kernel_samsung_a34x-permissive/drivers/net/ethernet/qlogic/qed/qed_sriov.c

5265 lines
142 KiB
C
Raw Normal View History

/* QLogic qed NIC Driver
* Copyright (c) 2015-2017 QLogic Corporation
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and /or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/etherdevice.h>
#include <linux/crc32.h>
#include <linux/vmalloc.h>
#include <linux/qed/qed_iov_if.h>
#include "qed_cxt.h"
#include "qed_hsi.h"
#include "qed_hw.h"
#include "qed_init_ops.h"
#include "qed_int.h"
#include "qed_mcp.h"
#include "qed_reg_addr.h"
#include "qed_sp.h"
#include "qed_sriov.h"
#include "qed_vf.h"
static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
u8 opcode,
__le16 echo,
union event_ring_data *data, u8 fw_return_code);
static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid);
static u8 qed_vf_calculate_legacy(struct qed_vf_info *p_vf)
{
u8 legacy = 0;
if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
ETH_HSI_VER_NO_PKT_LEN_TUNN)
legacy |= QED_QCID_LEGACY_VF_RX_PROD;
if (!(p_vf->acquire.vfdev_info.capabilities &
VFPF_ACQUIRE_CAP_QUEUE_QIDS))
legacy |= QED_QCID_LEGACY_VF_CID;
return legacy;
}
/* IOV ramrods */
static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf)
{
struct vf_start_ramrod_data *p_ramrod = NULL;
struct qed_spq_entry *p_ent = NULL;
struct qed_sp_init_data init_data;
int rc = -EINVAL;
u8 fp_minor;
/* Get SPQ entry */
memset(&init_data, 0, sizeof(init_data));
init_data.cid = qed_spq_get_cid(p_hwfn);
init_data.opaque_fid = p_vf->opaque_fid;
init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
rc = qed_sp_init_request(p_hwfn, &p_ent,
COMMON_RAMROD_VF_START,
PROTOCOLID_COMMON, &init_data);
if (rc)
return rc;
p_ramrod = &p_ent->ramrod.vf_start;
p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID);
p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid);
switch (p_hwfn->hw_info.personality) {
case QED_PCI_ETH:
p_ramrod->personality = PERSONALITY_ETH;
break;
case QED_PCI_ETH_ROCE:
case QED_PCI_ETH_IWARP:
p_ramrod->personality = PERSONALITY_RDMA_AND_ETH;
break;
default:
DP_NOTICE(p_hwfn, "Unknown VF personality %d\n",
p_hwfn->hw_info.personality);
qed_sp_destroy_request(p_hwfn, p_ent);
return -EINVAL;
}
fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor;
if (fp_minor > ETH_HSI_VER_MINOR &&
fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n",
p_vf->abs_vf_id,
ETH_HSI_VER_MAJOR,
fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
fp_minor = ETH_HSI_VER_MINOR;
}
p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR;
p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor;
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d] - Starting using HSI %02x.%02x\n",
p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor);
return qed_spq_post(p_hwfn, p_ent, NULL);
}
static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn,
u32 concrete_vfid, u16 opaque_vfid)
{
struct vf_stop_ramrod_data *p_ramrod = NULL;
struct qed_spq_entry *p_ent = NULL;
struct qed_sp_init_data init_data;
int rc = -EINVAL;
/* Get SPQ entry */
memset(&init_data, 0, sizeof(init_data));
init_data.cid = qed_spq_get_cid(p_hwfn);
init_data.opaque_fid = opaque_vfid;
init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
rc = qed_sp_init_request(p_hwfn, &p_ent,
COMMON_RAMROD_VF_STOP,
PROTOCOLID_COMMON, &init_data);
if (rc)
return rc;
p_ramrod = &p_ent->ramrod.vf_stop;
p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID);
return qed_spq_post(p_hwfn, p_ent, NULL);
}
bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn,
int rel_vf_id,
bool b_enabled_only, bool b_non_malicious)
{
if (!p_hwfn->pf_iov_info) {
DP_NOTICE(p_hwfn->cdev, "No iov info\n");
return false;
}
if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) ||
(rel_vf_id < 0))
return false;
if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) &&
b_enabled_only)
return false;
if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) &&
b_non_malicious)
return false;
return true;
}
static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn,
u16 relative_vf_id,
bool b_enabled_only)
{
struct qed_vf_info *vf = NULL;
if (!p_hwfn->pf_iov_info) {
DP_NOTICE(p_hwfn->cdev, "No iov info\n");
return NULL;
}
if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id,
b_enabled_only, false))
vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id];
else
DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n",
relative_vf_id);
return vf;
}
static struct qed_queue_cid *
qed_iov_get_vf_rx_queue_cid(struct qed_vf_queue *p_queue)
{
int i;
for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
if (p_queue->cids[i].p_cid && !p_queue->cids[i].b_is_tx)
return p_queue->cids[i].p_cid;
}
return NULL;
}
enum qed_iov_validate_q_mode {
QED_IOV_VALIDATE_Q_NA,
QED_IOV_VALIDATE_Q_ENABLE,
QED_IOV_VALIDATE_Q_DISABLE,
};
static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf,
u16 qid,
enum qed_iov_validate_q_mode mode,
bool b_is_tx)
{
int i;
if (mode == QED_IOV_VALIDATE_Q_NA)
return true;
for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
struct qed_vf_queue_cid *p_qcid;
p_qcid = &p_vf->vf_queues[qid].cids[i];
if (!p_qcid->p_cid)
continue;
if (p_qcid->b_is_tx != b_is_tx)
continue;
return mode == QED_IOV_VALIDATE_Q_ENABLE;
}
/* In case we haven't found any valid cid, then its disabled */
return mode == QED_IOV_VALIDATE_Q_DISABLE;
}
static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf,
u16 rx_qid,
enum qed_iov_validate_q_mode mode)
{
if (rx_qid >= p_vf->num_rxqs) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n",
p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs);
return false;
}
return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false);
}
static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf,
u16 tx_qid,
enum qed_iov_validate_q_mode mode)
{
if (tx_qid >= p_vf->num_txqs) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n",
p_vf->abs_vf_id, tx_qid, p_vf->num_txqs);
return false;
}
return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true);
}
static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf, u16 sb_idx)
{
int i;
for (i = 0; i < p_vf->num_sbs; i++)
if (p_vf->igu_sbs[i] == sb_idx)
return true;
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n",
p_vf->abs_vf_id, sb_idx, p_vf->num_sbs);
return false;
}
static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf)
{
u8 i;
for (i = 0; i < p_vf->num_rxqs; i++)
if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
QED_IOV_VALIDATE_Q_ENABLE,
false))
return true;
return false;
}
static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf)
{
u8 i;
for (i = 0; i < p_vf->num_txqs; i++)
if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
QED_IOV_VALIDATE_Q_ENABLE,
true))
return true;
return false;
}
static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn,
int vfid, struct qed_ptt *p_ptt)
{
struct qed_bulletin_content *p_bulletin;
int crc_size = sizeof(p_bulletin->crc);
struct qed_dmae_params params;
struct qed_vf_info *p_vf;
p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
if (!p_vf)
return -EINVAL;
if (!p_vf->vf_bulletin)
return -EINVAL;
p_bulletin = p_vf->bulletin.p_virt;
/* Increment bulletin board version and compute crc */
p_bulletin->version++;
p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size,
p_vf->bulletin.size - crc_size);
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n",
p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc);
/* propagate bulletin board via dmae to vm memory */
memset(&params, 0, sizeof(params));
params.flags = QED_DMAE_FLAG_VF_DST;
params.dst_vfid = p_vf->abs_vf_id;
return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys,
p_vf->vf_bulletin, p_vf->bulletin.size / 4,
&params);
}
static int qed_iov_pci_cfg_info(struct qed_dev *cdev)
{
struct qed_hw_sriov_info *iov = cdev->p_iov_info;
int pos = iov->pos;
DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos);
pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
pci_read_config_word(cdev->pdev,
pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs);
pci_read_config_word(cdev->pdev,
pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs);
pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs);
if (iov->num_vfs) {
DP_VERBOSE(cdev,
QED_MSG_IOV,
"Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n");
iov->num_vfs = 0;
}
pci_read_config_word(cdev->pdev,
pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
pci_read_config_word(cdev->pdev,
pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
pci_read_config_word(cdev->pdev,
pos + PCI_SRIOV_VF_DID, &iov->vf_device_id);
pci_read_config_dword(cdev->pdev,
pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap);
pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
DP_VERBOSE(cdev,
QED_MSG_IOV,
"IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
iov->nres,
iov->cap,
iov->ctrl,
iov->total_vfs,
iov->initial_vfs,
iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
/* Some sanity checks */
if (iov->num_vfs > NUM_OF_VFS(cdev) ||
iov->total_vfs > NUM_OF_VFS(cdev)) {
/* This can happen only due to a bug. In this case we set
* num_vfs to zero to avoid memory corruption in the code that
* assumes max number of vfs
*/
DP_NOTICE(cdev,
"IOV: Unexpected number of vfs set: %d setting num_vf to zero\n",
iov->num_vfs);
iov->num_vfs = 0;
iov->total_vfs = 0;
}
return 0;
}
static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn)
{
struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
struct qed_bulletin_content *p_bulletin_virt;
dma_addr_t req_p, rply_p, bulletin_p;
union pfvf_tlvs *p_reply_virt_addr;
union vfpf_tlvs *p_req_virt_addr;
u8 idx = 0;
memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array));
p_req_virt_addr = p_iov_info->mbx_msg_virt_addr;
req_p = p_iov_info->mbx_msg_phys_addr;
p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr;
rply_p = p_iov_info->mbx_reply_phys_addr;
p_bulletin_virt = p_iov_info->p_bulletins;
bulletin_p = p_iov_info->bulletins_phys;
if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) {
DP_ERR(p_hwfn,
"qed_iov_setup_vfdb called without allocating mem first\n");
return;
}
for (idx = 0; idx < p_iov->total_vfs; idx++) {
struct qed_vf_info *vf = &p_iov_info->vfs_array[idx];
u32 concrete;
vf->vf_mbx.req_virt = p_req_virt_addr + idx;
vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs);
vf->vf_mbx.reply_virt = p_reply_virt_addr + idx;
vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs);
vf->state = VF_STOPPED;
vf->b_init = false;
vf->bulletin.phys = idx *
sizeof(struct qed_bulletin_content) +
bulletin_p;
vf->bulletin.p_virt = p_bulletin_virt + idx;
vf->bulletin.size = sizeof(struct qed_bulletin_content);
vf->relative_vf_id = idx;
vf->abs_vf_id = idx + p_iov->first_vf_in_pf;
concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id);
vf->concrete_fid = concrete;
vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) |
(vf->abs_vf_id << 8);
vf->vport_id = idx + 1;
vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS;
vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS;
}
}
static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn)
{
struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
void **p_v_addr;
u16 num_vfs = 0;
num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"qed_iov_allocate_vfdb for %d VFs\n", num_vfs);
/* Allocate PF Mailbox buffer (per-VF) */
p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs;
p_v_addr = &p_iov_info->mbx_msg_virt_addr;
*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
p_iov_info->mbx_msg_size,
&p_iov_info->mbx_msg_phys_addr,
GFP_KERNEL);
if (!*p_v_addr)
return -ENOMEM;
/* Allocate PF Mailbox Reply buffer (per-VF) */
p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs;
p_v_addr = &p_iov_info->mbx_reply_virt_addr;
*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
p_iov_info->mbx_reply_size,
&p_iov_info->mbx_reply_phys_addr,
GFP_KERNEL);
if (!*p_v_addr)
return -ENOMEM;
p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) *
num_vfs;
p_v_addr = &p_iov_info->p_bulletins;
*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
p_iov_info->bulletins_size,
&p_iov_info->bulletins_phys,
GFP_KERNEL);
if (!*p_v_addr)
return -ENOMEM;
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n",
p_iov_info->mbx_msg_virt_addr,
(u64) p_iov_info->mbx_msg_phys_addr,
p_iov_info->mbx_reply_virt_addr,
(u64) p_iov_info->mbx_reply_phys_addr,
p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys);
return 0;
}
static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn)
{
struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
if (p_hwfn->pf_iov_info->mbx_msg_virt_addr)
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
p_iov_info->mbx_msg_size,
p_iov_info->mbx_msg_virt_addr,
p_iov_info->mbx_msg_phys_addr);
if (p_hwfn->pf_iov_info->mbx_reply_virt_addr)
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
p_iov_info->mbx_reply_size,
p_iov_info->mbx_reply_virt_addr,
p_iov_info->mbx_reply_phys_addr);
if (p_iov_info->p_bulletins)
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
p_iov_info->bulletins_size,
p_iov_info->p_bulletins,
p_iov_info->bulletins_phys);
}
int qed_iov_alloc(struct qed_hwfn *p_hwfn)
{
struct qed_pf_iov *p_sriov;
if (!IS_PF_SRIOV(p_hwfn)) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"No SR-IOV - no need for IOV db\n");
return 0;
}
p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL);
if (!p_sriov)
return -ENOMEM;
p_hwfn->pf_iov_info = p_sriov;
qed_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON,
qed_sriov_eqe_event);
return qed_iov_allocate_vfdb(p_hwfn);
}
void qed_iov_setup(struct qed_hwfn *p_hwfn)
{
if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn))
return;
qed_iov_setup_vfdb(p_hwfn);
}
void qed_iov_free(struct qed_hwfn *p_hwfn)
{
qed_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON);
if (IS_PF_SRIOV_ALLOC(p_hwfn)) {
qed_iov_free_vfdb(p_hwfn);
kfree(p_hwfn->pf_iov_info);
}
}
void qed_iov_free_hw_info(struct qed_dev *cdev)
{
kfree(cdev->p_iov_info);
cdev->p_iov_info = NULL;
}
int qed_iov_hw_info(struct qed_hwfn *p_hwfn)
{
struct qed_dev *cdev = p_hwfn->cdev;
int pos;
int rc;
if (IS_VF(p_hwfn->cdev))
return 0;
/* Learn the PCI configuration */
pos = pci_find_ext_capability(p_hwfn->cdev->pdev,
PCI_EXT_CAP_ID_SRIOV);
if (!pos) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n");
return 0;
}
/* Allocate a new struct for IOV information */
cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL);
if (!cdev->p_iov_info)
return -ENOMEM;
cdev->p_iov_info->pos = pos;
rc = qed_iov_pci_cfg_info(cdev);
if (rc)
return rc;
/* We want PF IOV to be synonemous with the existance of p_iov_info;
* In case the capability is published but there are no VFs, simply
* de-allocate the struct.
*/
if (!cdev->p_iov_info->total_vfs) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"IOV capabilities, but no VFs are published\n");
kfree(cdev->p_iov_info);
cdev->p_iov_info = NULL;
return 0;
}
/* First VF index based on offset is tricky:
* - If ARI is supported [likely], offset - (16 - pf_id) would
* provide the number for eng0. 2nd engine Vfs would begin
* after the first engine's VFs.
* - If !ARI, VFs would start on next device.
* so offset - (256 - pf_id) would provide the number.
* Utilize the fact that (256 - pf_id) is achieved only by later
* to differentiate between the two.
*/
if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) {
u32 first = p_hwfn->cdev->p_iov_info->offset +
p_hwfn->abs_pf_id - 16;
cdev->p_iov_info->first_vf_in_pf = first;
if (QED_PATH_ID(p_hwfn))
cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB;
} else {
u32 first = p_hwfn->cdev->p_iov_info->offset +
p_hwfn->abs_pf_id - 256;
cdev->p_iov_info->first_vf_in_pf = first;
}
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"First VF in hwfn 0x%08x\n",
cdev->p_iov_info->first_vf_in_pf);
return 0;
}
static bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn,
int vfid, bool b_fail_malicious)
{
/* Check PF supports sriov */
if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) ||
!IS_PF_SRIOV_ALLOC(p_hwfn))
return false;
/* Check VF validity */
if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious))
return false;
return true;
}
static bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid)
{
return _qed_iov_pf_sanity_check(p_hwfn, vfid, true);
}
static void qed_iov_set_vf_to_disable(struct qed_dev *cdev,
u16 rel_vf_id, u8 to_disable)
{
struct qed_vf_info *vf;
int i;
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
if (!vf)
continue;
vf->to_disable = to_disable;
}
}
static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable)
{
u16 i;
if (!IS_QED_SRIOV(cdev))
return;
for (i = 0; i < cdev->p_iov_info->total_vfs; i++)
qed_iov_set_vf_to_disable(cdev, i, to_disable);
}
static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u8 abs_vfid)
{
qed_wr(p_hwfn, p_ptt,
PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4,
1 << (abs_vfid & 0x1f));
}
static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, struct qed_vf_info *vf)
{
int i;
/* Set VF masks and configuration - pretend */
qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0);
/* unpretend */
qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
/* iterate over all queues, clear sb consumer */
for (i = 0; i < vf->num_sbs; i++)
qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
vf->igu_sbs[i],
vf->opaque_fid, true);
}
static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf, bool enable)
{
u32 igu_vf_conf;
qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION);
if (enable)
igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN;
else
igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN;
qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf);
/* unpretend */
qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
}
static int
qed_iov_enable_vf_access_msix(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u8 abs_vf_id, u8 num_sbs)
{
u8 current_max = 0;
int i;
/* For AH onward, configuration is per-PF. Find maximum of all
* the currently enabled child VFs, and set the number to be that.
*/
if (!QED_IS_BB(p_hwfn->cdev)) {
qed_for_each_vf(p_hwfn, i) {
struct qed_vf_info *p_vf;
p_vf = qed_iov_get_vf_info(p_hwfn, (u16)i, true);
if (!p_vf)
continue;
current_max = max_t(u8, current_max, p_vf->num_sbs);
}
}
if (num_sbs > current_max)
return qed_mcp_config_vf_msix(p_hwfn, p_ptt,
abs_vf_id, num_sbs);
return 0;
}
static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN;
int rc;
/* It's possible VF was previously considered malicious -
* clear the indication even if we're only going to disable VF.
*/
vf->b_malicious = false;
if (vf->to_disable)
return 0;
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"Enable internal access for vf %x [abs %x]\n",
vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf));
qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf));
qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
rc = qed_iov_enable_vf_access_msix(p_hwfn, p_ptt,
vf->abs_vf_id, vf->num_sbs);
if (rc)
return rc;
qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id);
STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf);
qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id,
p_hwfn->hw_info.hw_mode);
/* unpretend */
qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
vf->state = VF_FREE;
return rc;
}
/**
* @brief qed_iov_config_perm_table - configure the permission
* zone table.
* In E4, queue zone permission table size is 320x9. There
* are 320 VF queues for single engine device (256 for dual
* engine device), and each entry has the following format:
* {Valid, VF[7:0]}
* @param p_hwfn
* @param p_ptt
* @param vf
* @param enable
*/
static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf, u8 enable)
{
u32 reg_addr, val;
u16 qzone_id = 0;
int qid;
for (qid = 0; qid < vf->num_rxqs; qid++) {
qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid,
&qzone_id);
reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4;
val = enable ? (vf->abs_vf_id | BIT(8)) : 0;
qed_wr(p_hwfn, p_ptt, reg_addr, val);
}
}
static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
/* Reset vf in IGU - interrupts are still disabled */
qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1);
/* Permission Table */
qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true);
}
static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf, u16 num_rx_queues)
{
struct qed_igu_block *p_block;
struct cau_sb_entry sb_entry;
int qid = 0;
u32 val = 0;
if (num_rx_queues > p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov)
num_rx_queues = p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov;
p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov -= num_rx_queues;
SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id);
SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1);
SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0);
for (qid = 0; qid < num_rx_queues; qid++) {
p_block = qed_get_igu_free_sb(p_hwfn, false);
vf->igu_sbs[qid] = p_block->igu_sb_id;
p_block->status &= ~QED_IGU_STATUS_FREE;
SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid);
qed_wr(p_hwfn, p_ptt,
IGU_REG_MAPPING_MEMORY +
sizeof(u32) * p_block->igu_sb_id, val);
/* Configure igu sb in CAU which were marked valid */
qed_init_cau_sb_entry(p_hwfn, &sb_entry,
p_hwfn->rel_pf_id, vf->abs_vf_id, 1);
qed_dmae_host2grc(p_hwfn, p_ptt,
(u64)(uintptr_t)&sb_entry,
CAU_REG_SB_VAR_MEMORY +
p_block->igu_sb_id * sizeof(u64), 2, 0);
}
vf->num_sbs = (u8) num_rx_queues;
return vf->num_sbs;
}
static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
int idx, igu_id;
u32 addr, val;
/* Invalidate igu CAM lines and mark them as free */
for (idx = 0; idx < vf->num_sbs; idx++) {
igu_id = vf->igu_sbs[idx];
addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id;
val = qed_rd(p_hwfn, p_ptt, addr);
SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0);
qed_wr(p_hwfn, p_ptt, addr, val);
p_info->entry[igu_id].status |= QED_IGU_STATUS_FREE;
p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov++;
}
vf->num_sbs = 0;
}
static void qed_iov_set_link(struct qed_hwfn *p_hwfn,
u16 vfid,
struct qed_mcp_link_params *params,
struct qed_mcp_link_state *link,
struct qed_mcp_link_capabilities *p_caps)
{
struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
vfid,
false);
struct qed_bulletin_content *p_bulletin;
if (!p_vf)
return;
p_bulletin = p_vf->bulletin.p_virt;
p_bulletin->req_autoneg = params->speed.autoneg;
p_bulletin->req_adv_speed = params->speed.advertised_speeds;
p_bulletin->req_forced_speed = params->speed.forced_speed;
p_bulletin->req_autoneg_pause = params->pause.autoneg;
p_bulletin->req_forced_rx = params->pause.forced_rx;
p_bulletin->req_forced_tx = params->pause.forced_tx;
p_bulletin->req_loopback = params->loopback_mode;
p_bulletin->link_up = link->link_up;
p_bulletin->speed = link->speed;
p_bulletin->full_duplex = link->full_duplex;
p_bulletin->autoneg = link->an;
p_bulletin->autoneg_complete = link->an_complete;
p_bulletin->parallel_detection = link->parallel_detection;
p_bulletin->pfc_enabled = link->pfc_enabled;
p_bulletin->partner_adv_speed = link->partner_adv_speed;
p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en;
p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en;
p_bulletin->partner_adv_pause = link->partner_adv_pause;
p_bulletin->sfp_tx_fault = link->sfp_tx_fault;
p_bulletin->capability_speed = p_caps->speed_capabilities;
}
static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_iov_vf_init_params *p_params)
{
struct qed_mcp_link_capabilities link_caps;
struct qed_mcp_link_params link_params;
struct qed_mcp_link_state link_state;
u8 num_of_vf_avaiable_chains = 0;
struct qed_vf_info *vf = NULL;
u16 qid, num_irqs;
int rc = 0;
u32 cids;
u8 i;
vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false);
if (!vf) {
DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n");
return -EINVAL;
}
if (vf->b_init) {
DP_NOTICE(p_hwfn, "VF[%d] is already active.\n",
p_params->rel_vf_id);
return -EINVAL;
}
/* Perform sanity checking on the requested queue_id */
for (i = 0; i < p_params->num_queues; i++) {
u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE);
u16 max_vf_qzone = min_vf_qzone +
FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1;
qid = p_params->req_rx_queue[i];
if (qid < min_vf_qzone || qid > max_vf_qzone) {
DP_NOTICE(p_hwfn,
"Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n",
qid,
p_params->rel_vf_id,
min_vf_qzone, max_vf_qzone);
return -EINVAL;
}
qid = p_params->req_tx_queue[i];
if (qid > max_vf_qzone) {
DP_NOTICE(p_hwfn,
"Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n",
qid, p_params->rel_vf_id, max_vf_qzone);
return -EINVAL;
}
/* If client *really* wants, Tx qid can be shared with PF */
if (qid < min_vf_qzone)
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n",
p_params->rel_vf_id, qid, i);
}
/* Limit number of queues according to number of CIDs */
qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids);
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n",
vf->relative_vf_id, p_params->num_queues, (u16)cids);
num_irqs = min_t(u16, p_params->num_queues, ((u16)cids));
num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn,
p_ptt,
vf, num_irqs);
if (!num_of_vf_avaiable_chains) {
DP_ERR(p_hwfn, "no available igu sbs\n");
return -ENOMEM;
}
/* Choose queue number and index ranges */
vf->num_rxqs = num_of_vf_avaiable_chains;
vf->num_txqs = num_of_vf_avaiable_chains;
for (i = 0; i < vf->num_rxqs; i++) {
struct qed_vf_queue *p_queue = &vf->vf_queues[i];
p_queue->fw_rx_qid = p_params->req_rx_queue[i];
p_queue->fw_tx_qid = p_params->req_tx_queue[i];
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]\n",
vf->relative_vf_id, i, vf->igu_sbs[i],
p_queue->fw_rx_qid, p_queue->fw_tx_qid);
}
/* Update the link configuration in bulletin */
memcpy(&link_params, qed_mcp_get_link_params(p_hwfn),
sizeof(link_params));
memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state));
memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn),
sizeof(link_caps));
qed_iov_set_link(p_hwfn, p_params->rel_vf_id,
&link_params, &link_state, &link_caps);
rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf);
if (!rc) {
vf->b_init = true;
if (IS_LEAD_HWFN(p_hwfn))
p_hwfn->cdev->p_iov_info->num_vfs++;
}
return rc;
}
static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u16 rel_vf_id)
{
struct qed_mcp_link_capabilities caps;
struct qed_mcp_link_params params;
struct qed_mcp_link_state link;
struct qed_vf_info *vf = NULL;
vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
if (!vf) {
DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n");
return -EINVAL;
}
if (vf->bulletin.p_virt)
memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt));
memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info));
/* Get the link configuration back in bulletin so
* that when VFs are re-enabled they get the actual
* link configuration.
*/
memcpy(&params, qed_mcp_get_link_params(p_hwfn), sizeof(params));
memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link));
memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps));
qed_iov_set_link(p_hwfn, rel_vf_id, &params, &link, &caps);
/* Forget the VF's acquisition message */
memset(&vf->acquire, 0, sizeof(vf->acquire));
/* disablng interrupts and resetting permission table was done during
* vf-close, however, we could get here without going through vf_close
*/
/* Disable Interrupts for VF */
qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
/* Reset Permission table */
qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
vf->num_rxqs = 0;
vf->num_txqs = 0;
qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf);
if (vf->b_init) {
vf->b_init = false;
if (IS_LEAD_HWFN(p_hwfn))
p_hwfn->cdev->p_iov_info->num_vfs--;
}
return 0;
}
static bool qed_iov_tlv_supported(u16 tlvtype)
{
return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX;
}
/* place a given tlv on the tlv buffer, continuing current tlv list */
void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length)
{
struct channel_tlv *tl = (struct channel_tlv *)*offset;
tl->type = type;
tl->length = length;
/* Offset should keep pointing to next TLV (the end of the last) */
*offset += length;
/* Return a pointer to the start of the added tlv */
return *offset - length;
}
/* list the types and lengths of the tlvs on the buffer */
void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list)
{
u16 i = 1, total_length = 0;
struct channel_tlv *tlv;
do {
tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length);
/* output tlv */
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"TLV number %d: type %d, length %d\n",
i, tlv->type, tlv->length);
if (tlv->type == CHANNEL_TLV_LIST_END)
return;
/* Validate entry - protect against malicious VFs */
if (!tlv->length) {
DP_NOTICE(p_hwfn, "TLV of length 0 found\n");
return;
}
total_length += tlv->length;
if (total_length >= sizeof(struct tlv_buffer_size)) {
DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n");
return;
}
i++;
} while (1);
}
static void qed_iov_send_response(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *p_vf,
u16 length, u8 status)
{
struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
struct qed_dmae_params params;
u8 eng_vf_id;
mbx->reply_virt->default_resp.hdr.status = status;
qed_dp_tlv_list(p_hwfn, mbx->reply_virt);
eng_vf_id = p_vf->abs_vf_id;
memset(&params, 0, sizeof(struct qed_dmae_params));
params.flags = QED_DMAE_FLAG_VF_DST;
params.dst_vfid = eng_vf_id;
qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64),
mbx->req_virt->first_tlv.reply_address +
sizeof(u64),
(sizeof(union pfvf_tlvs) - sizeof(u64)) / 4,
&params);
/* Once PF copies the rc to the VF, the latter can continue
* and send an additional message. So we have to make sure the
* channel would be re-set to ready prior to that.
*/
REG_WR(p_hwfn,
GTT_BAR0_MAP_REG_USDM_RAM +
USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1);
qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys,
mbx->req_virt->first_tlv.reply_address,
sizeof(u64) / 4, &params);
}
static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn,
enum qed_iov_vport_update_flag flag)
{
switch (flag) {
case QED_IOV_VP_UPDATE_ACTIVATE:
return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
case QED_IOV_VP_UPDATE_VLAN_STRIP:
return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
case QED_IOV_VP_UPDATE_TX_SWITCH:
return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
case QED_IOV_VP_UPDATE_MCAST:
return CHANNEL_TLV_VPORT_UPDATE_MCAST;
case QED_IOV_VP_UPDATE_ACCEPT_PARAM:
return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
case QED_IOV_VP_UPDATE_RSS:
return CHANNEL_TLV_VPORT_UPDATE_RSS;
case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN:
return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
case QED_IOV_VP_UPDATE_SGE_TPA:
return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
default:
return 0;
}
}
static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf,
struct qed_iov_vf_mbx *p_mbx,
u8 status,
u16 tlvs_mask, u16 tlvs_accepted)
{
struct pfvf_def_resp_tlv *resp;
u16 size, total_len, i;
memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs));
p_mbx->offset = (u8 *)p_mbx->reply_virt;
size = sizeof(struct pfvf_def_resp_tlv);
total_len = size;
qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size);
/* Prepare response for all extended tlvs if they are found by PF */
for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) {
if (!(tlvs_mask & BIT(i)))
continue;
resp = qed_add_tlv(p_hwfn, &p_mbx->offset,
qed_iov_vport_to_tlv(p_hwfn, i), size);
if (tlvs_accepted & BIT(i))
resp->hdr.status = status;
else
resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED;
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d] - vport_update response: TLV %d, status %02x\n",
p_vf->relative_vf_id,
qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status);
total_len += size;
}
qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END,
sizeof(struct channel_list_end_tlv));
return total_len;
}
static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf_info,
u16 type, u16 length, u8 status)
{
struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx;
mbx->offset = (u8 *)mbx->reply_virt;
qed_add_tlv(p_hwfn, &mbx->offset, type, length);
qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
sizeof(struct channel_list_end_tlv));
qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status);
}
static struct
qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn,
u16 relative_vf_id,
bool b_enabled_only)
{
struct qed_vf_info *vf = NULL;
vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only);
if (!vf)
return NULL;
return &vf->p_vf_info;
}
static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid)
{
struct qed_public_vf_info *vf_info;
vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false);
if (!vf_info)
return;
/* Clear the VF mac */
eth_zero_addr(vf_info->mac);
vf_info->rx_accept_mode = 0;
vf_info->tx_accept_mode = 0;
}
static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf)
{
u32 i, j;
p_vf->vf_bulletin = 0;
p_vf->vport_instance = 0;
p_vf->configured_features = 0;
/* If VF previously requested less resources, go back to default */
p_vf->num_rxqs = p_vf->num_sbs;
p_vf->num_txqs = p_vf->num_sbs;
p_vf->num_active_rxqs = 0;
for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
for (j = 0; j < MAX_QUEUES_PER_QZONE; j++) {
if (!p_queue->cids[j].p_cid)
continue;
qed_eth_queue_cid_release(p_hwfn,
p_queue->cids[j].p_cid);
p_queue->cids[j].p_cid = NULL;
}
}
memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config));
memset(&p_vf->acquire, 0, sizeof(p_vf->acquire));
qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id);
}
/* Returns either 0, or log(size) */
static u32 qed_iov_vf_db_bar_size(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
u32 val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_BAR1_SIZE);
if (val)
return val + 11;
return 0;
}
static void
qed_iov_vf_mbx_acquire_resc_cids(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *p_vf,
struct vf_pf_resc_request *p_req,
struct pf_vf_resc *p_resp)
{
u8 num_vf_cons = p_hwfn->pf_params.eth_pf_params.num_vf_cons;
u8 db_size = qed_db_addr_vf(1, DQ_DEMS_LEGACY) -
qed_db_addr_vf(0, DQ_DEMS_LEGACY);
u32 bar_size;
p_resp->num_cids = min_t(u8, p_req->num_cids, num_vf_cons);
/* If VF didn't bother asking for QIDs than don't bother limiting
* number of CIDs. The VF doesn't care about the number, and this
* has the likely result of causing an additional acquisition.
*/
if (!(p_vf->acquire.vfdev_info.capabilities &
VFPF_ACQUIRE_CAP_QUEUE_QIDS))
return;
/* If doorbell bar was mapped by VF, limit the VF CIDs to an amount
* that would make sure doorbells for all CIDs fall within the bar.
* If it doesn't, make sure regview window is sufficient.
*/
if (p_vf->acquire.vfdev_info.capabilities &
VFPF_ACQUIRE_CAP_PHYSICAL_BAR) {
bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
if (bar_size)
bar_size = 1 << bar_size;
if (p_hwfn->cdev->num_hwfns > 1)
bar_size /= 2;
} else {
bar_size = PXP_VF_BAR0_DQ_LENGTH;
}
if (bar_size / db_size < 256)
p_resp->num_cids = min_t(u8, p_resp->num_cids,
(u8)(bar_size / db_size));
}
static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *p_vf,
struct vf_pf_resc_request *p_req,
struct pf_vf_resc *p_resp)
{
u8 i;
/* Queue related information */
p_resp->num_rxqs = p_vf->num_rxqs;
p_resp->num_txqs = p_vf->num_txqs;
p_resp->num_sbs = p_vf->num_sbs;
for (i = 0; i < p_resp->num_sbs; i++) {
p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i];
p_resp->hw_sbs[i].sb_qid = 0;
}
/* These fields are filled for backward compatibility.
* Unused by modern vfs.
*/
for (i = 0; i < p_resp->num_rxqs; i++) {
qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid,
(u16 *)&p_resp->hw_qid[i]);
p_resp->cid[i] = i;
}
/* Filter related information */
p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters,
p_req->num_mac_filters);
p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters,
p_req->num_vlan_filters);
qed_iov_vf_mbx_acquire_resc_cids(p_hwfn, p_ptt, p_vf, p_req, p_resp);
/* This isn't really needed/enforced, but some legacy VFs might depend
* on the correct filling of this field.
*/
p_resp->num_mc_filters = QED_MAX_MC_ADDRS;
/* Validate sufficient resources for VF */
if (p_resp->num_rxqs < p_req->num_rxqs ||
p_resp->num_txqs < p_req->num_txqs ||
p_resp->num_sbs < p_req->num_sbs ||
p_resp->num_mac_filters < p_req->num_mac_filters ||
p_resp->num_vlan_filters < p_req->num_vlan_filters ||
p_resp->num_mc_filters < p_req->num_mc_filters ||
p_resp->num_cids < p_req->num_cids) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x] cids [%02x/%02x]\n",
p_vf->abs_vf_id,
p_req->num_rxqs,
p_resp->num_rxqs,
p_req->num_rxqs,
p_resp->num_txqs,
p_req->num_sbs,
p_resp->num_sbs,
p_req->num_mac_filters,
p_resp->num_mac_filters,
p_req->num_vlan_filters,
p_resp->num_vlan_filters,
p_req->num_mc_filters,
p_resp->num_mc_filters,
p_req->num_cids, p_resp->num_cids);
/* Some legacy OSes are incapable of correctly handling this
* failure.
*/
if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
ETH_HSI_VER_NO_PKT_LEN_TUNN) &&
(p_vf->acquire.vfdev_info.os_type ==
VFPF_ACQUIRE_OS_WINDOWS))
return PFVF_STATUS_SUCCESS;
return PFVF_STATUS_NO_RESOURCE;
}
return PFVF_STATUS_SUCCESS;
}
static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn,
struct pfvf_stats_info *p_stats)
{
p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B +
offsetof(struct mstorm_vf_zone,
non_trigger.eth_queue_stat);
p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat);
p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B +
offsetof(struct ustorm_vf_zone,
non_trigger.eth_queue_stat);
p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat);
p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B +
offsetof(struct pstorm_vf_zone,
non_trigger.eth_queue_stat);
p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat);
p_stats->tstats.address = 0;
p_stats->tstats.len = 0;
}
static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp;
struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info;
struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire;
u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED;
struct pf_vf_resc *resc = &resp->resc;
int rc;
memset(resp, 0, sizeof(*resp));
/* Write the PF version so that VF would know which version
* is supported - might be later overriden. This guarantees that
* VF could recognize legacy PF based on lack of versions in reply.
*/
pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR;
pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR;
if (vf->state != VF_FREE && vf->state != VF_STOPPED) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d] sent ACQUIRE but is already in state %d - fail request\n",
vf->abs_vf_id, vf->state);
goto out;
}
/* Validate FW compatibility */
if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) {
if (req->vfdev_info.capabilities &
VFPF_ACQUIRE_CAP_PRE_FP_HSI) {
struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info;
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d] is pre-fastpath HSI\n",
vf->abs_vf_id);
p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR;
p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN;
} else {
DP_INFO(p_hwfn,
"VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's faspath HSI %02x.%02x\n",
vf->abs_vf_id,
req->vfdev_info.eth_fp_hsi_major,
req->vfdev_info.eth_fp_hsi_minor,
ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
goto out;
}
}
/* On 100g PFs, prevent old VFs from loading */
if ((p_hwfn->cdev->num_hwfns > 1) &&
!(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) {
DP_INFO(p_hwfn,
"VF[%d] is running an old driver that doesn't support 100g\n",
vf->abs_vf_id);
goto out;
}
/* Store the acquire message */
memcpy(&vf->acquire, req, sizeof(vf->acquire));
vf->opaque_fid = req->vfdev_info.opaque_fid;
vf->vf_bulletin = req->bulletin_addr;
vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ?
vf->bulletin.size : req->bulletin_size;
/* fill in pfdev info */
pfdev_info->chip_num = p_hwfn->cdev->chip_num;
pfdev_info->db_size = 0;
pfdev_info->indices_per_sb = PIS_PER_SB_E4;
pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED |
PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE;
if (p_hwfn->cdev->num_hwfns > 1)
pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G;
/* Share our ability to use multiple queue-ids only with VFs
* that request it.
*/
if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS)
pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_QUEUE_QIDS;
/* Share the sizes of the bars with VF */
resp->pfdev_info.bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info);
memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN);
pfdev_info->fw_major = FW_MAJOR_VERSION;
pfdev_info->fw_minor = FW_MINOR_VERSION;
pfdev_info->fw_rev = FW_REVISION_VERSION;
pfdev_info->fw_eng = FW_ENGINEERING_VERSION;
/* Incorrect when legacy, but doesn't matter as legacy isn't reading
* this field.
*/
pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR,
req->vfdev_info.eth_fp_hsi_minor);
pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX;
qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL);
pfdev_info->dev_type = p_hwfn->cdev->type;
pfdev_info->chip_rev = p_hwfn->cdev->chip_rev;
/* Fill resources available to VF; Make sure there are enough to
* satisfy the VF's request.
*/
vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf,
&req->resc_request, resc);
if (vfpf_status != PFVF_STATUS_SUCCESS)
goto out;
/* Start the VF in FW */
rc = qed_sp_vf_start(p_hwfn, vf);
if (rc) {
DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id);
vfpf_status = PFVF_STATUS_FAILURE;
goto out;
}
/* Fill agreed size of bulletin board in response */
resp->bulletin_size = vf->bulletin.size;
qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt);
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n"
"resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n",
vf->abs_vf_id,
resp->pfdev_info.chip_num,
resp->pfdev_info.db_size,
resp->pfdev_info.indices_per_sb,
resp->pfdev_info.capabilities,
resc->num_rxqs,
resc->num_txqs,
resc->num_sbs,
resc->num_mac_filters,
resc->num_vlan_filters);
vf->state = VF_ACQUIRED;
/* Prepare Response */
out:
qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE,
sizeof(struct pfvf_acquire_resp_tlv), vfpf_status);
}
static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf, bool val)
{
struct qed_sp_vport_update_params params;
int rc;
if (val == p_vf->spoof_chk) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Spoofchk value[%d] is already configured\n", val);
return 0;
}
memset(&params, 0, sizeof(struct qed_sp_vport_update_params));
params.opaque_fid = p_vf->opaque_fid;
params.vport_id = p_vf->vport_id;
params.update_anti_spoofing_en_flg = 1;
params.anti_spoofing_en = val;
rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
if (!rc) {
p_vf->spoof_chk = val;
p_vf->req_spoofchk_val = p_vf->spoof_chk;
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Spoofchk val[%d] configured\n", val);
} else {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Spoofchk configuration[val:%d] failed for VF[%d]\n",
val, p_vf->relative_vf_id);
}
return rc;
}
static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf)
{
struct qed_filter_ucast filter;
int rc = 0;
int i;
memset(&filter, 0, sizeof(filter));
filter.is_rx_filter = 1;
filter.is_tx_filter = 1;
filter.vport_to_add_to = p_vf->vport_id;
filter.opcode = QED_FILTER_ADD;
/* Reconfigure vlans */
for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
if (!p_vf->shadow_config.vlans[i].used)
continue;
filter.type = QED_FILTER_VLAN;
filter.vlan = p_vf->shadow_config.vlans[i].vid;
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Reconfiguring VLAN [0x%04x] for VF [%04x]\n",
filter.vlan, p_vf->relative_vf_id);
rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
&filter, QED_SPQ_MODE_CB, NULL);
if (rc) {
DP_NOTICE(p_hwfn,
"Failed to configure VLAN [%04x] to VF [%04x]\n",
filter.vlan, p_vf->relative_vf_id);
break;
}
}
return rc;
}
static int
qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf, u64 events)
{
int rc = 0;
if ((events & BIT(VLAN_ADDR_FORCED)) &&
!(p_vf->configured_features & (1 << VLAN_ADDR_FORCED)))
rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf);
return rc;
}
static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf, u64 events)
{
int rc = 0;
struct qed_filter_ucast filter;
if (!p_vf->vport_instance)
return -EINVAL;
if ((events & BIT(MAC_ADDR_FORCED)) ||
p_vf->p_vf_info.is_trusted_configured) {
/* Since there's no way [currently] of removing the MAC,
* we can always assume this means we need to force it.
*/
memset(&filter, 0, sizeof(filter));
filter.type = QED_FILTER_MAC;
filter.opcode = QED_FILTER_REPLACE;
filter.is_rx_filter = 1;
filter.is_tx_filter = 1;
filter.vport_to_add_to = p_vf->vport_id;
ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac);
rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
&filter, QED_SPQ_MODE_CB, NULL);
if (rc) {
DP_NOTICE(p_hwfn,
"PF failed to configure MAC for VF\n");
return rc;
}
if (p_vf->p_vf_info.is_trusted_configured)
p_vf->configured_features |=
BIT(VFPF_BULLETIN_MAC_ADDR);
else
p_vf->configured_features |=
BIT(MAC_ADDR_FORCED);
}
if (events & BIT(VLAN_ADDR_FORCED)) {
struct qed_sp_vport_update_params vport_update;
u8 removal;
int i;
memset(&filter, 0, sizeof(filter));
filter.type = QED_FILTER_VLAN;
filter.is_rx_filter = 1;
filter.is_tx_filter = 1;
filter.vport_to_add_to = p_vf->vport_id;
filter.vlan = p_vf->bulletin.p_virt->pvid;
filter.opcode = filter.vlan ? QED_FILTER_REPLACE :
QED_FILTER_FLUSH;
/* Send the ramrod */
rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
&filter, QED_SPQ_MODE_CB, NULL);
if (rc) {
DP_NOTICE(p_hwfn,
"PF failed to configure VLAN for VF\n");
return rc;
}
/* Update the default-vlan & silent vlan stripping */
memset(&vport_update, 0, sizeof(vport_update));
vport_update.opaque_fid = p_vf->opaque_fid;
vport_update.vport_id = p_vf->vport_id;
vport_update.update_default_vlan_enable_flg = 1;
vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0;
vport_update.update_default_vlan_flg = 1;
vport_update.default_vlan = filter.vlan;
vport_update.update_inner_vlan_removal_flg = 1;
removal = filter.vlan ? 1
: p_vf->shadow_config.inner_vlan_removal;
vport_update.inner_vlan_removal_flg = removal;
vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0;
rc = qed_sp_vport_update(p_hwfn,
&vport_update,
QED_SPQ_MODE_EBLOCK, NULL);
if (rc) {
DP_NOTICE(p_hwfn,
"PF failed to configure VF vport for vlan\n");
return rc;
}
/* Update all the Rx queues */
for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
struct qed_queue_cid *p_cid = NULL;
/* There can be at most 1 Rx queue on qzone. Find it */
p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
if (!p_cid)
continue;
rc = qed_sp_eth_rx_queues_update(p_hwfn,
(void **)&p_cid,
1, 0, 1,
QED_SPQ_MODE_EBLOCK,
NULL);
if (rc) {
DP_NOTICE(p_hwfn,
"Failed to send Rx update fo queue[0x%04x]\n",
p_cid->rel.queue_id);
return rc;
}
}
if (filter.vlan)
p_vf->configured_features |= 1 << VLAN_ADDR_FORCED;
else
p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED);
}
/* If forced features are terminated, we need to configure the shadow
* configuration back again.
*/
if (events)
qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events);
return rc;
}
static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
struct qed_sp_vport_start_params params = { 0 };
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
struct vfpf_vport_start_tlv *start;
u8 status = PFVF_STATUS_SUCCESS;
struct qed_vf_info *vf_info;
u64 *p_bitmap;
int sb_id;
int rc;
vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true);
if (!vf_info) {
DP_NOTICE(p_hwfn->cdev,
"Failed to get VF info, invalid vfid [%d]\n",
vf->relative_vf_id);
return;
}
vf->state = VF_ENABLED;
start = &mbx->req_virt->start_vport;
qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf);
/* Initialize Status block in CAU */
for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) {
if (!start->sb_addr[sb_id]) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d] did not fill the address of SB %d\n",
vf->relative_vf_id, sb_id);
break;
}
qed_int_cau_conf_sb(p_hwfn, p_ptt,
start->sb_addr[sb_id],
vf->igu_sbs[sb_id], vf->abs_vf_id, 1);
}
vf->mtu = start->mtu;
vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal;
/* Take into consideration configuration forced by hypervisor;
* If none is configured, use the supplied VF values [for old
* vfs that would still be fine, since they passed '0' as padding].
*/
p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap;
if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) {
u8 vf_req = start->only_untagged;
vf_info->bulletin.p_virt->default_only_untagged = vf_req;
*p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT;
}
params.tpa_mode = start->tpa_mode;
params.remove_inner_vlan = start->inner_vlan_removal;
params.tx_switching = true;
params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged;
params.drop_ttl0 = false;
params.concrete_fid = vf->concrete_fid;
params.opaque_fid = vf->opaque_fid;
params.vport_id = vf->vport_id;
params.max_buffers_per_cqe = start->max_buffers_per_cqe;
params.mtu = vf->mtu;
/* Non trusted VFs should enable control frame filtering */
params.check_mac = !vf->p_vf_info.is_trusted_configured;
rc = qed_sp_eth_vport_start(p_hwfn, &params);
if (rc) {
DP_ERR(p_hwfn,
"qed_iov_vf_mbx_start_vport returned error %d\n", rc);
status = PFVF_STATUS_FAILURE;
} else {
vf->vport_instance++;
/* Force configuration if needed on the newly opened vport */
qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap);
__qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val);
}
qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START,
sizeof(struct pfvf_def_resp_tlv), status);
}
static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
u8 status = PFVF_STATUS_SUCCESS;
int rc;
vf->vport_instance--;
vf->spoof_chk = false;
if ((qed_iov_validate_active_rxq(p_hwfn, vf)) ||
(qed_iov_validate_active_txq(p_hwfn, vf))) {
vf->b_malicious = true;
DP_NOTICE(p_hwfn,
"VF [%02x] - considered malicious; Unable to stop RX/TX queuess\n",
vf->abs_vf_id);
status = PFVF_STATUS_MALICIOUS;
goto out;
}
rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id);
if (rc) {
DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n",
rc);
status = PFVF_STATUS_FAILURE;
}
/* Forget the configuration on the vport */
vf->configured_features = 0;
memset(&vf->shadow_config, 0, sizeof(vf->shadow_config));
out:
qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN,
sizeof(struct pfvf_def_resp_tlv), status);
}
static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf,
u8 status, bool b_legacy)
{
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
struct pfvf_start_queue_resp_tlv *p_tlv;
struct vfpf_start_rxq_tlv *req;
u16 length;
mbx->offset = (u8 *)mbx->reply_virt;
/* Taking a bigger struct instead of adding a TLV to list was a
* mistake, but one which we're now stuck with, as some older
* clients assume the size of the previous response.
*/
if (!b_legacy)
length = sizeof(*p_tlv);
else
length = sizeof(struct pfvf_def_resp_tlv);
p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ,
length);
qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
sizeof(struct channel_list_end_tlv));
/* Update the TLV with the response */
if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) {
req = &mbx->req_virt->start_rxq;
p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B +
offsetof(struct mstorm_vf_zone,
non_trigger.eth_rx_queue_producers) +
sizeof(struct eth_rx_prod_data) * req->rx_qid;
}
qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
}
static u8 qed_iov_vf_mbx_qid(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf, bool b_is_tx)
{
struct qed_iov_vf_mbx *p_mbx = &p_vf->vf_mbx;
struct vfpf_qid_tlv *p_qid_tlv;
/* Search for the qid if the VF published its going to provide it */
if (!(p_vf->acquire.vfdev_info.capabilities &
VFPF_ACQUIRE_CAP_QUEUE_QIDS)) {
if (b_is_tx)
return QED_IOV_LEGACY_QID_TX;
else
return QED_IOV_LEGACY_QID_RX;
}
p_qid_tlv = (struct vfpf_qid_tlv *)
qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
CHANNEL_TLV_QID);
if (!p_qid_tlv) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%2x]: Failed to provide qid\n",
p_vf->relative_vf_id);
return QED_IOV_QID_INVALID;
}
if (p_qid_tlv->qid >= MAX_QUEUES_PER_QZONE) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%02x]: Provided qid out-of-bounds %02x\n",
p_vf->relative_vf_id, p_qid_tlv->qid);
return QED_IOV_QID_INVALID;
}
return p_qid_tlv->qid;
}
static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
struct qed_queue_start_common_params params;
struct qed_queue_cid_vf_params vf_params;
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
u8 status = PFVF_STATUS_NO_RESOURCE;
u8 qid_usage_idx, vf_legacy = 0;
struct vfpf_start_rxq_tlv *req;
struct qed_vf_queue *p_queue;
struct qed_queue_cid *p_cid;
struct qed_sb_info sb_dummy;
int rc;
req = &mbx->req_virt->start_rxq;
if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid,
QED_IOV_VALIDATE_Q_DISABLE) ||
!qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
goto out;
qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
if (qid_usage_idx == QED_IOV_QID_INVALID)
goto out;
p_queue = &vf->vf_queues[req->rx_qid];
if (p_queue->cids[qid_usage_idx].p_cid)
goto out;
vf_legacy = qed_vf_calculate_legacy(vf);
/* Acquire a new queue-cid */
memset(&params, 0, sizeof(params));
params.queue_id = p_queue->fw_rx_qid;
params.vport_id = vf->vport_id;
params.stats_id = vf->abs_vf_id + 0x10;
/* Since IGU index is passed via sb_info, construct a dummy one */
memset(&sb_dummy, 0, sizeof(sb_dummy));
sb_dummy.igu_sb_id = req->hw_sb;
params.p_sb = &sb_dummy;
params.sb_idx = req->sb_index;
memset(&vf_params, 0, sizeof(vf_params));
vf_params.vfid = vf->relative_vf_id;
vf_params.vf_qid = (u8)req->rx_qid;
vf_params.vf_legacy = vf_legacy;
vf_params.qid_usage_idx = qid_usage_idx;
p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
&params, true, &vf_params);
if (!p_cid)
goto out;
/* Legacy VFs have their Producers in a different location, which they
* calculate on their own and clean the producer prior to this.
*/
if (!(vf_legacy & QED_QCID_LEGACY_VF_RX_PROD))
REG_WR(p_hwfn,
GTT_BAR0_MAP_REG_MSDM_RAM +
MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid),
0);
rc = qed_eth_rxq_start_ramrod(p_hwfn, p_cid,
req->bd_max_bytes,
req->rxq_addr,
req->cqe_pbl_addr, req->cqe_pbl_size);
if (rc) {
status = PFVF_STATUS_FAILURE;
qed_eth_queue_cid_release(p_hwfn, p_cid);
} else {
p_queue->cids[qid_usage_idx].p_cid = p_cid;
p_queue->cids[qid_usage_idx].b_is_tx = false;
status = PFVF_STATUS_SUCCESS;
vf->num_active_rxqs++;
}
out:
qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status,
!!(vf_legacy &
QED_QCID_LEGACY_VF_RX_PROD));
}
static void
qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp,
struct qed_tunnel_info *p_tun,
u16 tunn_feature_mask)
{
p_resp->tunn_feature_mask = tunn_feature_mask;
p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled;
p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled;
p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled;
p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled;
p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled;
p_resp->vxlan_clss = p_tun->vxlan.tun_cls;
p_resp->l2gre_clss = p_tun->l2_gre.tun_cls;
p_resp->ipgre_clss = p_tun->ip_gre.tun_cls;
p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls;
p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls;
p_resp->geneve_udp_port = p_tun->geneve_port.port;
p_resp->vxlan_udp_port = p_tun->vxlan_port.port;
}
static void
__qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
struct qed_tunn_update_type *p_tun,
enum qed_tunn_mode mask, u8 tun_cls)
{
if (p_req->tun_mode_update_mask & BIT(mask)) {
p_tun->b_update_mode = true;
if (p_req->tunn_mode & BIT(mask))
p_tun->b_mode_enabled = true;
}
p_tun->tun_cls = tun_cls;
}
static void
qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
struct qed_tunn_update_type *p_tun,
struct qed_tunn_update_udp_port *p_port,
enum qed_tunn_mode mask,
u8 tun_cls, u8 update_port, u16 port)
{
if (update_port) {
p_port->b_update_port = true;
p_port->port = port;
}
__qed_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls);
}
static bool
qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req)
{
bool b_update_requested = false;
if (p_req->tun_mode_update_mask || p_req->update_tun_cls ||
p_req->update_geneve_port || p_req->update_vxlan_port)
b_update_requested = true;
return b_update_requested;
}
static void qed_pf_validate_tunn_mode(struct qed_tunn_update_type *tun, int *rc)
{
if (tun->b_update_mode && !tun->b_mode_enabled) {
tun->b_update_mode = false;
*rc = -EINVAL;
}
}
static int
qed_pf_validate_modify_tunn_config(struct qed_hwfn *p_hwfn,
u16 *tun_features, bool *update,
struct qed_tunnel_info *tun_src)
{
struct qed_eth_cb_ops *ops = p_hwfn->cdev->protocol_ops.eth;
struct qed_tunnel_info *tun = &p_hwfn->cdev->tunnel;
u16 bultn_vxlan_port, bultn_geneve_port;
void *cookie = p_hwfn->cdev->ops_cookie;
int i, rc = 0;
*tun_features = p_hwfn->cdev->tunn_feature_mask;
bultn_vxlan_port = tun->vxlan_port.port;
bultn_geneve_port = tun->geneve_port.port;
qed_pf_validate_tunn_mode(&tun_src->vxlan, &rc);
qed_pf_validate_tunn_mode(&tun_src->l2_geneve, &rc);
qed_pf_validate_tunn_mode(&tun_src->ip_geneve, &rc);
qed_pf_validate_tunn_mode(&tun_src->l2_gre, &rc);
qed_pf_validate_tunn_mode(&tun_src->ip_gre, &rc);
if ((tun_src->b_update_rx_cls || tun_src->b_update_tx_cls) &&
(tun_src->vxlan.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
tun_src->l2_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
tun_src->ip_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
tun_src->l2_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
tun_src->ip_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN)) {
tun_src->b_update_rx_cls = false;
tun_src->b_update_tx_cls = false;
rc = -EINVAL;
}
if (tun_src->vxlan_port.b_update_port) {
if (tun_src->vxlan_port.port == tun->vxlan_port.port) {
tun_src->vxlan_port.b_update_port = false;
} else {
*update = true;
bultn_vxlan_port = tun_src->vxlan_port.port;
}
}
if (tun_src->geneve_port.b_update_port) {
if (tun_src->geneve_port.port == tun->geneve_port.port) {
tun_src->geneve_port.b_update_port = false;
} else {
*update = true;
bultn_geneve_port = tun_src->geneve_port.port;
}
}
qed_for_each_vf(p_hwfn, i) {
qed_iov_bulletin_set_udp_ports(p_hwfn, i, bultn_vxlan_port,
bultn_geneve_port);
}
qed_schedule_iov(p_hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
ops->ports_update(cookie, bultn_vxlan_port, bultn_geneve_port);
return rc;
}
static void qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *p_vf)
{
struct qed_tunnel_info *p_tun = &p_hwfn->cdev->tunnel;
struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
struct pfvf_update_tunn_param_tlv *p_resp;
struct vfpf_update_tunn_param_tlv *p_req;
u8 status = PFVF_STATUS_SUCCESS;
bool b_update_required = false;
struct qed_tunnel_info tunn;
u16 tunn_feature_mask = 0;
int i, rc = 0;
mbx->offset = (u8 *)mbx->reply_virt;
memset(&tunn, 0, sizeof(tunn));
p_req = &mbx->req_virt->tunn_param_update;
if (!qed_iov_pf_validate_tunn_param(p_req)) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"No tunnel update requested by VF\n");
status = PFVF_STATUS_FAILURE;
goto send_resp;
}
tunn.b_update_rx_cls = p_req->update_tun_cls;
tunn.b_update_tx_cls = p_req->update_tun_cls;
qed_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port,
QED_MODE_VXLAN_TUNN, p_req->vxlan_clss,
p_req->update_vxlan_port,
p_req->vxlan_port);
qed_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port,
QED_MODE_L2GENEVE_TUNN,
p_req->l2geneve_clss,
p_req->update_geneve_port,
p_req->geneve_port);
__qed_iov_pf_update_tun_param(p_req, &tunn.ip_geneve,
QED_MODE_IPGENEVE_TUNN,
p_req->ipgeneve_clss);
__qed_iov_pf_update_tun_param(p_req, &tunn.l2_gre,
QED_MODE_L2GRE_TUNN, p_req->l2gre_clss);
__qed_iov_pf_update_tun_param(p_req, &tunn.ip_gre,
QED_MODE_IPGRE_TUNN, p_req->ipgre_clss);
/* If PF modifies VF's req then it should
* still return an error in case of partial configuration
* or modified configuration as opposed to requested one.
*/
rc = qed_pf_validate_modify_tunn_config(p_hwfn, &tunn_feature_mask,
&b_update_required, &tunn);
if (rc)
status = PFVF_STATUS_FAILURE;
/* If QED client is willing to update anything ? */
if (b_update_required) {
u16 geneve_port;
rc = qed_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn,
QED_SPQ_MODE_EBLOCK, NULL);
if (rc)
status = PFVF_STATUS_FAILURE;
geneve_port = p_tun->geneve_port.port;
qed_for_each_vf(p_hwfn, i) {
qed_iov_bulletin_set_udp_ports(p_hwfn, i,
p_tun->vxlan_port.port,
geneve_port);
}
}
send_resp:
p_resp = qed_add_tlv(p_hwfn, &mbx->offset,
CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp));
qed_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask);
qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
sizeof(struct channel_list_end_tlv));
qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
}
static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *p_vf,
u32 cid, u8 status)
{
struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
struct pfvf_start_queue_resp_tlv *p_tlv;
bool b_legacy = false;
u16 length;
mbx->offset = (u8 *)mbx->reply_virt;
/* Taking a bigger struct instead of adding a TLV to list was a
* mistake, but one which we're now stuck with, as some older
* clients assume the size of the previous response.
*/
if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
ETH_HSI_VER_NO_PKT_LEN_TUNN)
b_legacy = true;
if (!b_legacy)
length = sizeof(*p_tlv);
else
length = sizeof(struct pfvf_def_resp_tlv);
p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ,
length);
qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
sizeof(struct channel_list_end_tlv));
/* Update the TLV with the response */
if ((status == PFVF_STATUS_SUCCESS) && !b_legacy)
p_tlv->offset = qed_db_addr_vf(cid, DQ_DEMS_LEGACY);
qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status);
}
static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
struct qed_queue_start_common_params params;
struct qed_queue_cid_vf_params vf_params;
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
u8 status = PFVF_STATUS_NO_RESOURCE;
struct vfpf_start_txq_tlv *req;
struct qed_vf_queue *p_queue;
struct qed_queue_cid *p_cid;
struct qed_sb_info sb_dummy;
u8 qid_usage_idx, vf_legacy;
u32 cid = 0;
int rc;
u16 pq;
memset(&params, 0, sizeof(params));
req = &mbx->req_virt->start_txq;
if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid,
QED_IOV_VALIDATE_Q_NA) ||
!qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
goto out;
qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
if (qid_usage_idx == QED_IOV_QID_INVALID)
goto out;
p_queue = &vf->vf_queues[req->tx_qid];
if (p_queue->cids[qid_usage_idx].p_cid)
goto out;
vf_legacy = qed_vf_calculate_legacy(vf);
/* Acquire a new queue-cid */
params.queue_id = p_queue->fw_tx_qid;
params.vport_id = vf->vport_id;
params.stats_id = vf->abs_vf_id + 0x10;
/* Since IGU index is passed via sb_info, construct a dummy one */
memset(&sb_dummy, 0, sizeof(sb_dummy));
sb_dummy.igu_sb_id = req->hw_sb;
params.p_sb = &sb_dummy;
params.sb_idx = req->sb_index;
memset(&vf_params, 0, sizeof(vf_params));
vf_params.vfid = vf->relative_vf_id;
vf_params.vf_qid = (u8)req->tx_qid;
vf_params.vf_legacy = vf_legacy;
vf_params.qid_usage_idx = qid_usage_idx;
p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
&params, false, &vf_params);
if (!p_cid)
goto out;
pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id);
rc = qed_eth_txq_start_ramrod(p_hwfn, p_cid,
req->pbl_addr, req->pbl_size, pq);
if (rc) {
status = PFVF_STATUS_FAILURE;
qed_eth_queue_cid_release(p_hwfn, p_cid);
} else {
status = PFVF_STATUS_SUCCESS;
p_queue->cids[qid_usage_idx].p_cid = p_cid;
p_queue->cids[qid_usage_idx].b_is_tx = true;
cid = p_cid->cid;
}
out:
qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, cid, status);
}
static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn,
struct qed_vf_info *vf,
u16 rxq_id,
u8 qid_usage_idx, bool cqe_completion)
{
struct qed_vf_queue *p_queue;
int rc = 0;
if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, QED_IOV_VALIDATE_Q_NA)) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d] Tried Closing Rx 0x%04x.%02x which is inactive\n",
vf->relative_vf_id, rxq_id, qid_usage_idx);
return -EINVAL;
}
p_queue = &vf->vf_queues[rxq_id];
/* We've validated the index and the existence of the active RXQ -
* now we need to make sure that it's using the correct qid.
*/
if (!p_queue->cids[qid_usage_idx].p_cid ||
p_queue->cids[qid_usage_idx].b_is_tx) {
struct qed_queue_cid *p_cid;
p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d] - Tried Closing Rx 0x%04x.%02x, but Rx is at %04x.%02x\n",
vf->relative_vf_id,
rxq_id, qid_usage_idx, rxq_id, p_cid->qid_usage_idx);
return -EINVAL;
}
/* Now that we know we have a valid Rx-queue - close it */
rc = qed_eth_rx_queue_stop(p_hwfn,
p_queue->cids[qid_usage_idx].p_cid,
false, cqe_completion);
if (rc)
return rc;
p_queue->cids[qid_usage_idx].p_cid = NULL;
vf->num_active_rxqs--;
return 0;
}
static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn,
struct qed_vf_info *vf,
u16 txq_id, u8 qid_usage_idx)
{
struct qed_vf_queue *p_queue;
int rc = 0;
if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, QED_IOV_VALIDATE_Q_NA))
return -EINVAL;
p_queue = &vf->vf_queues[txq_id];
if (!p_queue->cids[qid_usage_idx].p_cid ||
!p_queue->cids[qid_usage_idx].b_is_tx)
return -EINVAL;
rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->cids[qid_usage_idx].p_cid);
if (rc)
return rc;
p_queue->cids[qid_usage_idx].p_cid = NULL;
return 0;
}
static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
u16 length = sizeof(struct pfvf_def_resp_tlv);
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
u8 status = PFVF_STATUS_FAILURE;
struct vfpf_stop_rxqs_tlv *req;
u8 qid_usage_idx;
int rc;
/* There has never been an official driver that used this interface
* for stopping multiple queues, and it is now considered deprecated.
* Validate this isn't used here.
*/
req = &mbx->req_virt->stop_rxqs;
if (req->num_rxqs != 1) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Odd; VF[%d] tried stopping multiple Rx queues\n",
vf->relative_vf_id);
status = PFVF_STATUS_NOT_SUPPORTED;
goto out;
}
/* Find which qid-index is associated with the queue */
qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
if (qid_usage_idx == QED_IOV_QID_INVALID)
goto out;
rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid,
qid_usage_idx, req->cqe_completion);
if (!rc)
status = PFVF_STATUS_SUCCESS;
out:
qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS,
length, status);
}
static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
u16 length = sizeof(struct pfvf_def_resp_tlv);
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
u8 status = PFVF_STATUS_FAILURE;
struct vfpf_stop_txqs_tlv *req;
u8 qid_usage_idx;
int rc;
/* There has never been an official driver that used this interface
* for stopping multiple queues, and it is now considered deprecated.
* Validate this isn't used here.
*/
req = &mbx->req_virt->stop_txqs;
if (req->num_txqs != 1) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Odd; VF[%d] tried stopping multiple Tx queues\n",
vf->relative_vf_id);
status = PFVF_STATUS_NOT_SUPPORTED;
goto out;
}
/* Find which qid-index is associated with the queue */
qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
if (qid_usage_idx == QED_IOV_QID_INVALID)
goto out;
rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, qid_usage_idx);
if (!rc)
status = PFVF_STATUS_SUCCESS;
out:
qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS,
length, status);
}
static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF];
u16 length = sizeof(struct pfvf_def_resp_tlv);
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
struct vfpf_update_rxq_tlv *req;
u8 status = PFVF_STATUS_FAILURE;
u8 complete_event_flg;
u8 complete_cqe_flg;
u8 qid_usage_idx;
int rc;
u8 i;
req = &mbx->req_virt->update_rxq;
complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG);
complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG);
qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
if (qid_usage_idx == QED_IOV_QID_INVALID)
goto out;
/* There shouldn't exist a VF that uses queue-qids yet uses this
* API with multiple Rx queues. Validate this.
*/
if ((vf->acquire.vfdev_info.capabilities &
VFPF_ACQUIRE_CAP_QUEUE_QIDS) && req->num_rxqs != 1) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d] supports QIDs but sends multiple queues\n",
vf->relative_vf_id);
goto out;
}
/* Validate inputs - for the legacy case this is still true since
* qid_usage_idx for each Rx queue would be LEGACY_QID_RX.
*/
for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) {
if (!qed_iov_validate_rxq(p_hwfn, vf, i,
QED_IOV_VALIDATE_Q_NA) ||
!vf->vf_queues[i].cids[qid_usage_idx].p_cid ||
vf->vf_queues[i].cids[qid_usage_idx].b_is_tx) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d]: Incorrect Rxqs [%04x, %02x]\n",
vf->relative_vf_id, req->rx_qid,
req->num_rxqs);
goto out;
}
}
/* Prepare the handlers */
for (i = 0; i < req->num_rxqs; i++) {
u16 qid = req->rx_qid + i;
handlers[i] = vf->vf_queues[qid].cids[qid_usage_idx].p_cid;
}
rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers,
req->num_rxqs,
complete_cqe_flg,
complete_event_flg,
QED_SPQ_MODE_EBLOCK, NULL);
if (rc)
goto out;
status = PFVF_STATUS_SUCCESS;
out:
qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ,
length, status);
}
void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn,
void *p_tlvs_list, u16 req_type)
{
struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list;
int len = 0;
do {
if (!p_tlv->length) {
DP_NOTICE(p_hwfn, "Zero length TLV found\n");
return NULL;
}
if (p_tlv->type == req_type) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Extended tlv type %d, length %d found\n",
p_tlv->type, p_tlv->length);
return p_tlv;
}
len += p_tlv->length;
p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length);
if ((len + p_tlv->length) > TLV_BUFFER_SIZE) {
DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n");
return NULL;
}
} while (p_tlv->type != CHANNEL_TLV_LIST_END);
return NULL;
}
static void
qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn,
struct qed_sp_vport_update_params *p_data,
struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
{
struct vfpf_vport_update_activate_tlv *p_act_tlv;
u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
p_act_tlv = (struct vfpf_vport_update_activate_tlv *)
qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
if (!p_act_tlv)
return;
p_data->update_vport_active_rx_flg = p_act_tlv->update_rx;
p_data->vport_active_rx_flg = p_act_tlv->active_rx;
p_data->update_vport_active_tx_flg = p_act_tlv->update_tx;
p_data->vport_active_tx_flg = p_act_tlv->active_tx;
*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE;
}
static void
qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn,
struct qed_sp_vport_update_params *p_data,
struct qed_vf_info *p_vf,
struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
{
struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv;
u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *)
qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
if (!p_vlan_tlv)
return;
p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan;
/* Ignore the VF request if we're forcing a vlan */
if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) {
p_data->update_inner_vlan_removal_flg = 1;
p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan;
}
*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP;
}
static void
qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn,
struct qed_sp_vport_update_params *p_data,
struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
{
struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv;
u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *)
qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
tlv);
if (!p_tx_switch_tlv)
return;
p_data->update_tx_switching_flg = 1;
p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching;
*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH;
}
static void
qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn,
struct qed_sp_vport_update_params *p_data,
struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
{
struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv;
u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST;
p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *)
qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
if (!p_mcast_tlv)
return;
p_data->update_approx_mcast_flg = 1;
memcpy(p_data->bins, p_mcast_tlv->bins,
sizeof(u32) * ETH_MULTICAST_MAC_BINS_IN_REGS);
*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST;
}
static void
qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn,
struct qed_sp_vport_update_params *p_data,
struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
{
struct qed_filter_accept_flags *p_flags = &p_data->accept_flags;
struct vfpf_vport_update_accept_param_tlv *p_accept_tlv;
u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *)
qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
if (!p_accept_tlv)
return;
p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode;
p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter;
p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode;
p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter;
*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM;
}
static void
qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn,
struct qed_sp_vport_update_params *p_data,
struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
{
struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan;
u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *)
qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
tlv);
if (!p_accept_any_vlan)
return;
p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan;
p_data->update_accept_any_vlan_flg =
p_accept_any_vlan->update_accept_any_vlan_flg;
*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN;
}
static void
qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn,
struct qed_vf_info *vf,
struct qed_sp_vport_update_params *p_data,
struct qed_rss_params *p_rss,
struct qed_iov_vf_mbx *p_mbx,
u16 *tlvs_mask, u16 *tlvs_accepted)
{
struct vfpf_vport_update_rss_tlv *p_rss_tlv;
u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS;
bool b_reject = false;
u16 table_size;
u16 i, q_idx;
p_rss_tlv = (struct vfpf_vport_update_rss_tlv *)
qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
if (!p_rss_tlv) {
p_data->rss_params = NULL;
return;
}
memset(p_rss, 0, sizeof(struct qed_rss_params));
p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags &
VFPF_UPDATE_RSS_CONFIG_FLAG);
p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags &
VFPF_UPDATE_RSS_CAPS_FLAG);
p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags &
VFPF_UPDATE_RSS_IND_TABLE_FLAG);
p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags &
VFPF_UPDATE_RSS_KEY_FLAG);
p_rss->rss_enable = p_rss_tlv->rss_enable;
p_rss->rss_eng_id = vf->relative_vf_id + 1;
p_rss->rss_caps = p_rss_tlv->rss_caps;
p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log;
memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key));
table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table),
(1 << p_rss_tlv->rss_table_size_log));
for (i = 0; i < table_size; i++) {
struct qed_queue_cid *p_cid;
q_idx = p_rss_tlv->rss_ind_table[i];
if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx,
QED_IOV_VALIDATE_Q_ENABLE)) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d]: Omitting RSS due to wrong queue %04x\n",
vf->relative_vf_id, q_idx);
b_reject = true;
goto out;
}
p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[q_idx]);
p_rss->rss_ind_table[i] = p_cid;
}
p_data->rss_params = p_rss;
out:
*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS;
if (!b_reject)
*tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS;
}
static void
qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn,
struct qed_vf_info *vf,
struct qed_sp_vport_update_params *p_data,
struct qed_sge_tpa_params *p_sge_tpa,
struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
{
struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv;
u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *)
qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
if (!p_sge_tpa_tlv) {
p_data->sge_tpa_params = NULL;
return;
}
memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params));
p_sge_tpa->update_tpa_en_flg =
!!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG);
p_sge_tpa->update_tpa_param_flg =
!!(p_sge_tpa_tlv->update_sge_tpa_flags &
VFPF_UPDATE_TPA_PARAM_FLAG);
p_sge_tpa->tpa_ipv4_en_flg =
!!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG);
p_sge_tpa->tpa_ipv6_en_flg =
!!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG);
p_sge_tpa->tpa_pkt_split_flg =
!!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG);
p_sge_tpa->tpa_hdr_data_split_flg =
!!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG);
p_sge_tpa->tpa_gro_consistent_flg =
!!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG);
p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num;
p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size;
p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start;
p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont;
p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe;
p_data->sge_tpa_params = p_sge_tpa;
*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA;
}
static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn,
u8 vfid,
struct qed_sp_vport_update_params *params,
u16 *tlvs)
{
u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
struct qed_filter_accept_flags *flags = &params->accept_flags;
struct qed_public_vf_info *vf_info;
/* Untrusted VFs can't even be trusted to know that fact.
* Simply indicate everything is configured fine, and trace
* configuration 'behind their back'.
*/
if (!(*tlvs & BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM)))
return 0;
vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
if (flags->update_rx_mode_config) {
vf_info->rx_accept_mode = flags->rx_accept_filter;
if (!vf_info->is_trusted_configured)
flags->rx_accept_filter &= ~mask;
}
if (flags->update_tx_mode_config) {
vf_info->tx_accept_mode = flags->tx_accept_filter;
if (!vf_info->is_trusted_configured)
flags->tx_accept_filter &= ~mask;
}
return 0;
}
static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
struct qed_rss_params *p_rss_params = NULL;
struct qed_sp_vport_update_params params;
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
struct qed_sge_tpa_params sge_tpa_params;
u16 tlvs_mask = 0, tlvs_accepted = 0;
u8 status = PFVF_STATUS_SUCCESS;
u16 length;
int rc;
/* Valiate PF can send such a request */
if (!vf->vport_instance) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"No VPORT instance available for VF[%d], failing vport update\n",
vf->abs_vf_id);
status = PFVF_STATUS_FAILURE;
goto out;
}
p_rss_params = vzalloc(sizeof(*p_rss_params));
if (p_rss_params == NULL) {
status = PFVF_STATUS_FAILURE;
goto out;
}
memset(&params, 0, sizeof(params));
params.opaque_fid = vf->opaque_fid;
params.vport_id = vf->vport_id;
params.rss_params = NULL;
/* Search for extended tlvs list and update values
* from VF in struct qed_sp_vport_update_params.
*/
qed_iov_vp_update_act_param(p_hwfn, &params, mbx, &tlvs_mask);
qed_iov_vp_update_vlan_param(p_hwfn, &params, vf, mbx, &tlvs_mask);
qed_iov_vp_update_tx_switch(p_hwfn, &params, mbx, &tlvs_mask);
qed_iov_vp_update_mcast_bin_param(p_hwfn, &params, mbx, &tlvs_mask);
qed_iov_vp_update_accept_flag(p_hwfn, &params, mbx, &tlvs_mask);
qed_iov_vp_update_accept_any_vlan(p_hwfn, &params, mbx, &tlvs_mask);
qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, &params,
&sge_tpa_params, mbx, &tlvs_mask);
tlvs_accepted = tlvs_mask;
/* Some of the extended TLVs need to be validated first; In that case,
* they can update the mask without updating the accepted [so that
* PF could communicate to VF it has rejected request].
*/
qed_iov_vp_update_rss_param(p_hwfn, vf, &params, p_rss_params,
mbx, &tlvs_mask, &tlvs_accepted);
if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id,
&params, &tlvs_accepted)) {
tlvs_accepted = 0;
status = PFVF_STATUS_NOT_SUPPORTED;
goto out;
}
if (!tlvs_accepted) {
if (tlvs_mask)
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Upper-layer prevents VF vport configuration\n");
else
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"No feature tlvs found for vport update\n");
status = PFVF_STATUS_NOT_SUPPORTED;
goto out;
}
rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
if (rc)
status = PFVF_STATUS_FAILURE;
out:
vfree(p_rss_params);
length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status,
tlvs_mask, tlvs_accepted);
qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
}
static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf,
struct qed_filter_ucast *p_params)
{
int i;
/* First remove entries and then add new ones */
if (p_params->opcode == QED_FILTER_REMOVE) {
for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
if (p_vf->shadow_config.vlans[i].used &&
p_vf->shadow_config.vlans[i].vid ==
p_params->vlan) {
p_vf->shadow_config.vlans[i].used = false;
break;
}
if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF [%d] - Tries to remove a non-existing vlan\n",
p_vf->relative_vf_id);
return -EINVAL;
}
} else if (p_params->opcode == QED_FILTER_REPLACE ||
p_params->opcode == QED_FILTER_FLUSH) {
for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
p_vf->shadow_config.vlans[i].used = false;
}
/* In forced mode, we're willing to remove entries - but we don't add
* new ones.
*/
if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))
return 0;
if (p_params->opcode == QED_FILTER_ADD ||
p_params->opcode == QED_FILTER_REPLACE) {
for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
if (p_vf->shadow_config.vlans[i].used)
continue;
p_vf->shadow_config.vlans[i].used = true;
p_vf->shadow_config.vlans[i].vid = p_params->vlan;
break;
}
if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF [%d] - Tries to configure more than %d vlan filters\n",
p_vf->relative_vf_id,
QED_ETH_VF_NUM_VLAN_FILTERS + 1);
return -EINVAL;
}
}
return 0;
}
static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf,
struct qed_filter_ucast *p_params)
{
int i;
/* If we're in forced-mode, we don't allow any change */
if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))
return 0;
/* Don't keep track of shadow copy since we don't intend to restore. */
if (p_vf->p_vf_info.is_trusted_configured)
return 0;
/* First remove entries and then add new ones */
if (p_params->opcode == QED_FILTER_REMOVE) {
for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
if (ether_addr_equal(p_vf->shadow_config.macs[i],
p_params->mac)) {
eth_zero_addr(p_vf->shadow_config.macs[i]);
break;
}
}
if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"MAC isn't configured\n");
return -EINVAL;
}
} else if (p_params->opcode == QED_FILTER_REPLACE ||
p_params->opcode == QED_FILTER_FLUSH) {
for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++)
eth_zero_addr(p_vf->shadow_config.macs[i]);
}
/* List the new MAC address */
if (p_params->opcode != QED_FILTER_ADD &&
p_params->opcode != QED_FILTER_REPLACE)
return 0;
for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) {
ether_addr_copy(p_vf->shadow_config.macs[i],
p_params->mac);
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Added MAC at %d entry in shadow\n", i);
break;
}
}
if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n");
return -EINVAL;
}
return 0;
}
static int
qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf,
struct qed_filter_ucast *p_params)
{
int rc = 0;
if (p_params->type == QED_FILTER_MAC) {
rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params);
if (rc)
return rc;
}
if (p_params->type == QED_FILTER_VLAN)
rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params);
return rc;
}
static int qed_iov_chk_ucast(struct qed_hwfn *hwfn,
int vfid, struct qed_filter_ucast *params)
{
struct qed_public_vf_info *vf;
vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
if (!vf)
return -EINVAL;
/* No real decision to make; Store the configured MAC */
if (params->type == QED_FILTER_MAC ||
params->type == QED_FILTER_MAC_VLAN) {
ether_addr_copy(vf->mac, params->mac);
if (vf->is_trusted_configured) {
qed_iov_bulletin_set_mac(hwfn, vf->mac, vfid);
/* Update and post bulleitin again */
qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
}
}
return 0;
}
static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt;
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
struct vfpf_ucast_filter_tlv *req;
u8 status = PFVF_STATUS_SUCCESS;
struct qed_filter_ucast params;
int rc;
/* Prepare the unicast filter params */
memset(&params, 0, sizeof(struct qed_filter_ucast));
req = &mbx->req_virt->ucast_filter;
params.opcode = (enum qed_filter_opcode)req->opcode;
params.type = (enum qed_filter_ucast_type)req->type;
params.is_rx_filter = 1;
params.is_tx_filter = 1;
params.vport_to_remove_from = vf->vport_id;
params.vport_to_add_to = vf->vport_id;
memcpy(params.mac, req->mac, ETH_ALEN);
params.vlan = req->vlan;
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n",
vf->abs_vf_id, params.opcode, params.type,
params.is_rx_filter ? "RX" : "",
params.is_tx_filter ? "TX" : "",
params.vport_to_add_to,
params.mac[0], params.mac[1],
params.mac[2], params.mac[3],
params.mac[4], params.mac[5], params.vlan);
if (!vf->vport_instance) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"No VPORT instance available for VF[%d], failing ucast MAC configuration\n",
vf->abs_vf_id);
status = PFVF_STATUS_FAILURE;
goto out;
}
/* Update shadow copy of the VF configuration */
if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, &params)) {
status = PFVF_STATUS_FAILURE;
goto out;
}
/* Determine if the unicast filtering is acceptible by PF */
if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) &&
(params.type == QED_FILTER_VLAN ||
params.type == QED_FILTER_MAC_VLAN)) {
/* Once VLAN is forced or PVID is set, do not allow
* to add/replace any further VLANs.
*/
if (params.opcode == QED_FILTER_ADD ||
params.opcode == QED_FILTER_REPLACE)
status = PFVF_STATUS_FORCED;
goto out;
}
if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) &&
(params.type == QED_FILTER_MAC ||
params.type == QED_FILTER_MAC_VLAN)) {
if (!ether_addr_equal(p_bulletin->mac, params.mac) ||
(params.opcode != QED_FILTER_ADD &&
params.opcode != QED_FILTER_REPLACE))
status = PFVF_STATUS_FORCED;
goto out;
}
rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, &params);
if (rc) {
status = PFVF_STATUS_FAILURE;
goto out;
}
rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, &params,
QED_SPQ_MODE_CB, NULL);
if (rc)
status = PFVF_STATUS_FAILURE;
out:
qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER,
sizeof(struct pfvf_def_resp_tlv), status);
}
static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
int i;
/* Reset the SBs */
for (i = 0; i < vf->num_sbs; i++)
qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
vf->igu_sbs[i],
vf->opaque_fid, false);
qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP,
sizeof(struct pfvf_def_resp_tlv),
PFVF_STATUS_SUCCESS);
}
static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, struct qed_vf_info *vf)
{
u16 length = sizeof(struct pfvf_def_resp_tlv);
u8 status = PFVF_STATUS_SUCCESS;
/* Disable Interrupts for VF */
qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
/* Reset Permission table */
qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE,
length, status);
}
static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *p_vf)
{
u16 length = sizeof(struct pfvf_def_resp_tlv);
u8 status = PFVF_STATUS_SUCCESS;
int rc = 0;
qed_iov_vf_cleanup(p_hwfn, p_vf);
if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) {
/* Stopping the VF */
rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid,
p_vf->opaque_fid);
if (rc) {
DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n",
rc);
status = PFVF_STATUS_FAILURE;
}
p_vf->state = VF_STOPPED;
}
qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE,
length, status);
}
static void qed_iov_vf_pf_get_coalesce(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *p_vf)
{
struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
struct pfvf_read_coal_resp_tlv *p_resp;
struct vfpf_read_coal_req_tlv *req;
u8 status = PFVF_STATUS_FAILURE;
struct qed_vf_queue *p_queue;
struct qed_queue_cid *p_cid;
u16 coal = 0, qid, i;
bool b_is_rx;
int rc = 0;
mbx->offset = (u8 *)mbx->reply_virt;
req = &mbx->req_virt->read_coal_req;
qid = req->qid;
b_is_rx = req->is_rx ? true : false;
if (b_is_rx) {
if (!qed_iov_validate_rxq(p_hwfn, p_vf, qid,
QED_IOV_VALIDATE_Q_ENABLE)) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d]: Invalid Rx queue_id = %d\n",
p_vf->abs_vf_id, qid);
goto send_resp;
}
p_cid = qed_iov_get_vf_rx_queue_cid(&p_vf->vf_queues[qid]);
rc = qed_get_rxq_coalesce(p_hwfn, p_ptt, p_cid, &coal);
if (rc)
goto send_resp;
} else {
if (!qed_iov_validate_txq(p_hwfn, p_vf, qid,
QED_IOV_VALIDATE_Q_ENABLE)) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d]: Invalid Tx queue_id = %d\n",
p_vf->abs_vf_id, qid);
goto send_resp;
}
for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
p_queue = &p_vf->vf_queues[qid];
if ((!p_queue->cids[i].p_cid) ||
(!p_queue->cids[i].b_is_tx))
continue;
p_cid = p_queue->cids[i].p_cid;
rc = qed_get_txq_coalesce(p_hwfn, p_ptt, p_cid, &coal);
if (rc)
goto send_resp;
break;
}
}
status = PFVF_STATUS_SUCCESS;
send_resp:
p_resp = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_COALESCE_READ,
sizeof(*p_resp));
p_resp->coal = coal;
qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
sizeof(struct channel_list_end_tlv));
qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
}
static void qed_iov_vf_pf_set_coalesce(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
struct vfpf_update_coalesce *req;
u8 status = PFVF_STATUS_FAILURE;
struct qed_queue_cid *p_cid;
u16 rx_coal, tx_coal;
int rc = 0, i;
u16 qid;
req = &mbx->req_virt->update_coalesce;
rx_coal = req->rx_coal;
tx_coal = req->tx_coal;
qid = req->qid;
if (!qed_iov_validate_rxq(p_hwfn, vf, qid,
QED_IOV_VALIDATE_Q_ENABLE) && rx_coal) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d]: Invalid Rx queue_id = %d\n",
vf->abs_vf_id, qid);
goto out;
}
if (!qed_iov_validate_txq(p_hwfn, vf, qid,
QED_IOV_VALIDATE_Q_ENABLE) && tx_coal) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d]: Invalid Tx queue_id = %d\n",
vf->abs_vf_id, qid);
goto out;
}
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d]: Setting coalesce for VF rx_coal = %d, tx_coal = %d at queue = %d\n",
vf->abs_vf_id, rx_coal, tx_coal, qid);
if (rx_coal) {
p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[qid]);
rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
if (rc) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d]: Unable to set rx queue = %d coalesce\n",
vf->abs_vf_id, vf->vf_queues[qid].fw_rx_qid);
goto out;
}
vf->rx_coal = rx_coal;
}
if (tx_coal) {
struct qed_vf_queue *p_queue = &vf->vf_queues[qid];
for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
if (!p_queue->cids[i].p_cid)
continue;
if (!p_queue->cids[i].b_is_tx)
continue;
rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal,
p_queue->cids[i].p_cid);
if (rc) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d]: Unable to set tx queue coalesce\n",
vf->abs_vf_id);
goto out;
}
}
vf->tx_coal = tx_coal;
}
status = PFVF_STATUS_SUCCESS;
out:
qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_COALESCE_UPDATE,
sizeof(struct pfvf_def_resp_tlv), status);
}
static int
qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
{
int cnt;
u32 val;
qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid);
for (cnt = 0; cnt < 50; cnt++) {
val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT);
if (!val)
break;
msleep(20);
}
qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
if (cnt == 50) {
DP_ERR(p_hwfn,
"VF[%d] - dorq failed to cleanup [usage 0x%08x]\n",
p_vf->abs_vf_id, val);
return -EBUSY;
}
return 0;
}
static int
qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
{
u32 cons[MAX_NUM_VOQS_E4], distance[MAX_NUM_VOQS_E4];
int i, cnt;
/* Read initial consumers & producers */
for (i = 0; i < MAX_NUM_VOQS_E4; i++) {
u32 prod;
cons[i] = qed_rd(p_hwfn, p_ptt,
PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
i * 0x40);
prod = qed_rd(p_hwfn, p_ptt,
PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 +
i * 0x40);
distance[i] = prod - cons[i];
}
/* Wait for consumers to pass the producers */
i = 0;
for (cnt = 0; cnt < 50; cnt++) {
for (; i < MAX_NUM_VOQS_E4; i++) {
u32 tmp;
tmp = qed_rd(p_hwfn, p_ptt,
PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
i * 0x40);
if (distance[i] > tmp - cons[i])
break;
}
if (i == MAX_NUM_VOQS_E4)
break;
msleep(20);
}
if (cnt == 50) {
DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n",
p_vf->abs_vf_id, i);
return -EBUSY;
}
return 0;
}
static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
{
int rc;
rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt);
if (rc)
return rc;
rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt);
if (rc)
return rc;
return 0;
}
static int
qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u16 rel_vf_id, u32 *ack_vfs)
{
struct qed_vf_info *p_vf;
int rc = 0;
p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
if (!p_vf)
return 0;
if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &
(1ULL << (rel_vf_id % 64))) {
u16 vfid = p_vf->abs_vf_id;
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d] - Handling FLR\n", vfid);
qed_iov_vf_cleanup(p_hwfn, p_vf);
/* If VF isn't active, no need for anything but SW */
if (!p_vf->b_init)
goto cleanup;
rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt);
if (rc)
goto cleanup;
rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true);
if (rc) {
DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid);
return rc;
}
/* Workaround to make VF-PF channel ready, as FW
* doesn't do that as a part of FLR.
*/
REG_WR(p_hwfn,
GTT_BAR0_MAP_REG_USDM_RAM +
USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1);
/* VF_STOPPED has to be set only after final cleanup
* but prior to re-enabling the VF.
*/
p_vf->state = VF_STOPPED;
rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf);
if (rc) {
DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n",
vfid);
return rc;
}
cleanup:
/* Mark VF for ack and clean pending state */
if (p_vf->state == VF_RESET)
p_vf->state = VF_STOPPED;
ack_vfs[vfid / 32] |= BIT((vfid % 32));
p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &=
~(1ULL << (rel_vf_id % 64));
p_vf->vf_mbx.b_pending_msg = false;
}
return rc;
}
static int
qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
u32 ack_vfs[VF_MAX_STATIC / 32];
int rc = 0;
u16 i;
memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32));
/* Since BRB <-> PRS interface can't be tested as part of the flr
* polling due to HW limitations, simply sleep a bit. And since
* there's no need to wait per-vf, do it before looping.
*/
msleep(100);
for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++)
qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs);
rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs);
return rc;
}
bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs)
{
bool found = false;
u16 i;
DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n");
for (i = 0; i < (VF_MAX_STATIC / 32); i++)
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"[%08x,...,%08x]: %08x\n",
i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]);
if (!p_hwfn->cdev->p_iov_info) {
DP_NOTICE(p_hwfn, "VF flr but no IOV\n");
return false;
}
/* Mark VFs */
for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) {
struct qed_vf_info *p_vf;
u8 vfid;
p_vf = qed_iov_get_vf_info(p_hwfn, i, false);
if (!p_vf)
continue;
vfid = p_vf->abs_vf_id;
if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) {
u64 *p_flr = p_hwfn->pf_iov_info->pending_flr;
u16 rel_vf_id = p_vf->relative_vf_id;
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d] [rel %d] got FLR-ed\n",
vfid, rel_vf_id);
p_vf->state = VF_RESET;
/* No need to lock here, since pending_flr should
* only change here and before ACKing MFw. Since
* MFW will not trigger an additional attention for
* VF flr until ACKs, we're safe.
*/
p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64);
found = true;
}
}
return found;
}
static void qed_iov_get_link(struct qed_hwfn *p_hwfn,
u16 vfid,
struct qed_mcp_link_params *p_params,
struct qed_mcp_link_state *p_link,
struct qed_mcp_link_capabilities *p_caps)
{
struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
vfid,
false);
struct qed_bulletin_content *p_bulletin;
if (!p_vf)
return;
p_bulletin = p_vf->bulletin.p_virt;
if (p_params)
__qed_vf_get_link_params(p_hwfn, p_params, p_bulletin);
if (p_link)
__qed_vf_get_link_state(p_hwfn, p_link, p_bulletin);
if (p_caps)
__qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin);
}
static int
qed_iov_vf_pf_bulletin_update_mac(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *p_vf)
{
struct qed_bulletin_content *p_bulletin = p_vf->bulletin.p_virt;
struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
struct vfpf_bulletin_update_mac_tlv *p_req;
u8 status = PFVF_STATUS_SUCCESS;
int rc = 0;
if (!p_vf->p_vf_info.is_trusted_configured) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"Blocking bulletin update request from untrusted VF[%d]\n",
p_vf->abs_vf_id);
status = PFVF_STATUS_NOT_SUPPORTED;
rc = -EINVAL;
goto send_status;
}
p_req = &mbx->req_virt->bulletin_update_mac;
ether_addr_copy(p_bulletin->mac, p_req->mac);
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Updated bulletin of VF[%d] with requested MAC[%pM]\n",
p_vf->abs_vf_id, p_req->mac);
send_status:
qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
CHANNEL_TLV_BULLETIN_UPDATE_MAC,
sizeof(struct pfvf_def_resp_tlv), status);
return rc;
}
static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, int vfid)
{
struct qed_iov_vf_mbx *mbx;
struct qed_vf_info *p_vf;
p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
if (!p_vf)
return;
mbx = &p_vf->vf_mbx;
/* qed_iov_process_mbx_request */
if (!mbx->b_pending_msg) {
DP_NOTICE(p_hwfn,
"VF[%02x]: Trying to process mailbox message when none is pending\n",
p_vf->abs_vf_id);
return;
}
mbx->b_pending_msg = false;
mbx->first_tlv = mbx->req_virt->first_tlv;
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%02x]: Processing mailbox message [type %04x]\n",
p_vf->abs_vf_id, mbx->first_tlv.tl.type);
/* check if tlv type is known */
if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) &&
!p_vf->b_malicious) {
switch (mbx->first_tlv.tl.type) {
case CHANNEL_TLV_ACQUIRE:
qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_VPORT_START:
qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_VPORT_TEARDOWN:
qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_START_RXQ:
qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_START_TXQ:
qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_STOP_RXQS:
qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_STOP_TXQS:
qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_UPDATE_RXQ:
qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_VPORT_UPDATE:
qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_UCAST_FILTER:
qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_CLOSE:
qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_INT_CLEANUP:
qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_RELEASE:
qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_UPDATE_TUNN_PARAM:
qed_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_COALESCE_UPDATE:
qed_iov_vf_pf_set_coalesce(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_COALESCE_READ:
qed_iov_vf_pf_get_coalesce(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_BULLETIN_UPDATE_MAC:
qed_iov_vf_pf_bulletin_update_mac(p_hwfn, p_ptt, p_vf);
break;
}
} else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF [%02x] - considered malicious; Ignoring TLV [%04x]\n",
p_vf->abs_vf_id, mbx->first_tlv.tl.type);
qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
mbx->first_tlv.tl.type,
sizeof(struct pfvf_def_resp_tlv),
PFVF_STATUS_MALICIOUS);
} else {
/* unknown TLV - this may belong to a VF driver from the future
* - a version written after this PF driver was written, which
* supports features unknown as of yet. Too bad since we don't
* support them. Or this may be because someone wrote a crappy
* VF driver and is sending garbage over the channel.
*/
DP_NOTICE(p_hwfn,
"VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n",
p_vf->abs_vf_id,
mbx->first_tlv.tl.type,
mbx->first_tlv.tl.length,
mbx->first_tlv.padding, mbx->first_tlv.reply_address);
/* Try replying in case reply address matches the acquisition's
* posted address.
*/
if (p_vf->acquire.first_tlv.reply_address &&
(mbx->first_tlv.reply_address ==
p_vf->acquire.first_tlv.reply_address)) {
qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
mbx->first_tlv.tl.type,
sizeof(struct pfvf_def_resp_tlv),
PFVF_STATUS_NOT_SUPPORTED);
} else {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%02x]: Can't respond to TLV - no valid reply address\n",
p_vf->abs_vf_id);
}
}
}
static void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events)
{
int i;
memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH);
qed_for_each_vf(p_hwfn, i) {
struct qed_vf_info *p_vf;
p_vf = &p_hwfn->pf_iov_info->vfs_array[i];
if (p_vf->vf_mbx.b_pending_msg)
events[i / 64] |= 1ULL << (i % 64);
}
}
static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn,
u16 abs_vfid)
{
u8 min = (u8) p_hwfn->cdev->p_iov_info->first_vf_in_pf;
if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"Got indication for VF [abs 0x%08x] that cannot be handled by PF\n",
abs_vfid);
return NULL;
}
return &p_hwfn->pf_iov_info->vfs_array[(u8) abs_vfid - min];
}
static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn,
u16 abs_vfid, struct regpair *vf_msg)
{
struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn,
abs_vfid);
if (!p_vf)
return 0;
/* List the physical address of the request so that handler
* could later on copy the message from it.
*/
p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo;
/* Mark the event and schedule the workqueue */
p_vf->vf_mbx.b_pending_msg = true;
qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG);
return 0;
}
static void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn,
struct malicious_vf_eqe_data *p_data)
{
struct qed_vf_info *p_vf;
p_vf = qed_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id);
if (!p_vf)
return;
if (!p_vf->b_malicious) {
DP_NOTICE(p_hwfn,
"VF [%d] - Malicious behavior [%02x]\n",
p_vf->abs_vf_id, p_data->err_id);
p_vf->b_malicious = true;
} else {
DP_INFO(p_hwfn,
"VF [%d] - Malicious behavior [%02x]\n",
p_vf->abs_vf_id, p_data->err_id);
}
}
static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
u8 opcode,
__le16 echo,
union event_ring_data *data, u8 fw_return_code)
{
switch (opcode) {
case COMMON_EVENT_VF_PF_CHANNEL:
return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo),
&data->vf_pf_channel.msg_addr);
case COMMON_EVENT_MALICIOUS_VF:
qed_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf);
return 0;
default:
DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n",
opcode);
return -EINVAL;
}
}
u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
{
struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
u16 i;
if (!p_iov)
goto out;
for (i = rel_vf_id; i < p_iov->total_vfs; i++)
if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false))
return i;
out:
return MAX_NUM_VFS;
}
static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt,
int vfid)
{
struct qed_dmae_params params;
struct qed_vf_info *vf_info;
vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
if (!vf_info)
return -EINVAL;
memset(&params, 0, sizeof(struct qed_dmae_params));
params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST;
params.src_vfid = vf_info->abs_vf_id;
if (qed_dmae_host2host(p_hwfn, ptt,
vf_info->vf_mbx.pending_req,
vf_info->vf_mbx.req_phys,
sizeof(union vfpf_tlvs) / 4, &params)) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Failed to copy message from VF 0x%02x\n", vfid);
return -EIO;
}
return 0;
}
static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn,
u8 *mac, int vfid)
{
struct qed_vf_info *vf_info;
u64 feature;
vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
if (!vf_info) {
DP_NOTICE(p_hwfn->cdev,
"Can not set forced MAC, invalid vfid [%d]\n", vfid);
return;
}
if (vf_info->b_malicious) {
DP_NOTICE(p_hwfn->cdev,
"Can't set forced MAC to malicious VF [%d]\n", vfid);
return;
}
if (vf_info->p_vf_info.is_trusted_configured) {
feature = BIT(VFPF_BULLETIN_MAC_ADDR);
/* Trust mode will disable Forced MAC */
vf_info->bulletin.p_virt->valid_bitmap &=
~BIT(MAC_ADDR_FORCED);
} else {
feature = BIT(MAC_ADDR_FORCED);
/* Forced MAC will disable MAC_ADDR */
vf_info->bulletin.p_virt->valid_bitmap &=
~BIT(VFPF_BULLETIN_MAC_ADDR);
}
memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN);
vf_info->bulletin.p_virt->valid_bitmap |= feature;
qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
}
static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid)
{
struct qed_vf_info *vf_info;
u64 feature;
vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
if (!vf_info) {
DP_NOTICE(p_hwfn->cdev, "Can not set MAC, invalid vfid [%d]\n",
vfid);
return -EINVAL;
}
if (vf_info->b_malicious) {
DP_NOTICE(p_hwfn->cdev, "Can't set MAC to malicious VF [%d]\n",
vfid);
return -EINVAL;
}
if (vf_info->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Can not set MAC, Forced MAC is configured\n");
return -EINVAL;
}
feature = BIT(VFPF_BULLETIN_MAC_ADDR);
ether_addr_copy(vf_info->bulletin.p_virt->mac, mac);
vf_info->bulletin.p_virt->valid_bitmap |= feature;
if (vf_info->p_vf_info.is_trusted_configured)
qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
return 0;
}
static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn,
u16 pvid, int vfid)
{
struct qed_vf_info *vf_info;
u64 feature;
vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
if (!vf_info) {
DP_NOTICE(p_hwfn->cdev,
"Can not set forced MAC, invalid vfid [%d]\n", vfid);
return;
}
if (vf_info->b_malicious) {
DP_NOTICE(p_hwfn->cdev,
"Can't set forced vlan to malicious VF [%d]\n", vfid);
return;
}
feature = 1 << VLAN_ADDR_FORCED;
vf_info->bulletin.p_virt->pvid = pvid;
if (pvid)
vf_info->bulletin.p_virt->valid_bitmap |= feature;
else
vf_info->bulletin.p_virt->valid_bitmap &= ~feature;
qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
}
void qed_iov_bulletin_set_udp_ports(struct qed_hwfn *p_hwfn,
int vfid, u16 vxlan_port, u16 geneve_port)
{
struct qed_vf_info *vf_info;
vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
if (!vf_info) {
DP_NOTICE(p_hwfn->cdev,
"Can not set udp ports, invalid vfid [%d]\n", vfid);
return;
}
if (vf_info->b_malicious) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Can not set udp ports to malicious VF [%d]\n",
vfid);
return;
}
vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port;
vf_info->bulletin.p_virt->geneve_udp_port = geneve_port;
}
static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid)
{
struct qed_vf_info *p_vf_info;
p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
if (!p_vf_info)
return false;
return !!p_vf_info->vport_instance;
}
static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid)
{
struct qed_vf_info *p_vf_info;
p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
if (!p_vf_info)
return true;
return p_vf_info->state == VF_STOPPED;
}
static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid)
{
struct qed_vf_info *vf_info;
vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
if (!vf_info)
return false;
return vf_info->spoof_chk;
}
static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val)
{
struct qed_vf_info *vf;
int rc = -EINVAL;
if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
DP_NOTICE(p_hwfn,
"SR-IOV sanity check failed, can't set spoofchk\n");
goto out;
}
vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
if (!vf)
goto out;
if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) {
/* After VF VPORT start PF will configure spoof check */
vf->req_spoofchk_val = val;
rc = 0;
goto out;
}
rc = __qed_iov_spoofchk_set(p_hwfn, vf, val);
out:
return rc;
}
static u8 *qed_iov_bulletin_get_mac(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
{
struct qed_vf_info *p_vf;
p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
if (!p_vf || !p_vf->bulletin.p_virt)
return NULL;
if (!(p_vf->bulletin.p_virt->valid_bitmap &
BIT(VFPF_BULLETIN_MAC_ADDR)))
return NULL;
return p_vf->bulletin.p_virt->mac;
}
static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn,
u16 rel_vf_id)
{
struct qed_vf_info *p_vf;
p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
if (!p_vf || !p_vf->bulletin.p_virt)
return NULL;
if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)))
return NULL;
return p_vf->bulletin.p_virt->mac;
}
static u16
qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
{
struct qed_vf_info *p_vf;
p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
if (!p_vf || !p_vf->bulletin.p_virt)
return 0;
if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)))
return 0;
return p_vf->bulletin.p_virt->pvid;
}
static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, int vfid, int val)
{
struct qed_mcp_link_state *p_link;
struct qed_vf_info *vf;
u8 abs_vp_id = 0;
int rc;
vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
if (!vf)
return -EINVAL;
rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id);
if (rc)
return rc;
p_link = &QED_LEADING_HWFN(p_hwfn->cdev)->mcp_info->link_output;
return qed_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val,
p_link->speed);
}
static int
qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate)
{
struct qed_vf_info *vf;
u8 vport_id;
int i;
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
DP_NOTICE(p_hwfn,
"SR-IOV sanity check failed, can't set min rate\n");
return -EINVAL;
}
}
vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true);
vport_id = vf->vport_id;
return qed_configure_vport_wfq(cdev, vport_id, rate);
}
static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid)
{
struct qed_wfq_data *vf_vp_wfq;
struct qed_vf_info *vf_info;
vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
if (!vf_info)
return 0;
vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id];
if (vf_vp_wfq->configured)
return vf_vp_wfq->min_speed;
else
return 0;
}
/**
* qed_schedule_iov - schedules IOV task for VF and PF
* @hwfn: hardware function pointer
* @flag: IOV flag for VF/PF
*/
void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag)
{
smp_mb__before_atomic();
set_bit(flag, &hwfn->iov_task_flags);
smp_mb__after_atomic();
DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0);
}
void qed_vf_start_iov_wq(struct qed_dev *cdev)
{
int i;
for_each_hwfn(cdev, i)
queue_delayed_work(cdev->hwfns[i].iov_wq,
&cdev->hwfns[i].iov_task, 0);
}
int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled)
{
int i, j;
for_each_hwfn(cdev, i)
if (cdev->hwfns[i].iov_wq)
flush_workqueue(cdev->hwfns[i].iov_wq);
/* Mark VFs for disablement */
qed_iov_set_vfs_to_disable(cdev, true);
if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled)
pci_disable_sriov(cdev->pdev);
for_each_hwfn(cdev, i) {
struct qed_hwfn *hwfn = &cdev->hwfns[i];
struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
/* Failure to acquire the ptt in 100g creates an odd error
* where the first engine has already relased IOV.
*/
if (!ptt) {
DP_ERR(hwfn, "Failed to acquire ptt\n");
return -EBUSY;
}
/* Clean WFQ db and configure equal weight for all vports */
qed_clean_wfq_db(hwfn, ptt);
qed_for_each_vf(hwfn, j) {
int k;
if (!qed_iov_is_valid_vfid(hwfn, j, true, false))
continue;
/* Wait until VF is disabled before releasing */
for (k = 0; k < 100; k++) {
if (!qed_iov_is_vf_stopped(hwfn, j))
msleep(20);
else
break;
}
if (k < 100)
qed_iov_release_hw_for_vf(&cdev->hwfns[i],
ptt, j);
else
DP_ERR(hwfn,
"Timeout waiting for VF's FLR to end\n");
}
qed_ptt_release(hwfn, ptt);
}
qed_iov_set_vfs_to_disable(cdev, false);
return 0;
}
static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn,
u16 vfid,
struct qed_iov_vf_init_params *params)
{
u16 base, i;
/* Since we have an equal resource distribution per-VF, and we assume
* PF has acquired the QED_PF_L2_QUE first queues, we start setting
* sequentially from there.
*/
base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues;
params->rel_vf_id = vfid;
for (i = 0; i < params->num_queues; i++) {
params->req_rx_queue[i] = base + i;
params->req_tx_queue[i] = base + i;
}
}
static int qed_sriov_enable(struct qed_dev *cdev, int num)
{
struct qed_iov_vf_init_params params;
struct qed_hwfn *hwfn;
struct qed_ptt *ptt;
int i, j, rc;
if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) {
DP_NOTICE(cdev, "Can start at most %d VFs\n",
RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1);
return -EINVAL;
}
memset(&params, 0, sizeof(params));
/* Initialize HW for VF access */
for_each_hwfn(cdev, j) {
hwfn = &cdev->hwfns[j];
ptt = qed_ptt_acquire(hwfn);
/* Make sure not to use more than 16 queues per VF */
params.num_queues = min_t(int,
FEAT_NUM(hwfn, QED_VF_L2_QUE) / num,
16);
if (!ptt) {
DP_ERR(hwfn, "Failed to acquire ptt\n");
rc = -EBUSY;
goto err;
}
for (i = 0; i < num; i++) {
if (!qed_iov_is_valid_vfid(hwfn, i, false, true))
continue;
qed_sriov_enable_qid_config(hwfn, i, &params);
rc = qed_iov_init_hw_for_vf(hwfn, ptt, &params);
if (rc) {
DP_ERR(cdev, "Failed to enable VF[%d]\n", i);
qed_ptt_release(hwfn, ptt);
goto err;
}
}
qed_ptt_release(hwfn, ptt);
}
/* Enable SRIOV PCIe functions */
rc = pci_enable_sriov(cdev->pdev, num);
if (rc) {
DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc);
goto err;
}
hwfn = QED_LEADING_HWFN(cdev);
ptt = qed_ptt_acquire(hwfn);
if (!ptt) {
DP_ERR(hwfn, "Failed to acquire ptt\n");
rc = -EBUSY;
goto err;
}
rc = qed_mcp_ov_update_eswitch(hwfn, ptt, QED_OV_ESWITCH_VEB);
if (rc)
DP_INFO(cdev, "Failed to update eswitch mode\n");
qed_ptt_release(hwfn, ptt);
return num;
err:
qed_sriov_disable(cdev, false);
return rc;
}
static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param)
{
if (!IS_QED_SRIOV(cdev)) {
DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n");
return -EOPNOTSUPP;
}
if (num_vfs_param)
return qed_sriov_enable(cdev, num_vfs_param);
else
return qed_sriov_disable(cdev, true);
}
static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid)
{
int i;
if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
DP_VERBOSE(cdev, QED_MSG_IOV,
"Cannot set a VF MAC; Sriov is not enabled\n");
return -EINVAL;
}
if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
DP_VERBOSE(cdev, QED_MSG_IOV,
"Cannot set VF[%d] MAC (VF is not active)\n", vfid);
return -EINVAL;
}
for_each_hwfn(cdev, i) {
struct qed_hwfn *hwfn = &cdev->hwfns[i];
struct qed_public_vf_info *vf_info;
vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
if (!vf_info)
continue;
/* Set the MAC, and schedule the IOV task */
if (vf_info->is_trusted_configured)
ether_addr_copy(vf_info->mac, mac);
else
ether_addr_copy(vf_info->forced_mac, mac);
qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
}
return 0;
}
static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid)
{
int i;
if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
DP_VERBOSE(cdev, QED_MSG_IOV,
"Cannot set a VF MAC; Sriov is not enabled\n");
return -EINVAL;
}
if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
DP_VERBOSE(cdev, QED_MSG_IOV,
"Cannot set VF[%d] MAC (VF is not active)\n", vfid);
return -EINVAL;
}
for_each_hwfn(cdev, i) {
struct qed_hwfn *hwfn = &cdev->hwfns[i];
struct qed_public_vf_info *vf_info;
vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
if (!vf_info)
continue;
/* Set the forced vlan, and schedule the IOV task */
vf_info->forced_vlan = vid;
qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
}
return 0;
}
static int qed_get_vf_config(struct qed_dev *cdev,
int vf_id, struct ifla_vf_info *ivi)
{
struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
struct qed_public_vf_info *vf_info;
struct qed_mcp_link_state link;
u32 tx_rate;
/* Sanitize request */
if (IS_VF(cdev))
return -EINVAL;
if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) {
DP_VERBOSE(cdev, QED_MSG_IOV,
"VF index [%d] isn't active\n", vf_id);
return -EINVAL;
}
vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL);
/* Fill information about VF */
ivi->vf = vf_id;
if (is_valid_ether_addr(vf_info->forced_mac))
ether_addr_copy(ivi->mac, vf_info->forced_mac);
else
ether_addr_copy(ivi->mac, vf_info->mac);
ivi->vlan = vf_info->forced_vlan;
ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id);
ivi->linkstate = vf_info->link_state;
tx_rate = vf_info->tx_rate;
ivi->max_tx_rate = tx_rate ? tx_rate : link.speed;
ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id);
return 0;
}
void qed_inform_vf_link_state(struct qed_hwfn *hwfn)
{
struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev);
struct qed_mcp_link_capabilities caps;
struct qed_mcp_link_params params;
struct qed_mcp_link_state link;
int i;
if (!hwfn->pf_iov_info)
return;
/* Update bulletin of all future possible VFs with link configuration */
for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) {
struct qed_public_vf_info *vf_info;
vf_info = qed_iov_get_public_vf_info(hwfn, i, false);
if (!vf_info)
continue;
/* Only hwfn0 is actually interested in the link speed.
* But since only it would receive an MFW indication of link,
* need to take configuration from it - otherwise things like
* rate limiting for hwfn1 VF would not work.
*/
memcpy(&params, qed_mcp_get_link_params(lead_hwfn),
sizeof(params));
memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link));
memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn),
sizeof(caps));
/* Modify link according to the VF's configured link state */
switch (vf_info->link_state) {
case IFLA_VF_LINK_STATE_DISABLE:
link.link_up = false;
break;
case IFLA_VF_LINK_STATE_ENABLE:
link.link_up = true;
/* Set speed according to maximum supported by HW.
* that is 40G for regular devices and 100G for CMT
* mode devices.
*/
link.speed = (hwfn->cdev->num_hwfns > 1) ?
100000 : 40000;
default:
/* In auto mode pass PF link image to VF */
break;
}
if (link.link_up && vf_info->tx_rate) {
struct qed_ptt *ptt;
int rate;
rate = min_t(int, vf_info->tx_rate, link.speed);
ptt = qed_ptt_acquire(hwfn);
if (!ptt) {
DP_NOTICE(hwfn, "Failed to acquire PTT\n");
return;
}
if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) {
vf_info->tx_rate = rate;
link.speed = rate;
}
qed_ptt_release(hwfn, ptt);
}
qed_iov_set_link(hwfn, i, &params, &link, &caps);
}
qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
}
static int qed_set_vf_link_state(struct qed_dev *cdev,
int vf_id, int link_state)
{
int i;
/* Sanitize request */
if (IS_VF(cdev))
return -EINVAL;
if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) {
DP_VERBOSE(cdev, QED_MSG_IOV,
"VF index [%d] isn't active\n", vf_id);
return -EINVAL;
}
/* Handle configuration of link state */
for_each_hwfn(cdev, i) {
struct qed_hwfn *hwfn = &cdev->hwfns[i];
struct qed_public_vf_info *vf;
vf = qed_iov_get_public_vf_info(hwfn, vf_id, true);
if (!vf)
continue;
if (vf->link_state == link_state)
continue;
vf->link_state = link_state;
qed_inform_vf_link_state(&cdev->hwfns[i]);
}
return 0;
}
static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val)
{
int i, rc = -EINVAL;
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
rc = qed_iov_spoofchk_set(p_hwfn, vfid, val);
if (rc)
break;
}
return rc;
}
static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate)
{
int i;
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
struct qed_public_vf_info *vf;
if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
DP_NOTICE(p_hwfn,
"SR-IOV sanity check failed, can't set tx rate\n");
return -EINVAL;
}
vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true);
vf->tx_rate = rate;
qed_inform_vf_link_state(p_hwfn);
}
return 0;
}
static int qed_set_vf_rate(struct qed_dev *cdev,
int vfid, u32 min_rate, u32 max_rate)
{
int rc_min = 0, rc_max = 0;
if (max_rate)
rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate);
if (min_rate)
rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate);
if (rc_max | rc_min)
return -EINVAL;
return 0;
}
static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust)
{
int i;
for_each_hwfn(cdev, i) {
struct qed_hwfn *hwfn = &cdev->hwfns[i];
struct qed_public_vf_info *vf;
if (!qed_iov_pf_sanity_check(hwfn, vfid)) {
DP_NOTICE(hwfn,
"SR-IOV sanity check failed, can't set trust\n");
return -EINVAL;
}
vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
if (vf->is_trusted_request == trust)
return 0;
vf->is_trusted_request = trust;
qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG);
}
return 0;
}
static void qed_handle_vf_msg(struct qed_hwfn *hwfn)
{
u64 events[QED_VF_ARRAY_LENGTH];
struct qed_ptt *ptt;
int i;
ptt = qed_ptt_acquire(hwfn);
if (!ptt) {
DP_VERBOSE(hwfn, QED_MSG_IOV,
"Can't acquire PTT; re-scheduling\n");
qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG);
return;
}
qed_iov_pf_get_pending_events(hwfn, events);
DP_VERBOSE(hwfn, QED_MSG_IOV,
"Event mask of VF events: 0x%llx 0x%llx 0x%llx\n",
events[0], events[1], events[2]);
qed_for_each_vf(hwfn, i) {
/* Skip VFs with no pending messages */
if (!(events[i / 64] & (1ULL << (i % 64))))
continue;
DP_VERBOSE(hwfn, QED_MSG_IOV,
"Handling VF message from VF 0x%02x [Abs 0x%02x]\n",
i, hwfn->cdev->p_iov_info->first_vf_in_pf + i);
/* Copy VF's message to PF's request buffer for that VF */
if (qed_iov_copy_vf_msg(hwfn, ptt, i))
continue;
qed_iov_process_mbx_req(hwfn, ptt, i);
}
qed_ptt_release(hwfn, ptt);
}
static bool qed_pf_validate_req_vf_mac(struct qed_hwfn *hwfn,
u8 *mac,
struct qed_public_vf_info *info)
{
if (info->is_trusted_configured) {
if (is_valid_ether_addr(info->mac) &&
(!mac || !ether_addr_equal(mac, info->mac)))
return true;
} else {
if (is_valid_ether_addr(info->forced_mac) &&
(!mac || !ether_addr_equal(mac, info->forced_mac)))
return true;
}
return false;
}
static void qed_set_bulletin_mac(struct qed_hwfn *hwfn,
struct qed_public_vf_info *info,
int vfid)
{
if (info->is_trusted_configured)
qed_iov_bulletin_set_mac(hwfn, info->mac, vfid);
else
qed_iov_bulletin_set_forced_mac(hwfn, info->forced_mac, vfid);
}
static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn)
{
int i;
qed_for_each_vf(hwfn, i) {
struct qed_public_vf_info *info;
bool update = false;
u8 *mac;
info = qed_iov_get_public_vf_info(hwfn, i, true);
if (!info)
continue;
/* Update data on bulletin board */
if (info->is_trusted_configured)
mac = qed_iov_bulletin_get_mac(hwfn, i);
else
mac = qed_iov_bulletin_get_forced_mac(hwfn, i);
if (qed_pf_validate_req_vf_mac(hwfn, mac, info)) {
DP_VERBOSE(hwfn,
QED_MSG_IOV,
"Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n",
i,
hwfn->cdev->p_iov_info->first_vf_in_pf + i);
/* Update bulletin board with MAC */
qed_set_bulletin_mac(hwfn, info, i);
update = true;
}
if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^
info->forced_vlan) {
DP_VERBOSE(hwfn,
QED_MSG_IOV,
"Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n",
info->forced_vlan,
i,
hwfn->cdev->p_iov_info->first_vf_in_pf + i);
qed_iov_bulletin_set_forced_vlan(hwfn,
info->forced_vlan, i);
update = true;
}
if (update)
qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
}
}
static void qed_handle_bulletin_post(struct qed_hwfn *hwfn)
{
struct qed_ptt *ptt;
int i;
ptt = qed_ptt_acquire(hwfn);
if (!ptt) {
DP_NOTICE(hwfn, "Failed allocating a ptt entry\n");
qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
return;
}
qed_for_each_vf(hwfn, i)
qed_iov_post_vf_bulletin(hwfn, i, ptt);
qed_ptt_release(hwfn, ptt);
}
static void qed_update_mac_for_vf_trust_change(struct qed_hwfn *hwfn, int vf_id)
{
struct qed_public_vf_info *vf_info;
struct qed_vf_info *vf;
u8 *force_mac;
int i;
vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
vf = qed_iov_get_vf_info(hwfn, vf_id, true);
if (!vf_info || !vf)
return;
/* Force MAC converted to generic MAC in case of VF trust on */
if (vf_info->is_trusted_configured &&
(vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) {
force_mac = qed_iov_bulletin_get_forced_mac(hwfn, vf_id);
if (force_mac) {
/* Clear existing shadow copy of MAC to have a clean
* slate.
*/
for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
if (ether_addr_equal(vf->shadow_config.macs[i],
vf_info->mac)) {
memset(vf->shadow_config.macs[i], 0,
ETH_ALEN);
DP_VERBOSE(hwfn, QED_MSG_IOV,
"Shadow MAC %pM removed for VF 0x%02x, VF trust mode is ON\n",
vf_info->mac, vf_id);
break;
}
}
ether_addr_copy(vf_info->mac, force_mac);
memset(vf_info->forced_mac, 0, ETH_ALEN);
vf->bulletin.p_virt->valid_bitmap &=
~BIT(MAC_ADDR_FORCED);
qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
}
}
/* Update shadow copy with VF MAC when trust mode is turned off */
if (!vf_info->is_trusted_configured) {
u8 empty_mac[ETH_ALEN];
memset(empty_mac, 0, ETH_ALEN);
for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
if (ether_addr_equal(vf->shadow_config.macs[i],
empty_mac)) {
ether_addr_copy(vf->shadow_config.macs[i],
vf_info->mac);
DP_VERBOSE(hwfn, QED_MSG_IOV,
"Shadow is updated with %pM for VF 0x%02x, VF trust mode is OFF\n",
vf_info->mac, vf_id);
break;
}
}
/* Clear bulletin when trust mode is turned off,
* to have a clean slate for next (normal) operations.
*/
qed_iov_bulletin_set_mac(hwfn, empty_mac, vf_id);
qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
}
}
static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn)
{
struct qed_sp_vport_update_params params;
struct qed_filter_accept_flags *flags;
struct qed_public_vf_info *vf_info;
struct qed_vf_info *vf;
u8 mask;
int i;
mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
flags = &params.accept_flags;
qed_for_each_vf(hwfn, i) {
/* Need to make sure current requested configuration didn't
* flip so that we'll end up configuring something that's not
* needed.
*/
vf_info = qed_iov_get_public_vf_info(hwfn, i, true);
if (vf_info->is_trusted_configured ==
vf_info->is_trusted_request)
continue;
vf_info->is_trusted_configured = vf_info->is_trusted_request;
/* Handle forced MAC mode */
qed_update_mac_for_vf_trust_change(hwfn, i);
/* Validate that the VF has a configured vport */
vf = qed_iov_get_vf_info(hwfn, i, true);
if (!vf->vport_instance)
continue;
memset(&params, 0, sizeof(params));
params.opaque_fid = vf->opaque_fid;
params.vport_id = vf->vport_id;
params.update_ctl_frame_check = 1;
params.mac_chk_en = !vf_info->is_trusted_configured;
if (vf_info->rx_accept_mode & mask) {
flags->update_rx_mode_config = 1;
flags->rx_accept_filter = vf_info->rx_accept_mode;
}
if (vf_info->tx_accept_mode & mask) {
flags->update_tx_mode_config = 1;
flags->tx_accept_filter = vf_info->tx_accept_mode;
}
/* Remove if needed; Otherwise this would set the mask */
if (!vf_info->is_trusted_configured) {
flags->rx_accept_filter &= ~mask;
flags->tx_accept_filter &= ~mask;
}
if (flags->update_rx_mode_config ||
flags->update_tx_mode_config ||
params.update_ctl_frame_check)
qed_sp_vport_update(hwfn, &params,
QED_SPQ_MODE_EBLOCK, NULL);
}
}
static void qed_iov_pf_task(struct work_struct *work)
{
struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn,
iov_task.work);
int rc;
if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags))
return;
if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) {
struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
if (!ptt) {
qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
return;
}
rc = qed_iov_vf_flr_cleanup(hwfn, ptt);
if (rc)
qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
qed_ptt_release(hwfn, ptt);
}
if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags))
qed_handle_vf_msg(hwfn);
if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG,
&hwfn->iov_task_flags))
qed_handle_pf_set_vf_unicast(hwfn);
if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG,
&hwfn->iov_task_flags))
qed_handle_bulletin_post(hwfn);
if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags))
qed_iov_handle_trust_change(hwfn);
}
void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first)
{
int i;
for_each_hwfn(cdev, i) {
if (!cdev->hwfns[i].iov_wq)
continue;
if (schedule_first) {
qed_schedule_iov(&cdev->hwfns[i],
QED_IOV_WQ_STOP_WQ_FLAG);
cancel_delayed_work_sync(&cdev->hwfns[i].iov_task);
}
flush_workqueue(cdev->hwfns[i].iov_wq);
destroy_workqueue(cdev->hwfns[i].iov_wq);
}
}
int qed_iov_wq_start(struct qed_dev *cdev)
{
char name[NAME_SIZE];
int i;
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
/* PFs needs a dedicated workqueue only if they support IOV.
* VFs always require one.
*/
if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn))
continue;
snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x",
cdev->pdev->bus->number,
PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id);
p_hwfn->iov_wq = create_singlethread_workqueue(name);
if (!p_hwfn->iov_wq) {
DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n");
return -ENOMEM;
}
if (IS_PF(cdev))
INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task);
else
INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task);
}
return 0;
}
const struct qed_iov_hv_ops qed_iov_ops_pass = {
.configure = &qed_sriov_configure,
.set_mac = &qed_sriov_pf_set_mac,
.set_vlan = &qed_sriov_pf_set_vlan,
.get_config = &qed_get_vf_config,
.set_link_state = &qed_set_vf_link_state,
.set_spoof = &qed_spoof_configure,
.set_rate = &qed_set_vf_rate,
.set_trust = &qed_set_vf_trust,
};