1138 lines
32 KiB
C
1138 lines
32 KiB
C
|
/*
|
||
|
* INET An implementation of the TCP/IP protocol suite for the LINUX
|
||
|
* operating system. INET is implemented using the BSD Socket
|
||
|
* interface as the means of communication with the user level.
|
||
|
*
|
||
|
* Support for INET connection oriented protocols.
|
||
|
*
|
||
|
* Authors: See the TCP sources
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License
|
||
|
* as published by the Free Software Foundation; either version
|
||
|
* 2 of the License, or(at your option) any later version.
|
||
|
*/
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/jhash.h>
|
||
|
|
||
|
#include <net/inet_connection_sock.h>
|
||
|
#include <net/inet_hashtables.h>
|
||
|
#include <net/inet_timewait_sock.h>
|
||
|
#include <net/ip.h>
|
||
|
#include <net/route.h>
|
||
|
#include <net/tcp_states.h>
|
||
|
#include <net/xfrm.h>
|
||
|
#include <net/tcp.h>
|
||
|
#include <net/sock_reuseport.h>
|
||
|
#include <net/addrconf.h>
|
||
|
|
||
|
#if IS_ENABLED(CONFIG_IPV6)
|
||
|
/* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
|
||
|
* if IPv6 only, and any IPv4 addresses
|
||
|
* if not IPv6 only
|
||
|
* match_sk*_wildcard == false: addresses must be exactly the same, i.e.
|
||
|
* IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
|
||
|
* and 0.0.0.0 equals to 0.0.0.0 only
|
||
|
*/
|
||
|
static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
|
||
|
const struct in6_addr *sk2_rcv_saddr6,
|
||
|
__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
|
||
|
bool sk1_ipv6only, bool sk2_ipv6only,
|
||
|
bool match_sk1_wildcard,
|
||
|
bool match_sk2_wildcard)
|
||
|
{
|
||
|
int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
|
||
|
int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
|
||
|
|
||
|
/* if both are mapped, treat as IPv4 */
|
||
|
if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
|
||
|
if (!sk2_ipv6only) {
|
||
|
if (sk1_rcv_saddr == sk2_rcv_saddr)
|
||
|
return true;
|
||
|
return (match_sk1_wildcard && !sk1_rcv_saddr) ||
|
||
|
(match_sk2_wildcard && !sk2_rcv_saddr);
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
|
||
|
return true;
|
||
|
|
||
|
if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
|
||
|
!(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
|
||
|
return true;
|
||
|
|
||
|
if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
|
||
|
!(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
|
||
|
return true;
|
||
|
|
||
|
if (sk2_rcv_saddr6 &&
|
||
|
ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
|
||
|
return true;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
|
||
|
* match_sk*_wildcard == false: addresses must be exactly the same, i.e.
|
||
|
* 0.0.0.0 only equals to 0.0.0.0
|
||
|
*/
|
||
|
static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
|
||
|
bool sk2_ipv6only, bool match_sk1_wildcard,
|
||
|
bool match_sk2_wildcard)
|
||
|
{
|
||
|
if (!sk2_ipv6only) {
|
||
|
if (sk1_rcv_saddr == sk2_rcv_saddr)
|
||
|
return true;
|
||
|
return (match_sk1_wildcard && !sk1_rcv_saddr) ||
|
||
|
(match_sk2_wildcard && !sk2_rcv_saddr);
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
|
||
|
bool match_wildcard)
|
||
|
{
|
||
|
#if IS_ENABLED(CONFIG_IPV6)
|
||
|
if (sk->sk_family == AF_INET6)
|
||
|
return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
|
||
|
inet6_rcv_saddr(sk2),
|
||
|
sk->sk_rcv_saddr,
|
||
|
sk2->sk_rcv_saddr,
|
||
|
ipv6_only_sock(sk),
|
||
|
ipv6_only_sock(sk2),
|
||
|
match_wildcard,
|
||
|
match_wildcard);
|
||
|
#endif
|
||
|
return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
|
||
|
ipv6_only_sock(sk2), match_wildcard,
|
||
|
match_wildcard);
|
||
|
}
|
||
|
EXPORT_SYMBOL(inet_rcv_saddr_equal);
|
||
|
|
||
|
bool inet_rcv_saddr_any(const struct sock *sk)
|
||
|
{
|
||
|
#if IS_ENABLED(CONFIG_IPV6)
|
||
|
if (sk->sk_family == AF_INET6)
|
||
|
return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
|
||
|
#endif
|
||
|
return !sk->sk_rcv_saddr;
|
||
|
}
|
||
|
|
||
|
void inet_get_local_port_range(struct net *net, int *low, int *high)
|
||
|
{
|
||
|
unsigned int seq;
|
||
|
|
||
|
do {
|
||
|
seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
|
||
|
|
||
|
*low = net->ipv4.ip_local_ports.range[0];
|
||
|
*high = net->ipv4.ip_local_ports.range[1];
|
||
|
} while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
|
||
|
}
|
||
|
EXPORT_SYMBOL(inet_get_local_port_range);
|
||
|
|
||
|
static int inet_csk_bind_conflict(const struct sock *sk,
|
||
|
const struct inet_bind_bucket *tb,
|
||
|
bool relax, bool reuseport_ok)
|
||
|
{
|
||
|
struct sock *sk2;
|
||
|
bool reuse = sk->sk_reuse;
|
||
|
bool reuseport = !!sk->sk_reuseport && reuseport_ok;
|
||
|
kuid_t uid = sock_i_uid((struct sock *)sk);
|
||
|
|
||
|
/*
|
||
|
* Unlike other sk lookup places we do not check
|
||
|
* for sk_net here, since _all_ the socks listed
|
||
|
* in tb->owners list belong to the same net - the
|
||
|
* one this bucket belongs to.
|
||
|
*/
|
||
|
|
||
|
sk_for_each_bound(sk2, &tb->owners) {
|
||
|
if (sk != sk2 &&
|
||
|
(!sk->sk_bound_dev_if ||
|
||
|
!sk2->sk_bound_dev_if ||
|
||
|
sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
|
||
|
if ((!reuse || !sk2->sk_reuse ||
|
||
|
sk2->sk_state == TCP_LISTEN) &&
|
||
|
(!reuseport || !sk2->sk_reuseport ||
|
||
|
rcu_access_pointer(sk->sk_reuseport_cb) ||
|
||
|
(sk2->sk_state != TCP_TIME_WAIT &&
|
||
|
!uid_eq(uid, sock_i_uid(sk2))))) {
|
||
|
if (inet_rcv_saddr_equal(sk, sk2, true))
|
||
|
break;
|
||
|
}
|
||
|
if (!relax && reuse && sk2->sk_reuse &&
|
||
|
sk2->sk_state != TCP_LISTEN) {
|
||
|
if (inet_rcv_saddr_equal(sk, sk2, true))
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return sk2 != NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Find an open port number for the socket. Returns with the
|
||
|
* inet_bind_hashbucket lock held.
|
||
|
*/
|
||
|
static struct inet_bind_hashbucket *
|
||
|
inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
|
||
|
{
|
||
|
struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
|
||
|
int port = 0;
|
||
|
struct inet_bind_hashbucket *head;
|
||
|
struct net *net = sock_net(sk);
|
||
|
int i, low, high, attempt_half;
|
||
|
struct inet_bind_bucket *tb;
|
||
|
u32 remaining, offset;
|
||
|
|
||
|
attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
|
||
|
other_half_scan:
|
||
|
inet_get_local_port_range(net, &low, &high);
|
||
|
high++; /* [32768, 60999] -> [32768, 61000[ */
|
||
|
if (high - low < 4)
|
||
|
attempt_half = 0;
|
||
|
if (attempt_half) {
|
||
|
int half = low + (((high - low) >> 2) << 1);
|
||
|
|
||
|
if (attempt_half == 1)
|
||
|
high = half;
|
||
|
else
|
||
|
low = half;
|
||
|
}
|
||
|
remaining = high - low;
|
||
|
if (likely(remaining > 1))
|
||
|
remaining &= ~1U;
|
||
|
|
||
|
offset = prandom_u32() % remaining;
|
||
|
/* __inet_hash_connect() favors ports having @low parity
|
||
|
* We do the opposite to not pollute connect() users.
|
||
|
*/
|
||
|
offset |= 1U;
|
||
|
|
||
|
other_parity_scan:
|
||
|
port = low + offset;
|
||
|
for (i = 0; i < remaining; i += 2, port += 2) {
|
||
|
if (unlikely(port >= high))
|
||
|
port -= remaining;
|
||
|
if (inet_is_local_reserved_port(net, port))
|
||
|
continue;
|
||
|
head = &hinfo->bhash[inet_bhashfn(net, port,
|
||
|
hinfo->bhash_size)];
|
||
|
spin_lock_bh(&head->lock);
|
||
|
inet_bind_bucket_for_each(tb, &head->chain)
|
||
|
if (net_eq(ib_net(tb), net) && tb->port == port) {
|
||
|
if (!inet_csk_bind_conflict(sk, tb, false, false))
|
||
|
goto success;
|
||
|
goto next_port;
|
||
|
}
|
||
|
tb = NULL;
|
||
|
goto success;
|
||
|
next_port:
|
||
|
spin_unlock_bh(&head->lock);
|
||
|
cond_resched();
|
||
|
}
|
||
|
|
||
|
offset--;
|
||
|
if (!(offset & 1))
|
||
|
goto other_parity_scan;
|
||
|
|
||
|
if (attempt_half == 1) {
|
||
|
/* OK we now try the upper half of the range */
|
||
|
attempt_half = 2;
|
||
|
goto other_half_scan;
|
||
|
}
|
||
|
return NULL;
|
||
|
success:
|
||
|
*port_ret = port;
|
||
|
*tb_ret = tb;
|
||
|
return head;
|
||
|
}
|
||
|
|
||
|
static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
|
||
|
struct sock *sk)
|
||
|
{
|
||
|
kuid_t uid = sock_i_uid(sk);
|
||
|
|
||
|
if (tb->fastreuseport <= 0)
|
||
|
return 0;
|
||
|
if (!sk->sk_reuseport)
|
||
|
return 0;
|
||
|
if (rcu_access_pointer(sk->sk_reuseport_cb))
|
||
|
return 0;
|
||
|
if (!uid_eq(tb->fastuid, uid))
|
||
|
return 0;
|
||
|
/* We only need to check the rcv_saddr if this tb was once marked
|
||
|
* without fastreuseport and then was reset, as we can only know that
|
||
|
* the fast_*rcv_saddr doesn't have any conflicts with the socks on the
|
||
|
* owners list.
|
||
|
*/
|
||
|
if (tb->fastreuseport == FASTREUSEPORT_ANY)
|
||
|
return 1;
|
||
|
#if IS_ENABLED(CONFIG_IPV6)
|
||
|
if (tb->fast_sk_family == AF_INET6)
|
||
|
return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
|
||
|
inet6_rcv_saddr(sk),
|
||
|
tb->fast_rcv_saddr,
|
||
|
sk->sk_rcv_saddr,
|
||
|
tb->fast_ipv6_only,
|
||
|
ipv6_only_sock(sk), true, false);
|
||
|
#endif
|
||
|
return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
|
||
|
ipv6_only_sock(sk), true, false);
|
||
|
}
|
||
|
|
||
|
void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
|
||
|
struct sock *sk)
|
||
|
{
|
||
|
kuid_t uid = sock_i_uid(sk);
|
||
|
bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
|
||
|
|
||
|
if (hlist_empty(&tb->owners)) {
|
||
|
tb->fastreuse = reuse;
|
||
|
if (sk->sk_reuseport) {
|
||
|
tb->fastreuseport = FASTREUSEPORT_ANY;
|
||
|
tb->fastuid = uid;
|
||
|
tb->fast_rcv_saddr = sk->sk_rcv_saddr;
|
||
|
tb->fast_ipv6_only = ipv6_only_sock(sk);
|
||
|
tb->fast_sk_family = sk->sk_family;
|
||
|
#if IS_ENABLED(CONFIG_IPV6)
|
||
|
tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
|
||
|
#endif
|
||
|
} else {
|
||
|
tb->fastreuseport = 0;
|
||
|
}
|
||
|
} else {
|
||
|
if (!reuse)
|
||
|
tb->fastreuse = 0;
|
||
|
if (sk->sk_reuseport) {
|
||
|
/* We didn't match or we don't have fastreuseport set on
|
||
|
* the tb, but we have sk_reuseport set on this socket
|
||
|
* and we know that there are no bind conflicts with
|
||
|
* this socket in this tb, so reset our tb's reuseport
|
||
|
* settings so that any subsequent sockets that match
|
||
|
* our current socket will be put on the fast path.
|
||
|
*
|
||
|
* If we reset we need to set FASTREUSEPORT_STRICT so we
|
||
|
* do extra checking for all subsequent sk_reuseport
|
||
|
* socks.
|
||
|
*/
|
||
|
if (!sk_reuseport_match(tb, sk)) {
|
||
|
tb->fastreuseport = FASTREUSEPORT_STRICT;
|
||
|
tb->fastuid = uid;
|
||
|
tb->fast_rcv_saddr = sk->sk_rcv_saddr;
|
||
|
tb->fast_ipv6_only = ipv6_only_sock(sk);
|
||
|
tb->fast_sk_family = sk->sk_family;
|
||
|
#if IS_ENABLED(CONFIG_IPV6)
|
||
|
tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
|
||
|
#endif
|
||
|
}
|
||
|
} else {
|
||
|
tb->fastreuseport = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Obtain a reference to a local port for the given sock,
|
||
|
* if snum is zero it means select any available local port.
|
||
|
* We try to allocate an odd port (and leave even ports for connect())
|
||
|
*/
|
||
|
int inet_csk_get_port(struct sock *sk, unsigned short snum)
|
||
|
{
|
||
|
bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
|
||
|
struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
|
||
|
int ret = 1, port = snum;
|
||
|
struct inet_bind_hashbucket *head;
|
||
|
struct net *net = sock_net(sk);
|
||
|
struct inet_bind_bucket *tb = NULL;
|
||
|
|
||
|
if (!port) {
|
||
|
head = inet_csk_find_open_port(sk, &tb, &port);
|
||
|
if (!head)
|
||
|
return ret;
|
||
|
if (!tb)
|
||
|
goto tb_not_found;
|
||
|
goto success;
|
||
|
}
|
||
|
head = &hinfo->bhash[inet_bhashfn(net, port,
|
||
|
hinfo->bhash_size)];
|
||
|
spin_lock_bh(&head->lock);
|
||
|
inet_bind_bucket_for_each(tb, &head->chain)
|
||
|
if (net_eq(ib_net(tb), net) && tb->port == port)
|
||
|
goto tb_found;
|
||
|
tb_not_found:
|
||
|
tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
|
||
|
net, head, port);
|
||
|
if (!tb)
|
||
|
goto fail_unlock;
|
||
|
tb_found:
|
||
|
if (!hlist_empty(&tb->owners)) {
|
||
|
if (sk->sk_reuse == SK_FORCE_REUSE)
|
||
|
goto success;
|
||
|
|
||
|
if ((tb->fastreuse > 0 && reuse) ||
|
||
|
sk_reuseport_match(tb, sk))
|
||
|
goto success;
|
||
|
if (inet_csk_bind_conflict(sk, tb, true, true))
|
||
|
goto fail_unlock;
|
||
|
}
|
||
|
success:
|
||
|
inet_csk_update_fastreuse(tb, sk);
|
||
|
|
||
|
if (!inet_csk(sk)->icsk_bind_hash)
|
||
|
inet_bind_hash(sk, tb, port);
|
||
|
WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
|
||
|
ret = 0;
|
||
|
|
||
|
fail_unlock:
|
||
|
spin_unlock_bh(&head->lock);
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(inet_csk_get_port);
|
||
|
|
||
|
/*
|
||
|
* Wait for an incoming connection, avoid race conditions. This must be called
|
||
|
* with the socket locked.
|
||
|
*/
|
||
|
static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
|
||
|
{
|
||
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
||
|
DEFINE_WAIT(wait);
|
||
|
int err;
|
||
|
|
||
|
/*
|
||
|
* True wake-one mechanism for incoming connections: only
|
||
|
* one process gets woken up, not the 'whole herd'.
|
||
|
* Since we do not 'race & poll' for established sockets
|
||
|
* anymore, the common case will execute the loop only once.
|
||
|
*
|
||
|
* Subtle issue: "add_wait_queue_exclusive()" will be added
|
||
|
* after any current non-exclusive waiters, and we know that
|
||
|
* it will always _stay_ after any new non-exclusive waiters
|
||
|
* because all non-exclusive waiters are added at the
|
||
|
* beginning of the wait-queue. As such, it's ok to "drop"
|
||
|
* our exclusiveness temporarily when we get woken up without
|
||
|
* having to remove and re-insert us on the wait queue.
|
||
|
*/
|
||
|
for (;;) {
|
||
|
prepare_to_wait_exclusive(sk_sleep(sk), &wait,
|
||
|
TASK_INTERRUPTIBLE);
|
||
|
release_sock(sk);
|
||
|
if (reqsk_queue_empty(&icsk->icsk_accept_queue))
|
||
|
timeo = schedule_timeout(timeo);
|
||
|
sched_annotate_sleep();
|
||
|
lock_sock(sk);
|
||
|
err = 0;
|
||
|
if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
|
||
|
break;
|
||
|
err = -EINVAL;
|
||
|
if (sk->sk_state != TCP_LISTEN)
|
||
|
break;
|
||
|
err = sock_intr_errno(timeo);
|
||
|
if (signal_pending(current))
|
||
|
break;
|
||
|
err = -EAGAIN;
|
||
|
if (!timeo)
|
||
|
break;
|
||
|
}
|
||
|
finish_wait(sk_sleep(sk), &wait);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This will accept the next outstanding connection.
|
||
|
*/
|
||
|
struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
|
||
|
{
|
||
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
||
|
struct request_sock_queue *queue = &icsk->icsk_accept_queue;
|
||
|
struct request_sock *req;
|
||
|
struct sock *newsk;
|
||
|
int error;
|
||
|
|
||
|
lock_sock(sk);
|
||
|
|
||
|
/* We need to make sure that this socket is listening,
|
||
|
* and that it has something pending.
|
||
|
*/
|
||
|
error = -EINVAL;
|
||
|
if (sk->sk_state != TCP_LISTEN)
|
||
|
goto out_err;
|
||
|
|
||
|
/* Find already established connection */
|
||
|
if (reqsk_queue_empty(queue)) {
|
||
|
long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
|
||
|
|
||
|
/* If this is a non blocking socket don't sleep */
|
||
|
error = -EAGAIN;
|
||
|
if (!timeo)
|
||
|
goto out_err;
|
||
|
|
||
|
error = inet_csk_wait_for_connect(sk, timeo);
|
||
|
if (error)
|
||
|
goto out_err;
|
||
|
}
|
||
|
req = reqsk_queue_remove(queue, sk);
|
||
|
newsk = req->sk;
|
||
|
|
||
|
if (sk->sk_protocol == IPPROTO_TCP &&
|
||
|
tcp_rsk(req)->tfo_listener) {
|
||
|
spin_lock_bh(&queue->fastopenq.lock);
|
||
|
if (tcp_rsk(req)->tfo_listener) {
|
||
|
/* We are still waiting for the final ACK from 3WHS
|
||
|
* so can't free req now. Instead, we set req->sk to
|
||
|
* NULL to signify that the child socket is taken
|
||
|
* so reqsk_fastopen_remove() will free the req
|
||
|
* when 3WHS finishes (or is aborted).
|
||
|
*/
|
||
|
req->sk = NULL;
|
||
|
req = NULL;
|
||
|
}
|
||
|
spin_unlock_bh(&queue->fastopenq.lock);
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
release_sock(sk);
|
||
|
if (newsk && mem_cgroup_sockets_enabled) {
|
||
|
int amt;
|
||
|
|
||
|
/* atomically get the memory usage, set and charge the
|
||
|
* newsk->sk_memcg.
|
||
|
*/
|
||
|
lock_sock(newsk);
|
||
|
|
||
|
/* The socket has not been accepted yet, no need to look at
|
||
|
* newsk->sk_wmem_queued.
|
||
|
*/
|
||
|
amt = sk_mem_pages(newsk->sk_forward_alloc +
|
||
|
atomic_read(&newsk->sk_rmem_alloc));
|
||
|
mem_cgroup_sk_alloc(newsk);
|
||
|
if (newsk->sk_memcg && amt)
|
||
|
mem_cgroup_charge_skmem(newsk->sk_memcg, amt);
|
||
|
|
||
|
release_sock(newsk);
|
||
|
}
|
||
|
if (req)
|
||
|
reqsk_put(req);
|
||
|
return newsk;
|
||
|
out_err:
|
||
|
newsk = NULL;
|
||
|
req = NULL;
|
||
|
*err = error;
|
||
|
goto out;
|
||
|
}
|
||
|
EXPORT_SYMBOL(inet_csk_accept);
|
||
|
|
||
|
/*
|
||
|
* Using different timers for retransmit, delayed acks and probes
|
||
|
* We may wish use just one timer maintaining a list of expire jiffies
|
||
|
* to optimize.
|
||
|
*/
|
||
|
void inet_csk_init_xmit_timers(struct sock *sk,
|
||
|
void (*retransmit_handler)(struct timer_list *t),
|
||
|
void (*delack_handler)(struct timer_list *t),
|
||
|
void (*keepalive_handler)(struct timer_list *t))
|
||
|
{
|
||
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
||
|
|
||
|
timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
|
||
|
timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
|
||
|
timer_setup(&sk->sk_timer, keepalive_handler, 0);
|
||
|
icsk->icsk_pending = icsk->icsk_ack.pending = 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(inet_csk_init_xmit_timers);
|
||
|
|
||
|
void inet_csk_clear_xmit_timers(struct sock *sk)
|
||
|
{
|
||
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
||
|
|
||
|
icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
|
||
|
|
||
|
sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
|
||
|
sk_stop_timer(sk, &icsk->icsk_delack_timer);
|
||
|
sk_stop_timer(sk, &sk->sk_timer);
|
||
|
}
|
||
|
EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
|
||
|
|
||
|
void inet_csk_delete_keepalive_timer(struct sock *sk)
|
||
|
{
|
||
|
sk_stop_timer(sk, &sk->sk_timer);
|
||
|
}
|
||
|
EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
|
||
|
|
||
|
void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
|
||
|
{
|
||
|
sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
|
||
|
}
|
||
|
EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
|
||
|
|
||
|
struct dst_entry *inet_csk_route_req(const struct sock *sk,
|
||
|
struct flowi4 *fl4,
|
||
|
const struct request_sock *req)
|
||
|
{
|
||
|
const struct inet_request_sock *ireq = inet_rsk(req);
|
||
|
struct net *net = read_pnet(&ireq->ireq_net);
|
||
|
struct ip_options_rcu *opt;
|
||
|
struct rtable *rt;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
opt = rcu_dereference(ireq->ireq_opt);
|
||
|
|
||
|
flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
|
||
|
RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
|
||
|
sk->sk_protocol, inet_sk_flowi_flags(sk),
|
||
|
(opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
|
||
|
ireq->ir_loc_addr, ireq->ir_rmt_port,
|
||
|
htons(ireq->ir_num), sk->sk_uid);
|
||
|
security_req_classify_flow(req, flowi4_to_flowi(fl4));
|
||
|
rt = ip_route_output_flow(net, fl4, sk);
|
||
|
if (IS_ERR(rt))
|
||
|
goto no_route;
|
||
|
if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
|
||
|
goto route_err;
|
||
|
rcu_read_unlock();
|
||
|
return &rt->dst;
|
||
|
|
||
|
route_err:
|
||
|
ip_rt_put(rt);
|
||
|
no_route:
|
||
|
rcu_read_unlock();
|
||
|
__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
|
||
|
return NULL;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(inet_csk_route_req);
|
||
|
|
||
|
struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
|
||
|
struct sock *newsk,
|
||
|
const struct request_sock *req)
|
||
|
{
|
||
|
const struct inet_request_sock *ireq = inet_rsk(req);
|
||
|
struct net *net = read_pnet(&ireq->ireq_net);
|
||
|
struct inet_sock *newinet = inet_sk(newsk);
|
||
|
struct ip_options_rcu *opt;
|
||
|
struct flowi4 *fl4;
|
||
|
struct rtable *rt;
|
||
|
|
||
|
opt = rcu_dereference(ireq->ireq_opt);
|
||
|
fl4 = &newinet->cork.fl.u.ip4;
|
||
|
|
||
|
flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
|
||
|
RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
|
||
|
sk->sk_protocol, inet_sk_flowi_flags(sk),
|
||
|
(opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
|
||
|
ireq->ir_loc_addr, ireq->ir_rmt_port,
|
||
|
htons(ireq->ir_num), sk->sk_uid);
|
||
|
security_req_classify_flow(req, flowi4_to_flowi(fl4));
|
||
|
rt = ip_route_output_flow(net, fl4, sk);
|
||
|
if (IS_ERR(rt))
|
||
|
goto no_route;
|
||
|
if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
|
||
|
goto route_err;
|
||
|
return &rt->dst;
|
||
|
|
||
|
route_err:
|
||
|
ip_rt_put(rt);
|
||
|
no_route:
|
||
|
__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
|
||
|
return NULL;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
|
||
|
|
||
|
#if IS_ENABLED(CONFIG_IPV6)
|
||
|
#define AF_INET_FAMILY(fam) ((fam) == AF_INET)
|
||
|
#else
|
||
|
#define AF_INET_FAMILY(fam) true
|
||
|
#endif
|
||
|
|
||
|
/* Decide when to expire the request and when to resend SYN-ACK */
|
||
|
static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
|
||
|
const int max_retries,
|
||
|
const u8 rskq_defer_accept,
|
||
|
int *expire, int *resend)
|
||
|
{
|
||
|
if (!rskq_defer_accept) {
|
||
|
*expire = req->num_timeout >= thresh;
|
||
|
*resend = 1;
|
||
|
return;
|
||
|
}
|
||
|
*expire = req->num_timeout >= thresh &&
|
||
|
(!inet_rsk(req)->acked || req->num_timeout >= max_retries);
|
||
|
/*
|
||
|
* Do not resend while waiting for data after ACK,
|
||
|
* start to resend on end of deferring period to give
|
||
|
* last chance for data or ACK to create established socket.
|
||
|
*/
|
||
|
*resend = !inet_rsk(req)->acked ||
|
||
|
req->num_timeout >= rskq_defer_accept - 1;
|
||
|
}
|
||
|
|
||
|
int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
|
||
|
{
|
||
|
int err = req->rsk_ops->rtx_syn_ack(parent, req);
|
||
|
|
||
|
if (!err)
|
||
|
req->num_retrans++;
|
||
|
return err;
|
||
|
}
|
||
|
EXPORT_SYMBOL(inet_rtx_syn_ack);
|
||
|
|
||
|
/* return true if req was found in the ehash table */
|
||
|
static bool reqsk_queue_unlink(struct request_sock_queue *queue,
|
||
|
struct request_sock *req)
|
||
|
{
|
||
|
struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
|
||
|
bool found = false;
|
||
|
|
||
|
if (sk_hashed(req_to_sk(req))) {
|
||
|
spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
|
||
|
|
||
|
spin_lock(lock);
|
||
|
found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
|
||
|
spin_unlock(lock);
|
||
|
}
|
||
|
if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
|
||
|
reqsk_put(req);
|
||
|
return found;
|
||
|
}
|
||
|
|
||
|
bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
|
||
|
{
|
||
|
bool unlinked = reqsk_queue_unlink(&inet_csk(sk)->icsk_accept_queue, req);
|
||
|
|
||
|
if (unlinked) {
|
||
|
reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
|
||
|
reqsk_put(req);
|
||
|
}
|
||
|
return unlinked;
|
||
|
}
|
||
|
EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
|
||
|
|
||
|
void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
|
||
|
{
|
||
|
inet_csk_reqsk_queue_drop(sk, req);
|
||
|
reqsk_put(req);
|
||
|
}
|
||
|
EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
|
||
|
|
||
|
static void reqsk_timer_handler(struct timer_list *t)
|
||
|
{
|
||
|
struct request_sock *req = from_timer(req, t, rsk_timer);
|
||
|
struct sock *sk_listener = req->rsk_listener;
|
||
|
struct net *net = sock_net(sk_listener);
|
||
|
struct inet_connection_sock *icsk = inet_csk(sk_listener);
|
||
|
struct request_sock_queue *queue = &icsk->icsk_accept_queue;
|
||
|
int qlen, expire = 0, resend = 0;
|
||
|
int max_retries, thresh;
|
||
|
u8 defer_accept;
|
||
|
|
||
|
if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
|
||
|
goto drop;
|
||
|
|
||
|
max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
|
||
|
thresh = max_retries;
|
||
|
/* Normally all the openreqs are young and become mature
|
||
|
* (i.e. converted to established socket) for first timeout.
|
||
|
* If synack was not acknowledged for 1 second, it means
|
||
|
* one of the following things: synack was lost, ack was lost,
|
||
|
* rtt is high or nobody planned to ack (i.e. synflood).
|
||
|
* When server is a bit loaded, queue is populated with old
|
||
|
* open requests, reducing effective size of queue.
|
||
|
* When server is well loaded, queue size reduces to zero
|
||
|
* after several minutes of work. It is not synflood,
|
||
|
* it is normal operation. The solution is pruning
|
||
|
* too old entries overriding normal timeout, when
|
||
|
* situation becomes dangerous.
|
||
|
*
|
||
|
* Essentially, we reserve half of room for young
|
||
|
* embrions; and abort old ones without pity, if old
|
||
|
* ones are about to clog our table.
|
||
|
*/
|
||
|
qlen = reqsk_queue_len(queue);
|
||
|
if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) {
|
||
|
int young = reqsk_queue_len_young(queue) << 1;
|
||
|
|
||
|
while (thresh > 2) {
|
||
|
if (qlen < young)
|
||
|
break;
|
||
|
thresh--;
|
||
|
young <<= 1;
|
||
|
}
|
||
|
}
|
||
|
defer_accept = READ_ONCE(queue->rskq_defer_accept);
|
||
|
if (defer_accept)
|
||
|
max_retries = defer_accept;
|
||
|
syn_ack_recalc(req, thresh, max_retries, defer_accept,
|
||
|
&expire, &resend);
|
||
|
req->rsk_ops->syn_ack_timeout(req);
|
||
|
if (!expire &&
|
||
|
(!resend ||
|
||
|
!inet_rtx_syn_ack(sk_listener, req) ||
|
||
|
inet_rsk(req)->acked)) {
|
||
|
unsigned long timeo;
|
||
|
|
||
|
if (req->num_timeout++ == 0)
|
||
|
atomic_dec(&queue->young);
|
||
|
timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
|
||
|
mod_timer(&req->rsk_timer, jiffies + timeo);
|
||
|
return;
|
||
|
}
|
||
|
drop:
|
||
|
inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
|
||
|
}
|
||
|
|
||
|
static void reqsk_queue_hash_req(struct request_sock *req,
|
||
|
unsigned long timeout)
|
||
|
{
|
||
|
req->num_retrans = 0;
|
||
|
req->num_timeout = 0;
|
||
|
req->sk = NULL;
|
||
|
|
||
|
timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
|
||
|
mod_timer(&req->rsk_timer, jiffies + timeout);
|
||
|
|
||
|
inet_ehash_insert(req_to_sk(req), NULL);
|
||
|
/* before letting lookups find us, make sure all req fields
|
||
|
* are committed to memory and refcnt initialized.
|
||
|
*/
|
||
|
smp_wmb();
|
||
|
refcount_set(&req->rsk_refcnt, 2 + 1);
|
||
|
}
|
||
|
|
||
|
void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
|
||
|
unsigned long timeout)
|
||
|
{
|
||
|
reqsk_queue_hash_req(req, timeout);
|
||
|
inet_csk_reqsk_queue_added(sk);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
|
||
|
|
||
|
/**
|
||
|
* inet_csk_clone_lock - clone an inet socket, and lock its clone
|
||
|
* @sk: the socket to clone
|
||
|
* @req: request_sock
|
||
|
* @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
|
||
|
*
|
||
|
* Caller must unlock socket even in error path (bh_unlock_sock(newsk))
|
||
|
*/
|
||
|
struct sock *inet_csk_clone_lock(const struct sock *sk,
|
||
|
const struct request_sock *req,
|
||
|
const gfp_t priority)
|
||
|
{
|
||
|
struct sock *newsk = sk_clone_lock(sk, priority);
|
||
|
|
||
|
if (newsk) {
|
||
|
struct inet_connection_sock *newicsk = inet_csk(newsk);
|
||
|
|
||
|
inet_sk_set_state(newsk, TCP_SYN_RECV);
|
||
|
newicsk->icsk_bind_hash = NULL;
|
||
|
|
||
|
inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
|
||
|
inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
|
||
|
inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
|
||
|
|
||
|
/* listeners have SOCK_RCU_FREE, not the children */
|
||
|
sock_reset_flag(newsk, SOCK_RCU_FREE);
|
||
|
|
||
|
inet_sk(newsk)->mc_list = NULL;
|
||
|
|
||
|
newsk->sk_mark = inet_rsk(req)->ir_mark;
|
||
|
atomic64_set(&newsk->sk_cookie,
|
||
|
atomic64_read(&inet_rsk(req)->ir_cookie));
|
||
|
|
||
|
newicsk->icsk_retransmits = 0;
|
||
|
newicsk->icsk_backoff = 0;
|
||
|
newicsk->icsk_probes_out = 0;
|
||
|
|
||
|
/* Deinitialize accept_queue to trap illegal accesses. */
|
||
|
memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
|
||
|
|
||
|
security_inet_csk_clone(newsk, req);
|
||
|
}
|
||
|
return newsk;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
|
||
|
|
||
|
/*
|
||
|
* At this point, there should be no process reference to this
|
||
|
* socket, and thus no user references at all. Therefore we
|
||
|
* can assume the socket waitqueue is inactive and nobody will
|
||
|
* try to jump onto it.
|
||
|
*/
|
||
|
void inet_csk_destroy_sock(struct sock *sk)
|
||
|
{
|
||
|
WARN_ON(sk->sk_state != TCP_CLOSE);
|
||
|
WARN_ON(!sock_flag(sk, SOCK_DEAD));
|
||
|
|
||
|
/* It cannot be in hash table! */
|
||
|
WARN_ON(!sk_unhashed(sk));
|
||
|
|
||
|
/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
|
||
|
WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
|
||
|
|
||
|
sk->sk_prot->destroy(sk);
|
||
|
|
||
|
sk_stream_kill_queues(sk);
|
||
|
|
||
|
xfrm_sk_free_policy(sk);
|
||
|
|
||
|
sk_refcnt_debug_release(sk);
|
||
|
|
||
|
percpu_counter_dec(sk->sk_prot->orphan_count);
|
||
|
|
||
|
sock_put(sk);
|
||
|
}
|
||
|
EXPORT_SYMBOL(inet_csk_destroy_sock);
|
||
|
|
||
|
/* This function allows to force a closure of a socket after the call to
|
||
|
* tcp/dccp_create_openreq_child().
|
||
|
*/
|
||
|
void inet_csk_prepare_forced_close(struct sock *sk)
|
||
|
__releases(&sk->sk_lock.slock)
|
||
|
{
|
||
|
/* sk_clone_lock locked the socket and set refcnt to 2 */
|
||
|
bh_unlock_sock(sk);
|
||
|
sock_put(sk);
|
||
|
|
||
|
/* The below has to be done to allow calling inet_csk_destroy_sock */
|
||
|
sock_set_flag(sk, SOCK_DEAD);
|
||
|
percpu_counter_inc(sk->sk_prot->orphan_count);
|
||
|
inet_sk(sk)->inet_num = 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(inet_csk_prepare_forced_close);
|
||
|
|
||
|
int inet_csk_listen_start(struct sock *sk, int backlog)
|
||
|
{
|
||
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
||
|
struct inet_sock *inet = inet_sk(sk);
|
||
|
int err = -EADDRINUSE;
|
||
|
|
||
|
reqsk_queue_alloc(&icsk->icsk_accept_queue);
|
||
|
|
||
|
sk->sk_max_ack_backlog = backlog;
|
||
|
sk->sk_ack_backlog = 0;
|
||
|
inet_csk_delack_init(sk);
|
||
|
|
||
|
/* There is race window here: we announce ourselves listening,
|
||
|
* but this transition is still not validated by get_port().
|
||
|
* It is OK, because this socket enters to hash table only
|
||
|
* after validation is complete.
|
||
|
*/
|
||
|
inet_sk_state_store(sk, TCP_LISTEN);
|
||
|
if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
|
||
|
inet->inet_sport = htons(inet->inet_num);
|
||
|
|
||
|
sk_dst_reset(sk);
|
||
|
err = sk->sk_prot->hash(sk);
|
||
|
|
||
|
if (likely(!err))
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
inet_sk_set_state(sk, TCP_CLOSE);
|
||
|
return err;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(inet_csk_listen_start);
|
||
|
|
||
|
static void inet_child_forget(struct sock *sk, struct request_sock *req,
|
||
|
struct sock *child)
|
||
|
{
|
||
|
sk->sk_prot->disconnect(child, O_NONBLOCK);
|
||
|
|
||
|
sock_orphan(child);
|
||
|
|
||
|
percpu_counter_inc(sk->sk_prot->orphan_count);
|
||
|
|
||
|
if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
|
||
|
BUG_ON(tcp_sk(child)->fastopen_rsk != req);
|
||
|
BUG_ON(sk != req->rsk_listener);
|
||
|
|
||
|
/* Paranoid, to prevent race condition if
|
||
|
* an inbound pkt destined for child is
|
||
|
* blocked by sock lock in tcp_v4_rcv().
|
||
|
* Also to satisfy an assertion in
|
||
|
* tcp_v4_destroy_sock().
|
||
|
*/
|
||
|
tcp_sk(child)->fastopen_rsk = NULL;
|
||
|
}
|
||
|
inet_csk_destroy_sock(child);
|
||
|
}
|
||
|
|
||
|
struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
|
||
|
struct request_sock *req,
|
||
|
struct sock *child)
|
||
|
{
|
||
|
struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
|
||
|
|
||
|
spin_lock(&queue->rskq_lock);
|
||
|
if (unlikely(sk->sk_state != TCP_LISTEN)) {
|
||
|
inet_child_forget(sk, req, child);
|
||
|
child = NULL;
|
||
|
} else {
|
||
|
req->sk = child;
|
||
|
req->dl_next = NULL;
|
||
|
if (queue->rskq_accept_head == NULL)
|
||
|
WRITE_ONCE(queue->rskq_accept_head, req);
|
||
|
else
|
||
|
queue->rskq_accept_tail->dl_next = req;
|
||
|
queue->rskq_accept_tail = req;
|
||
|
sk_acceptq_added(sk);
|
||
|
}
|
||
|
spin_unlock(&queue->rskq_lock);
|
||
|
return child;
|
||
|
}
|
||
|
EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
|
||
|
|
||
|
struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
|
||
|
struct request_sock *req, bool own_req)
|
||
|
{
|
||
|
if (own_req) {
|
||
|
inet_csk_reqsk_queue_drop(sk, req);
|
||
|
reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
|
||
|
if (inet_csk_reqsk_queue_add(sk, req, child))
|
||
|
return child;
|
||
|
}
|
||
|
/* Too bad, another child took ownership of the request, undo. */
|
||
|
bh_unlock_sock(child);
|
||
|
sock_put(child);
|
||
|
return NULL;
|
||
|
}
|
||
|
EXPORT_SYMBOL(inet_csk_complete_hashdance);
|
||
|
|
||
|
/*
|
||
|
* This routine closes sockets which have been at least partially
|
||
|
* opened, but not yet accepted.
|
||
|
*/
|
||
|
void inet_csk_listen_stop(struct sock *sk)
|
||
|
{
|
||
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
||
|
struct request_sock_queue *queue = &icsk->icsk_accept_queue;
|
||
|
struct request_sock *next, *req;
|
||
|
|
||
|
/* Following specs, it would be better either to send FIN
|
||
|
* (and enter FIN-WAIT-1, it is normal close)
|
||
|
* or to send active reset (abort).
|
||
|
* Certainly, it is pretty dangerous while synflood, but it is
|
||
|
* bad justification for our negligence 8)
|
||
|
* To be honest, we are not able to make either
|
||
|
* of the variants now. --ANK
|
||
|
*/
|
||
|
while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
|
||
|
struct sock *child = req->sk;
|
||
|
|
||
|
local_bh_disable();
|
||
|
bh_lock_sock(child);
|
||
|
WARN_ON(sock_owned_by_user(child));
|
||
|
sock_hold(child);
|
||
|
|
||
|
inet_child_forget(sk, req, child);
|
||
|
reqsk_put(req);
|
||
|
bh_unlock_sock(child);
|
||
|
local_bh_enable();
|
||
|
sock_put(child);
|
||
|
|
||
|
cond_resched();
|
||
|
}
|
||
|
if (queue->fastopenq.rskq_rst_head) {
|
||
|
/* Free all the reqs queued in rskq_rst_head. */
|
||
|
spin_lock_bh(&queue->fastopenq.lock);
|
||
|
req = queue->fastopenq.rskq_rst_head;
|
||
|
queue->fastopenq.rskq_rst_head = NULL;
|
||
|
spin_unlock_bh(&queue->fastopenq.lock);
|
||
|
while (req != NULL) {
|
||
|
next = req->dl_next;
|
||
|
reqsk_put(req);
|
||
|
req = next;
|
||
|
}
|
||
|
}
|
||
|
WARN_ON_ONCE(sk->sk_ack_backlog);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
|
||
|
|
||
|
void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
|
||
|
{
|
||
|
struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
|
||
|
const struct inet_sock *inet = inet_sk(sk);
|
||
|
|
||
|
sin->sin_family = AF_INET;
|
||
|
sin->sin_addr.s_addr = inet->inet_daddr;
|
||
|
sin->sin_port = inet->inet_dport;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
|
||
|
|
||
|
#ifdef CONFIG_COMPAT
|
||
|
int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
|
||
|
char __user *optval, int __user *optlen)
|
||
|
{
|
||
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
||
|
|
||
|
if (icsk->icsk_af_ops->compat_getsockopt)
|
||
|
return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
|
||
|
optval, optlen);
|
||
|
return icsk->icsk_af_ops->getsockopt(sk, level, optname,
|
||
|
optval, optlen);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
|
||
|
|
||
|
int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
|
||
|
char __user *optval, unsigned int optlen)
|
||
|
{
|
||
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
||
|
|
||
|
if (icsk->icsk_af_ops->compat_setsockopt)
|
||
|
return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
|
||
|
optval, optlen);
|
||
|
return icsk->icsk_af_ops->setsockopt(sk, level, optname,
|
||
|
optval, optlen);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
|
||
|
#endif
|
||
|
|
||
|
static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
|
||
|
{
|
||
|
const struct inet_sock *inet = inet_sk(sk);
|
||
|
const struct ip_options_rcu *inet_opt;
|
||
|
__be32 daddr = inet->inet_daddr;
|
||
|
struct flowi4 *fl4;
|
||
|
struct rtable *rt;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
inet_opt = rcu_dereference(inet->inet_opt);
|
||
|
if (inet_opt && inet_opt->opt.srr)
|
||
|
daddr = inet_opt->opt.faddr;
|
||
|
fl4 = &fl->u.ip4;
|
||
|
rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
|
||
|
inet->inet_saddr, inet->inet_dport,
|
||
|
inet->inet_sport, sk->sk_protocol,
|
||
|
RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
|
||
|
if (IS_ERR(rt))
|
||
|
rt = NULL;
|
||
|
if (rt)
|
||
|
sk_setup_caps(sk, &rt->dst);
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
return &rt->dst;
|
||
|
}
|
||
|
|
||
|
struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
|
||
|
{
|
||
|
struct dst_entry *dst = __sk_dst_check(sk, 0);
|
||
|
struct inet_sock *inet = inet_sk(sk);
|
||
|
|
||
|
if (!dst) {
|
||
|
dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
|
||
|
if (!dst)
|
||
|
goto out;
|
||
|
}
|
||
|
dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
|
||
|
|
||
|
dst = __sk_dst_check(sk, 0);
|
||
|
if (!dst)
|
||
|
dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
|
||
|
out:
|
||
|
return dst;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
|