = evict_color(&mm, 0, U64_MAX,
nodes, order, total_size,
n, 1, color++,
mode);
if (err) {
pr_err("%s evict_color(size=%u) failed\n",
mode->name, n);
goto out;
}
}
for (n = 1; n < total_size; n <<= 1) {
drm_random_reorder(order, total_size, &prng);
err = evict_color(&mm, 0, U64_MAX,
nodes, order, total_size,
total_size/2, n, color++,
mode);
if (err) {
pr_err("%s evict_color(size=%u, alignment=%u) failed\n",
mode->name, total_size/2, n);
goto out;
}
}
for_each_prime_number_from(n, 1, min(total_size, max_prime)) {
unsigned int nsize = (total_size - n + 1) / 2;
DRM_MM_BUG_ON(!nsize);
drm_random_reorder(order, total_size, &prng);
err = evict_color(&mm, 0, U64_MAX,
nodes, order, total_size,
nsize, n, color++,
mode);
if (err) {
pr_err("%s evict_color(size=%u, alignment=%u) failed\n",
mode->name, nsize, n);
goto out;
}
}
cond_resched();
}
ret = 0;
out:
if (ret)
show_mm(&mm);
drm_mm_for_each_node_safe(node, next, &mm)
drm_mm_remove_node(node);
drm_mm_takedown(&mm);
kfree(order);
err_nodes:
vfree(nodes);
err:
return ret;
}
static int igt_color_evict_range(void *ignored)
{
DRM_RND_STATE(prng, random_seed);
const unsigned int total_size = 8192;
const unsigned int range_size = total_size / 2;
const unsigned int range_start = total_size / 4;
const unsigned int range_end = range_start + range_size;
const struct insert_mode *mode;
unsigned long color = 0;
struct drm_mm mm;
struct evict_node *nodes;
struct drm_mm_node *node, *next;
unsigned int *order, n;
int ret, err;
/* Like igt_color_evict(), but limited to small portion of the full
* drm_mm range.
*/
ret = -ENOMEM;
nodes = vzalloc(array_size(total_size, sizeof(*nodes)));
if (!nodes)
goto err;
order = drm_random_order(total_size, &prng);
if (!order)
goto err_nodes;
ret = -EINVAL;
drm_mm_init(&mm, 0, 2*total_size - 1);
mm.color_adjust = separate_adjacent_colors;
for (n = 0; n < total_size; n++) {
if (!expect_insert(&mm, &nodes[n].node,
1, 0, color++,
&insert_modes[0])) {
pr_err("insert failed, step %d\n", n);
goto out;
}
}
for (mode = evict_modes; mode->name; mode++) {
for (n = 1; n <= range_size; n <<= 1) {
drm_random_reorder(order, range_size, &prng);
err = evict_color(&mm, range_start, range_end,
nodes, order, total_size,
n, 1, color++,
mode);
if (err) {
pr_err("%s evict_color(size=%u) failed for range [%x, %x]\n",
mode->name, n, range_start, range_end);
goto out;
}
}
for (n = 1; n < range_size; n <<= 1) {
drm_random_reorder(order, total_size, &prng);
err = evict_color(&mm, range_start, range_end,
nodes, order, total_size,
range_size/2, n, color++,
mode);
if (err) {
pr_err("%s evict_color(size=%u, alignment=%u) failed for range [%x, %x]\n",
mode->name, total_size/2, n, range_start, range_end);
goto out;
}
}
for_each_prime_number_from(n, 1, min(range_size, max_prime)) {
unsigned int nsize = (range_size - n + 1) / 2;
DRM_MM_BUG_ON(!nsize);
drm_random_reorder(order, total_size, &prng);
err = evict_color(&mm, range_start, range_end,
nodes, order, total_size,
nsize, n, color++,
mode);
if (err) {
pr_err("%s evict_color(size=%u, alignment=%u) failed for range [%x, %x]\n",
mode->name, nsize, n, range_start, range_end);
goto out;
}
}
cond_resched();
}
ret = 0;
out:
if (ret)
show_mm(&mm);
drm_mm_for_each_node_safe(node, next, &mm)
drm_mm_remove_node(node);
drm_mm_takedown(&mm);
kfree(order);
err_nodes:
vfree(nodes);
err:
return ret;
}
#include "drm_selftest.c"
static int __init test_drm_mm_init(void)
{
int err;
while (!random_seed)
random_seed = get_random_int();
pr_info("Testing DRM range manger (struct drm_mm), with random_seed=0x%x max_iterations=%u max_prime=%u\n",
random_seed, max_iterations, max_prime);
err = run_selftests(selftests, ARRAY_SIZE(selftests), NULL);
return err > 0 ? 0 : err;
}
static void __exit test_drm_mm_exit(void)
{
}
module_init(test_drm_mm_init);
module_exit(test_drm_mm_exit);
module_param(random_seed, uint, 0400);
module_param(max_iterations, uint, 0400);
module_param(max_prime, uint, 0400);
MODULE_AUTHOR("Intel Corporation");
MODULE_LICENSE("GPL");