kernel_samsung_a34x-permissive/drivers/mtd/spi-nor/atmel-quadspi.c

782 lines
21 KiB
C
Raw Normal View History

/*
* Driver for Atmel QSPI Controller
*
* Copyright (C) 2015 Atmel Corporation
*
* Author: Cyrille Pitchen <cyrille.pitchen@atmel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*
* This driver is based on drivers/mtd/spi-nor/fsl-quadspi.c from Freescale.
*/
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
#include <linux/platform_data/atmel.h>
#include <linux/of.h>
#include <linux/io.h>
#include <linux/gpio/consumer.h>
/* QSPI register offsets */
#define QSPI_CR 0x0000 /* Control Register */
#define QSPI_MR 0x0004 /* Mode Register */
#define QSPI_RD 0x0008 /* Receive Data Register */
#define QSPI_TD 0x000c /* Transmit Data Register */
#define QSPI_SR 0x0010 /* Status Register */
#define QSPI_IER 0x0014 /* Interrupt Enable Register */
#define QSPI_IDR 0x0018 /* Interrupt Disable Register */
#define QSPI_IMR 0x001c /* Interrupt Mask Register */
#define QSPI_SCR 0x0020 /* Serial Clock Register */
#define QSPI_IAR 0x0030 /* Instruction Address Register */
#define QSPI_ICR 0x0034 /* Instruction Code Register */
#define QSPI_IFR 0x0038 /* Instruction Frame Register */
#define QSPI_SMR 0x0040 /* Scrambling Mode Register */
#define QSPI_SKR 0x0044 /* Scrambling Key Register */
#define QSPI_WPMR 0x00E4 /* Write Protection Mode Register */
#define QSPI_WPSR 0x00E8 /* Write Protection Status Register */
#define QSPI_VERSION 0x00FC /* Version Register */
/* Bitfields in QSPI_CR (Control Register) */
#define QSPI_CR_QSPIEN BIT(0)
#define QSPI_CR_QSPIDIS BIT(1)
#define QSPI_CR_SWRST BIT(7)
#define QSPI_CR_LASTXFER BIT(24)
/* Bitfields in QSPI_MR (Mode Register) */
#define QSPI_MR_SSM BIT(0)
#define QSPI_MR_LLB BIT(1)
#define QSPI_MR_WDRBT BIT(2)
#define QSPI_MR_SMRM BIT(3)
#define QSPI_MR_CSMODE_MASK GENMASK(5, 4)
#define QSPI_MR_CSMODE_NOT_RELOADED (0 << 4)
#define QSPI_MR_CSMODE_LASTXFER (1 << 4)
#define QSPI_MR_CSMODE_SYSTEMATICALLY (2 << 4)
#define QSPI_MR_NBBITS_MASK GENMASK(11, 8)
#define QSPI_MR_NBBITS(n) ((((n) - 8) << 8) & QSPI_MR_NBBITS_MASK)
#define QSPI_MR_DLYBCT_MASK GENMASK(23, 16)
#define QSPI_MR_DLYBCT(n) (((n) << 16) & QSPI_MR_DLYBCT_MASK)
#define QSPI_MR_DLYCS_MASK GENMASK(31, 24)
#define QSPI_MR_DLYCS(n) (((n) << 24) & QSPI_MR_DLYCS_MASK)
/* Bitfields in QSPI_SR/QSPI_IER/QSPI_IDR/QSPI_IMR */
#define QSPI_SR_RDRF BIT(0)
#define QSPI_SR_TDRE BIT(1)
#define QSPI_SR_TXEMPTY BIT(2)
#define QSPI_SR_OVRES BIT(3)
#define QSPI_SR_CSR BIT(8)
#define QSPI_SR_CSS BIT(9)
#define QSPI_SR_INSTRE BIT(10)
#define QSPI_SR_QSPIENS BIT(24)
#define QSPI_SR_CMD_COMPLETED (QSPI_SR_INSTRE | QSPI_SR_CSR)
/* Bitfields in QSPI_SCR (Serial Clock Register) */
#define QSPI_SCR_CPOL BIT(0)
#define QSPI_SCR_CPHA BIT(1)
#define QSPI_SCR_SCBR_MASK GENMASK(15, 8)
#define QSPI_SCR_SCBR(n) (((n) << 8) & QSPI_SCR_SCBR_MASK)
#define QSPI_SCR_DLYBS_MASK GENMASK(23, 16)
#define QSPI_SCR_DLYBS(n) (((n) << 16) & QSPI_SCR_DLYBS_MASK)
/* Bitfields in QSPI_ICR (Instruction Code Register) */
#define QSPI_ICR_INST_MASK GENMASK(7, 0)
#define QSPI_ICR_INST(inst) (((inst) << 0) & QSPI_ICR_INST_MASK)
#define QSPI_ICR_OPT_MASK GENMASK(23, 16)
#define QSPI_ICR_OPT(opt) (((opt) << 16) & QSPI_ICR_OPT_MASK)
/* Bitfields in QSPI_IFR (Instruction Frame Register) */
#define QSPI_IFR_WIDTH_MASK GENMASK(2, 0)
#define QSPI_IFR_WIDTH_SINGLE_BIT_SPI (0 << 0)
#define QSPI_IFR_WIDTH_DUAL_OUTPUT (1 << 0)
#define QSPI_IFR_WIDTH_QUAD_OUTPUT (2 << 0)
#define QSPI_IFR_WIDTH_DUAL_IO (3 << 0)
#define QSPI_IFR_WIDTH_QUAD_IO (4 << 0)
#define QSPI_IFR_WIDTH_DUAL_CMD (5 << 0)
#define QSPI_IFR_WIDTH_QUAD_CMD (6 << 0)
#define QSPI_IFR_INSTEN BIT(4)
#define QSPI_IFR_ADDREN BIT(5)
#define QSPI_IFR_OPTEN BIT(6)
#define QSPI_IFR_DATAEN BIT(7)
#define QSPI_IFR_OPTL_MASK GENMASK(9, 8)
#define QSPI_IFR_OPTL_1BIT (0 << 8)
#define QSPI_IFR_OPTL_2BIT (1 << 8)
#define QSPI_IFR_OPTL_4BIT (2 << 8)
#define QSPI_IFR_OPTL_8BIT (3 << 8)
#define QSPI_IFR_ADDRL BIT(10)
#define QSPI_IFR_TFRTYP_MASK GENMASK(13, 12)
#define QSPI_IFR_TFRTYP_TRSFR_READ (0 << 12)
#define QSPI_IFR_TFRTYP_TRSFR_READ_MEM (1 << 12)
#define QSPI_IFR_TFRTYP_TRSFR_WRITE (2 << 12)
#define QSPI_IFR_TFRTYP_TRSFR_WRITE_MEM (3 << 13)
#define QSPI_IFR_CRM BIT(14)
#define QSPI_IFR_NBDUM_MASK GENMASK(20, 16)
#define QSPI_IFR_NBDUM(n) (((n) << 16) & QSPI_IFR_NBDUM_MASK)
/* Bitfields in QSPI_SMR (Scrambling Mode Register) */
#define QSPI_SMR_SCREN BIT(0)
#define QSPI_SMR_RVDIS BIT(1)
/* Bitfields in QSPI_WPMR (Write Protection Mode Register) */
#define QSPI_WPMR_WPEN BIT(0)
#define QSPI_WPMR_WPKEY_MASK GENMASK(31, 8)
#define QSPI_WPMR_WPKEY(wpkey) (((wpkey) << 8) & QSPI_WPMR_WPKEY_MASK)
/* Bitfields in QSPI_WPSR (Write Protection Status Register) */
#define QSPI_WPSR_WPVS BIT(0)
#define QSPI_WPSR_WPVSRC_MASK GENMASK(15, 8)
#define QSPI_WPSR_WPVSRC(src) (((src) << 8) & QSPI_WPSR_WPVSRC)
struct atmel_qspi {
void __iomem *regs;
void __iomem *mem;
struct clk *clk;
struct platform_device *pdev;
u32 pending;
struct spi_nor nor;
u32 clk_rate;
struct completion cmd_completion;
};
struct atmel_qspi_command {
union {
struct {
u32 instruction:1;
u32 address:3;
u32 mode:1;
u32 dummy:1;
u32 data:1;
u32 reserved:25;
} bits;
u32 word;
} enable;
u8 instruction;
u8 mode;
u8 num_mode_cycles;
u8 num_dummy_cycles;
u32 address;
size_t buf_len;
const void *tx_buf;
void *rx_buf;
};
/* Register access functions */
static inline u32 qspi_readl(struct atmel_qspi *aq, u32 reg)
{
return readl_relaxed(aq->regs + reg);
}
static inline void qspi_writel(struct atmel_qspi *aq, u32 reg, u32 value)
{
writel_relaxed(value, aq->regs + reg);
}
static int atmel_qspi_run_transfer(struct atmel_qspi *aq,
const struct atmel_qspi_command *cmd)
{
void __iomem *ahb_mem;
/* Then fallback to a PIO transfer (memcpy() DOES NOT work!) */
ahb_mem = aq->mem;
if (cmd->enable.bits.address)
ahb_mem += cmd->address;
if (cmd->tx_buf)
_memcpy_toio(ahb_mem, cmd->tx_buf, cmd->buf_len);
else
_memcpy_fromio(cmd->rx_buf, ahb_mem, cmd->buf_len);
return 0;
}
#ifdef DEBUG
static void atmel_qspi_debug_command(struct atmel_qspi *aq,
const struct atmel_qspi_command *cmd,
u32 ifr)
{
u8 cmd_buf[SPI_NOR_MAX_CMD_SIZE];
size_t len = 0;
int i;
if (cmd->enable.bits.instruction)
cmd_buf[len++] = cmd->instruction;
for (i = cmd->enable.bits.address-1; i >= 0; --i)
cmd_buf[len++] = (cmd->address >> (i << 3)) & 0xff;
if (cmd->enable.bits.mode)
cmd_buf[len++] = cmd->mode;
if (cmd->enable.bits.dummy) {
int num = cmd->num_dummy_cycles;
switch (ifr & QSPI_IFR_WIDTH_MASK) {
case QSPI_IFR_WIDTH_SINGLE_BIT_SPI:
case QSPI_IFR_WIDTH_DUAL_OUTPUT:
case QSPI_IFR_WIDTH_QUAD_OUTPUT:
num >>= 3;
break;
case QSPI_IFR_WIDTH_DUAL_IO:
case QSPI_IFR_WIDTH_DUAL_CMD:
num >>= 2;
break;
case QSPI_IFR_WIDTH_QUAD_IO:
case QSPI_IFR_WIDTH_QUAD_CMD:
num >>= 1;
break;
default:
return;
}
for (i = 0; i < num; ++i)
cmd_buf[len++] = 0;
}
/* Dump the SPI command */
print_hex_dump(KERN_DEBUG, "qspi cmd: ", DUMP_PREFIX_NONE,
32, 1, cmd_buf, len, false);
#ifdef VERBOSE_DEBUG
/* If verbose debug is enabled, also dump the TX data */
if (cmd->enable.bits.data && cmd->tx_buf)
print_hex_dump(KERN_DEBUG, "qspi tx : ", DUMP_PREFIX_NONE,
32, 1, cmd->tx_buf, cmd->buf_len, false);
#endif
}
#else
#define atmel_qspi_debug_command(aq, cmd, ifr)
#endif
static int atmel_qspi_run_command(struct atmel_qspi *aq,
const struct atmel_qspi_command *cmd,
u32 ifr_tfrtyp, enum spi_nor_protocol proto)
{
u32 iar, icr, ifr, sr;
int err = 0;
iar = 0;
icr = 0;
ifr = ifr_tfrtyp;
/* Set the SPI protocol */
switch (proto) {
case SNOR_PROTO_1_1_1:
ifr |= QSPI_IFR_WIDTH_SINGLE_BIT_SPI;
break;
case SNOR_PROTO_1_1_2:
ifr |= QSPI_IFR_WIDTH_DUAL_OUTPUT;
break;
case SNOR_PROTO_1_1_4:
ifr |= QSPI_IFR_WIDTH_QUAD_OUTPUT;
break;
case SNOR_PROTO_1_2_2:
ifr |= QSPI_IFR_WIDTH_DUAL_IO;
break;
case SNOR_PROTO_1_4_4:
ifr |= QSPI_IFR_WIDTH_QUAD_IO;
break;
case SNOR_PROTO_2_2_2:
ifr |= QSPI_IFR_WIDTH_DUAL_CMD;
break;
case SNOR_PROTO_4_4_4:
ifr |= QSPI_IFR_WIDTH_QUAD_CMD;
break;
default:
return -EINVAL;
}
/* Compute instruction parameters */
if (cmd->enable.bits.instruction) {
icr |= QSPI_ICR_INST(cmd->instruction);
ifr |= QSPI_IFR_INSTEN;
}
/* Compute address parameters */
switch (cmd->enable.bits.address) {
case 4:
ifr |= QSPI_IFR_ADDRL;
/* fall through to the 24bit (3 byte) address case. */
case 3:
iar = (cmd->enable.bits.data) ? 0 : cmd->address;
ifr |= QSPI_IFR_ADDREN;
break;
case 0:
break;
default:
return -EINVAL;
}
/* Compute option parameters */
if (cmd->enable.bits.mode && cmd->num_mode_cycles) {
u32 mode_cycle_bits, mode_bits;
icr |= QSPI_ICR_OPT(cmd->mode);
ifr |= QSPI_IFR_OPTEN;
switch (ifr & QSPI_IFR_WIDTH_MASK) {
case QSPI_IFR_WIDTH_SINGLE_BIT_SPI:
case QSPI_IFR_WIDTH_DUAL_OUTPUT:
case QSPI_IFR_WIDTH_QUAD_OUTPUT:
mode_cycle_bits = 1;
break;
case QSPI_IFR_WIDTH_DUAL_IO:
case QSPI_IFR_WIDTH_DUAL_CMD:
mode_cycle_bits = 2;
break;
case QSPI_IFR_WIDTH_QUAD_IO:
case QSPI_IFR_WIDTH_QUAD_CMD:
mode_cycle_bits = 4;
break;
default:
return -EINVAL;
}
mode_bits = cmd->num_mode_cycles * mode_cycle_bits;
switch (mode_bits) {
case 1:
ifr |= QSPI_IFR_OPTL_1BIT;
break;
case 2:
ifr |= QSPI_IFR_OPTL_2BIT;
break;
case 4:
ifr |= QSPI_IFR_OPTL_4BIT;
break;
case 8:
ifr |= QSPI_IFR_OPTL_8BIT;
break;
default:
return -EINVAL;
}
}
/* Set number of dummy cycles */
if (cmd->enable.bits.dummy)
ifr |= QSPI_IFR_NBDUM(cmd->num_dummy_cycles);
/* Set data enable */
if (cmd->enable.bits.data) {
ifr |= QSPI_IFR_DATAEN;
/* Special case for Continuous Read Mode */
if (!cmd->tx_buf && !cmd->rx_buf)
ifr |= QSPI_IFR_CRM;
}
/* Clear pending interrupts */
(void)qspi_readl(aq, QSPI_SR);
/* Set QSPI Instruction Frame registers */
atmel_qspi_debug_command(aq, cmd, ifr);
qspi_writel(aq, QSPI_IAR, iar);
qspi_writel(aq, QSPI_ICR, icr);
qspi_writel(aq, QSPI_IFR, ifr);
/* Skip to the final steps if there is no data */
if (!cmd->enable.bits.data)
goto no_data;
/* Dummy read of QSPI_IFR to synchronize APB and AHB accesses */
(void)qspi_readl(aq, QSPI_IFR);
/* Stop here for continuous read */
if (!cmd->tx_buf && !cmd->rx_buf)
return 0;
/* Send/Receive data */
err = atmel_qspi_run_transfer(aq, cmd);
/* Release the chip-select */
qspi_writel(aq, QSPI_CR, QSPI_CR_LASTXFER);
if (err)
return err;
#if defined(DEBUG) && defined(VERBOSE_DEBUG)
/*
* If verbose debug is enabled, also dump the RX data in addition to
* the SPI command previously dumped by atmel_qspi_debug_command()
*/
if (cmd->rx_buf)
print_hex_dump(KERN_DEBUG, "qspi rx : ", DUMP_PREFIX_NONE,
32, 1, cmd->rx_buf, cmd->buf_len, false);
#endif
no_data:
/* Poll INSTRuction End status */
sr = qspi_readl(aq, QSPI_SR);
if ((sr & QSPI_SR_CMD_COMPLETED) == QSPI_SR_CMD_COMPLETED)
return err;
/* Wait for INSTRuction End interrupt */
reinit_completion(&aq->cmd_completion);
aq->pending = sr & QSPI_SR_CMD_COMPLETED;
qspi_writel(aq, QSPI_IER, QSPI_SR_CMD_COMPLETED);
if (!wait_for_completion_timeout(&aq->cmd_completion,
msecs_to_jiffies(1000)))
err = -ETIMEDOUT;
qspi_writel(aq, QSPI_IDR, QSPI_SR_CMD_COMPLETED);
return err;
}
static int atmel_qspi_read_reg(struct spi_nor *nor, u8 opcode,
u8 *buf, int len)
{
struct atmel_qspi *aq = nor->priv;
struct atmel_qspi_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.enable.bits.instruction = 1;
cmd.enable.bits.data = 1;
cmd.instruction = opcode;
cmd.rx_buf = buf;
cmd.buf_len = len;
return atmel_qspi_run_command(aq, &cmd, QSPI_IFR_TFRTYP_TRSFR_READ,
nor->reg_proto);
}
static int atmel_qspi_write_reg(struct spi_nor *nor, u8 opcode,
u8 *buf, int len)
{
struct atmel_qspi *aq = nor->priv;
struct atmel_qspi_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.enable.bits.instruction = 1;
cmd.enable.bits.data = (buf != NULL && len > 0);
cmd.instruction = opcode;
cmd.tx_buf = buf;
cmd.buf_len = len;
return atmel_qspi_run_command(aq, &cmd, QSPI_IFR_TFRTYP_TRSFR_WRITE,
nor->reg_proto);
}
static ssize_t atmel_qspi_write(struct spi_nor *nor, loff_t to, size_t len,
const u_char *write_buf)
{
struct atmel_qspi *aq = nor->priv;
struct atmel_qspi_command cmd;
ssize_t ret;
memset(&cmd, 0, sizeof(cmd));
cmd.enable.bits.instruction = 1;
cmd.enable.bits.address = nor->addr_width;
cmd.enable.bits.data = 1;
cmd.instruction = nor->program_opcode;
cmd.address = (u32)to;
cmd.tx_buf = write_buf;
cmd.buf_len = len;
ret = atmel_qspi_run_command(aq, &cmd, QSPI_IFR_TFRTYP_TRSFR_WRITE_MEM,
nor->write_proto);
return (ret < 0) ? ret : len;
}
static int atmel_qspi_erase(struct spi_nor *nor, loff_t offs)
{
struct atmel_qspi *aq = nor->priv;
struct atmel_qspi_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.enable.bits.instruction = 1;
cmd.enable.bits.address = nor->addr_width;
cmd.instruction = nor->erase_opcode;
cmd.address = (u32)offs;
return atmel_qspi_run_command(aq, &cmd, QSPI_IFR_TFRTYP_TRSFR_WRITE,
nor->reg_proto);
}
static ssize_t atmel_qspi_read(struct spi_nor *nor, loff_t from, size_t len,
u_char *read_buf)
{
struct atmel_qspi *aq = nor->priv;
struct atmel_qspi_command cmd;
u8 num_mode_cycles, num_dummy_cycles;
ssize_t ret;
if (nor->read_dummy >= 2) {
num_mode_cycles = 2;
num_dummy_cycles = nor->read_dummy - 2;
} else {
num_mode_cycles = nor->read_dummy;
num_dummy_cycles = 0;
}
memset(&cmd, 0, sizeof(cmd));
cmd.enable.bits.instruction = 1;
cmd.enable.bits.address = nor->addr_width;
cmd.enable.bits.mode = (num_mode_cycles > 0);
cmd.enable.bits.dummy = (num_dummy_cycles > 0);
cmd.enable.bits.data = 1;
cmd.instruction = nor->read_opcode;
cmd.address = (u32)from;
cmd.mode = 0xff; /* This value prevents from entering the 0-4-4 mode */
cmd.num_mode_cycles = num_mode_cycles;
cmd.num_dummy_cycles = num_dummy_cycles;
cmd.rx_buf = read_buf;
cmd.buf_len = len;
ret = atmel_qspi_run_command(aq, &cmd, QSPI_IFR_TFRTYP_TRSFR_READ_MEM,
nor->read_proto);
return (ret < 0) ? ret : len;
}
static int atmel_qspi_init(struct atmel_qspi *aq)
{
unsigned long src_rate;
u32 mr, scr, scbr;
/* Reset the QSPI controller */
qspi_writel(aq, QSPI_CR, QSPI_CR_SWRST);
/* Set the QSPI controller in Serial Memory Mode */
mr = QSPI_MR_NBBITS(8) | QSPI_MR_SSM;
qspi_writel(aq, QSPI_MR, mr);
src_rate = clk_get_rate(aq->clk);
if (!src_rate)
return -EINVAL;
/* Compute the QSPI baudrate */
scbr = DIV_ROUND_UP(src_rate, aq->clk_rate);
if (scbr > 0)
scbr--;
scr = QSPI_SCR_SCBR(scbr);
qspi_writel(aq, QSPI_SCR, scr);
/* Enable the QSPI controller */
qspi_writel(aq, QSPI_CR, QSPI_CR_QSPIEN);
return 0;
}
static irqreturn_t atmel_qspi_interrupt(int irq, void *dev_id)
{
struct atmel_qspi *aq = (struct atmel_qspi *)dev_id;
u32 status, mask, pending;
status = qspi_readl(aq, QSPI_SR);
mask = qspi_readl(aq, QSPI_IMR);
pending = status & mask;
if (!pending)
return IRQ_NONE;
aq->pending |= pending;
if ((aq->pending & QSPI_SR_CMD_COMPLETED) == QSPI_SR_CMD_COMPLETED)
complete(&aq->cmd_completion);
return IRQ_HANDLED;
}
static int atmel_qspi_probe(struct platform_device *pdev)
{
const struct spi_nor_hwcaps hwcaps = {
.mask = SNOR_HWCAPS_READ |
SNOR_HWCAPS_READ_FAST |
SNOR_HWCAPS_READ_1_1_2 |
SNOR_HWCAPS_READ_1_2_2 |
SNOR_HWCAPS_READ_2_2_2 |
SNOR_HWCAPS_READ_1_1_4 |
SNOR_HWCAPS_READ_1_4_4 |
SNOR_HWCAPS_READ_4_4_4 |
SNOR_HWCAPS_PP |
SNOR_HWCAPS_PP_1_1_4 |
SNOR_HWCAPS_PP_1_4_4 |
SNOR_HWCAPS_PP_4_4_4,
};
struct device_node *child, *np = pdev->dev.of_node;
struct atmel_qspi *aq;
struct resource *res;
struct spi_nor *nor;
struct mtd_info *mtd;
int irq, err = 0;
if (of_get_child_count(np) != 1)
return -ENODEV;
child = of_get_next_child(np, NULL);
aq = devm_kzalloc(&pdev->dev, sizeof(*aq), GFP_KERNEL);
if (!aq) {
err = -ENOMEM;
goto exit;
}
platform_set_drvdata(pdev, aq);
init_completion(&aq->cmd_completion);
aq->pdev = pdev;
/* Map the registers */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_base");
aq->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(aq->regs)) {
dev_err(&pdev->dev, "missing registers\n");
err = PTR_ERR(aq->regs);
goto exit;
}
/* Map the AHB memory */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mmap");
aq->mem = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(aq->mem)) {
dev_err(&pdev->dev, "missing AHB memory\n");
err = PTR_ERR(aq->mem);
goto exit;
}
/* Get the peripheral clock */
aq->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(aq->clk)) {
dev_err(&pdev->dev, "missing peripheral clock\n");
err = PTR_ERR(aq->clk);
goto exit;
}
/* Enable the peripheral clock */
err = clk_prepare_enable(aq->clk);
if (err) {
dev_err(&pdev->dev, "failed to enable the peripheral clock\n");
goto exit;
}
/* Request the IRQ */
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "missing IRQ\n");
err = irq;
goto disable_clk;
}
err = devm_request_irq(&pdev->dev, irq, atmel_qspi_interrupt,
0, dev_name(&pdev->dev), aq);
if (err)
goto disable_clk;
/* Setup the spi-nor */
nor = &aq->nor;
mtd = &nor->mtd;
nor->dev = &pdev->dev;
spi_nor_set_flash_node(nor, child);
nor->priv = aq;
mtd->priv = nor;
nor->read_reg = atmel_qspi_read_reg;
nor->write_reg = atmel_qspi_write_reg;
nor->read = atmel_qspi_read;
nor->write = atmel_qspi_write;
nor->erase = atmel_qspi_erase;
err = of_property_read_u32(child, "spi-max-frequency", &aq->clk_rate);
if (err < 0)
goto disable_clk;
err = atmel_qspi_init(aq);
if (err)
goto disable_clk;
err = spi_nor_scan(nor, NULL, &hwcaps);
if (err)
goto disable_clk;
err = mtd_device_register(mtd, NULL, 0);
if (err)
goto disable_clk;
of_node_put(child);
return 0;
disable_clk:
clk_disable_unprepare(aq->clk);
exit:
of_node_put(child);
return err;
}
static int atmel_qspi_remove(struct platform_device *pdev)
{
struct atmel_qspi *aq = platform_get_drvdata(pdev);
mtd_device_unregister(&aq->nor.mtd);
qspi_writel(aq, QSPI_CR, QSPI_CR_QSPIDIS);
clk_disable_unprepare(aq->clk);
return 0;
}
static int __maybe_unused atmel_qspi_suspend(struct device *dev)
{
struct atmel_qspi *aq = dev_get_drvdata(dev);
clk_disable_unprepare(aq->clk);
return 0;
}
static int __maybe_unused atmel_qspi_resume(struct device *dev)
{
struct atmel_qspi *aq = dev_get_drvdata(dev);
clk_prepare_enable(aq->clk);
return atmel_qspi_init(aq);
}
static SIMPLE_DEV_PM_OPS(atmel_qspi_pm_ops, atmel_qspi_suspend,
atmel_qspi_resume);
static const struct of_device_id atmel_qspi_dt_ids[] = {
{ .compatible = "atmel,sama5d2-qspi" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_qspi_dt_ids);
static struct platform_driver atmel_qspi_driver = {
.driver = {
.name = "atmel_qspi",
.of_match_table = atmel_qspi_dt_ids,
.pm = &atmel_qspi_pm_ops,
},
.probe = atmel_qspi_probe,
.remove = atmel_qspi_remove,
};
module_platform_driver(atmel_qspi_driver);
MODULE_AUTHOR("Cyrille Pitchen <cyrille.pitchen@atmel.com>");
MODULE_DESCRIPTION("Atmel QSPI Controller driver");
MODULE_LICENSE("GPL v2");