kernel_samsung_a34x-permissive/sound/soc/intel/atom/sst-atom-controls.c

1565 lines
49 KiB
C
Raw Normal View History

/*
* sst-atom-controls.c - Intel MID Platform driver DPCM ALSA controls for Mrfld
*
* Copyright (C) 2013-14 Intel Corp
* Author: Omair Mohammed Abdullah <omair.m.abdullah@intel.com>
* Vinod Koul <vinod.koul@intel.com>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* In the dpcm driver modelling when a particular FE/BE/Mixer/Pipe is active
* we forward the settings and parameters, rest we keep the values in
* driver and forward when DAPM enables them
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/slab.h>
#include <sound/soc.h>
#include <sound/tlv.h>
#include "sst-mfld-platform.h"
#include "sst-atom-controls.h"
static int sst_fill_byte_control(struct sst_data *drv,
u8 ipc_msg, u8 block,
u8 task_id, u8 pipe_id,
u16 len, void *cmd_data)
{
struct snd_sst_bytes_v2 *byte_data = drv->byte_stream;
byte_data->type = SST_CMD_BYTES_SET;
byte_data->ipc_msg = ipc_msg;
byte_data->block = block;
byte_data->task_id = task_id;
byte_data->pipe_id = pipe_id;
if (len > SST_MAX_BIN_BYTES - sizeof(*byte_data)) {
dev_err(&drv->pdev->dev, "command length too big (%u)", len);
return -EINVAL;
}
byte_data->len = len;
memcpy(byte_data->bytes, cmd_data, len);
print_hex_dump_bytes("writing to lpe: ", DUMP_PREFIX_OFFSET,
byte_data, len + sizeof(*byte_data));
return 0;
}
static int sst_fill_and_send_cmd_unlocked(struct sst_data *drv,
u8 ipc_msg, u8 block, u8 task_id, u8 pipe_id,
void *cmd_data, u16 len)
{
int ret = 0;
ret = sst_fill_byte_control(drv, ipc_msg,
block, task_id, pipe_id, len, cmd_data);
if (ret < 0)
return ret;
return sst->ops->send_byte_stream(sst->dev, drv->byte_stream);
}
/**
* sst_fill_and_send_cmd - generate the IPC message and send it to the FW
* @ipc_msg: type of IPC (CMD, SET_PARAMS, GET_PARAMS)
* @cmd_data: the IPC payload
*/
static int sst_fill_and_send_cmd(struct sst_data *drv,
u8 ipc_msg, u8 block, u8 task_id, u8 pipe_id,
void *cmd_data, u16 len)
{
int ret;
mutex_lock(&drv->lock);
ret = sst_fill_and_send_cmd_unlocked(drv, ipc_msg, block,
task_id, pipe_id, cmd_data, len);
mutex_unlock(&drv->lock);
return ret;
}
/**
* tx map value is a bitfield where each bit represents a FW channel
*
* 3 2 1 0 # 0 = codec0, 1 = codec1
* RLRLRLRL # 3, 4 = reserved
*
* e.g. slot 0 rx map = 00001100b -> data from slot 0 goes into codec_in1 L,R
*/
static u8 sst_ssp_tx_map[SST_MAX_TDM_SLOTS] = {
0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80, /* default rx map */
};
/**
* rx map value is a bitfield where each bit represents a slot
*
* 76543210 # 0 = slot 0, 1 = slot 1
*
* e.g. codec1_0 tx map = 00000101b -> data from codec_out1_0 goes into slot 0, 2
*/
static u8 sst_ssp_rx_map[SST_MAX_TDM_SLOTS] = {
0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80, /* default tx map */
};
/**
* NOTE: this is invoked with lock held
*/
static int sst_send_slot_map(struct sst_data *drv)
{
struct sst_param_sba_ssp_slot_map cmd;
SST_FILL_DEFAULT_DESTINATION(cmd.header.dst);
cmd.header.command_id = SBA_SET_SSP_SLOT_MAP;
cmd.header.length = sizeof(struct sst_param_sba_ssp_slot_map)
- sizeof(struct sst_dsp_header);
cmd.param_id = SBA_SET_SSP_SLOT_MAP;
cmd.param_len = sizeof(cmd.rx_slot_map) + sizeof(cmd.tx_slot_map)
+ sizeof(cmd.ssp_index);
cmd.ssp_index = SSP_CODEC;
memcpy(cmd.rx_slot_map, &sst_ssp_tx_map[0], sizeof(cmd.rx_slot_map));
memcpy(cmd.tx_slot_map, &sst_ssp_rx_map[0], sizeof(cmd.tx_slot_map));
return sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_SET_PARAMS,
SST_FLAG_BLOCKED, SST_TASK_SBA, 0, &cmd,
sizeof(cmd.header) + cmd.header.length);
}
static int sst_slot_enum_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct sst_enum *e = (struct sst_enum *)kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = e->max;
if (uinfo->value.enumerated.item > e->max - 1)
uinfo->value.enumerated.item = e->max - 1;
strcpy(uinfo->value.enumerated.name,
e->texts[uinfo->value.enumerated.item]);
return 0;
}
/**
* sst_slot_get - get the status of the interleaver/deinterleaver control
*
* Searches the map where the control status is stored, and gets the
* channel/slot which is currently set for this enumerated control. Since it is
* an enumerated control, there is only one possible value.
*/
static int sst_slot_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct sst_enum *e = (void *)kcontrol->private_value;
struct snd_soc_component *c = snd_kcontrol_chip(kcontrol);
struct sst_data *drv = snd_soc_component_get_drvdata(c);
unsigned int ctl_no = e->reg;
unsigned int is_tx = e->tx;
unsigned int val, mux;
u8 *map = is_tx ? sst_ssp_rx_map : sst_ssp_tx_map;
mutex_lock(&drv->lock);
val = 1 << ctl_no;
/* search which slot/channel has this bit set - there should be only one */
for (mux = e->max; mux > 0; mux--)
if (map[mux - 1] & val)
break;
ucontrol->value.enumerated.item[0] = mux;
mutex_unlock(&drv->lock);
dev_dbg(c->dev, "%s - %s map = %#x\n",
is_tx ? "tx channel" : "rx slot",
e->texts[mux], mux ? map[mux - 1] : -1);
return 0;
}
/* sst_check_and_send_slot_map - helper for checking power state and sending
* slot map cmd
*
* called with lock held
*/
static int sst_check_and_send_slot_map(struct sst_data *drv, struct snd_kcontrol *kcontrol)
{
struct sst_enum *e = (void *)kcontrol->private_value;
int ret = 0;
if (e->w && e->w->power)
ret = sst_send_slot_map(drv);
else if (!e->w)
dev_err(&drv->pdev->dev, "Slot control: %s doesn't have DAPM widget!!!\n",
kcontrol->id.name);
return ret;
}
/**
* sst_slot_put - set the status of interleaver/deinterleaver control
*
* (de)interleaver controls are defined in opposite sense to be user-friendly
*
* Instead of the enum value being the value written to the register, it is the
* register address; and the kcontrol number (register num) is the value written
* to the register. This is so that there can be only one value for each
* slot/channel since there is only one control for each slot/channel.
*
* This means that whenever an enum is set, we need to clear the bit
* for that kcontrol_no for all the interleaver OR deinterleaver registers
*/
static int sst_slot_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *c = snd_soc_kcontrol_component(kcontrol);
struct sst_data *drv = snd_soc_component_get_drvdata(c);
struct sst_enum *e = (void *)kcontrol->private_value;
int i, ret = 0;
unsigned int ctl_no = e->reg;
unsigned int is_tx = e->tx;
unsigned int slot_channel_no;
unsigned int val, mux;
u8 *map;
map = is_tx ? sst_ssp_rx_map : sst_ssp_tx_map;
val = 1 << ctl_no;
mux = ucontrol->value.enumerated.item[0];
if (mux > e->max - 1)
return -EINVAL;
mutex_lock(&drv->lock);
/* first clear all registers of this bit */
for (i = 0; i < e->max; i++)
map[i] &= ~val;
if (mux == 0) {
/* kctl set to 'none' and we reset the bits so send IPC */
ret = sst_check_and_send_slot_map(drv, kcontrol);
mutex_unlock(&drv->lock);
return ret;
}
/* offset by one to take "None" into account */
slot_channel_no = mux - 1;
map[slot_channel_no] |= val;
dev_dbg(c->dev, "%s %s map = %#x\n",
is_tx ? "tx channel" : "rx slot",
e->texts[mux], map[slot_channel_no]);
ret = sst_check_and_send_slot_map(drv, kcontrol);
mutex_unlock(&drv->lock);
return ret;
}
static int sst_send_algo_cmd(struct sst_data *drv,
struct sst_algo_control *bc)
{
int len, ret = 0;
struct sst_cmd_set_params *cmd;
/*bc->max includes sizeof algos + length field*/
len = sizeof(cmd->dst) + sizeof(cmd->command_id) + bc->max;
cmd = kzalloc(len, GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
SST_FILL_DESTINATION(2, cmd->dst, bc->pipe_id, bc->module_id);
cmd->command_id = bc->cmd_id;
memcpy(cmd->params, bc->params, bc->max);
ret = sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_SET_PARAMS,
SST_FLAG_BLOCKED, bc->task_id, 0, cmd, len);
kfree(cmd);
return ret;
}
/**
* sst_find_and_send_pipe_algo - send all the algo parameters for a pipe
*
* The algos which are in each pipeline are sent to the firmware one by one
*
* Called with lock held
*/
static int sst_find_and_send_pipe_algo(struct sst_data *drv,
const char *pipe, struct sst_ids *ids)
{
int ret = 0;
struct sst_algo_control *bc;
struct sst_module *algo = NULL;
dev_dbg(&drv->pdev->dev, "Enter: widget=%s\n", pipe);
list_for_each_entry(algo, &ids->algo_list, node) {
bc = (void *)algo->kctl->private_value;
dev_dbg(&drv->pdev->dev, "Found algo control name=%s pipe=%s\n",
algo->kctl->id.name, pipe);
ret = sst_send_algo_cmd(drv, bc);
if (ret)
return ret;
}
return ret;
}
static int sst_algo_bytes_ctl_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct sst_algo_control *bc = (void *)kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
uinfo->count = bc->max;
return 0;
}
static int sst_algo_control_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct sst_algo_control *bc = (void *)kcontrol->private_value;
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
switch (bc->type) {
case SST_ALGO_PARAMS:
memcpy(ucontrol->value.bytes.data, bc->params, bc->max);
break;
default:
dev_err(component->dev, "Invalid Input- algo type:%d\n",
bc->type);
return -EINVAL;
}
return 0;
}
static int sst_algo_control_set(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int ret = 0;
struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol);
struct sst_data *drv = snd_soc_component_get_drvdata(cmpnt);
struct sst_algo_control *bc = (void *)kcontrol->private_value;
dev_dbg(cmpnt->dev, "control_name=%s\n", kcontrol->id.name);
mutex_lock(&drv->lock);
switch (bc->type) {
case SST_ALGO_PARAMS:
memcpy(bc->params, ucontrol->value.bytes.data, bc->max);
break;
default:
mutex_unlock(&drv->lock);
dev_err(cmpnt->dev, "Invalid Input- algo type:%d\n",
bc->type);
return -EINVAL;
}
/*if pipe is enabled, need to send the algo params from here*/
if (bc->w && bc->w->power)
ret = sst_send_algo_cmd(drv, bc);
mutex_unlock(&drv->lock);
return ret;
}
static int sst_gain_ctl_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct sst_gain_mixer_control *mc = (void *)kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = mc->stereo ? 2 : 1;
uinfo->value.integer.min = mc->min;
uinfo->value.integer.max = mc->max;
return 0;
}
/**
* sst_send_gain_cmd - send the gain algorithm IPC to the FW
* @gv: the stored value of gain (also contains rampduration)
* @mute: flag that indicates whether this was called from the
* digital_mute callback or directly. If called from the
* digital_mute callback, module will be muted/unmuted based on this
* flag. The flag is always 0 if called directly.
*
* Called with sst_data.lock held
*
* The user-set gain value is sent only if the user-controllable 'mute' control
* is OFF (indicated by gv->mute). Otherwise, the mute value (MIN value) is
* sent.
*/
static int sst_send_gain_cmd(struct sst_data *drv, struct sst_gain_value *gv,
u16 task_id, u16 loc_id, u16 module_id, int mute)
{
struct sst_cmd_set_gain_dual cmd;
dev_dbg(&drv->pdev->dev, "Enter\n");
cmd.header.command_id = MMX_SET_GAIN;
SST_FILL_DEFAULT_DESTINATION(cmd.header.dst);
cmd.gain_cell_num = 1;
if (mute || gv->mute) {
cmd.cell_gains[0].cell_gain_left = SST_GAIN_MIN_VALUE;
cmd.cell_gains[0].cell_gain_right = SST_GAIN_MIN_VALUE;
} else {
cmd.cell_gains[0].cell_gain_left = gv->l_gain;
cmd.cell_gains[0].cell_gain_right = gv->r_gain;
}
SST_FILL_DESTINATION(2, cmd.cell_gains[0].dest,
loc_id, module_id);
cmd.cell_gains[0].gain_time_constant = gv->ramp_duration;
cmd.header.length = sizeof(struct sst_cmd_set_gain_dual)
- sizeof(struct sst_dsp_header);
/* we are with lock held, so call the unlocked api to send */
return sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_SET_PARAMS,
SST_FLAG_BLOCKED, task_id, 0, &cmd,
sizeof(cmd.header) + cmd.header.length);
}
static int sst_gain_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct sst_gain_mixer_control *mc = (void *)kcontrol->private_value;
struct sst_gain_value *gv = mc->gain_val;
switch (mc->type) {
case SST_GAIN_TLV:
ucontrol->value.integer.value[0] = gv->l_gain;
ucontrol->value.integer.value[1] = gv->r_gain;
break;
case SST_GAIN_MUTE:
ucontrol->value.integer.value[0] = gv->mute ? 0 : 1;
break;
case SST_GAIN_RAMP_DURATION:
ucontrol->value.integer.value[0] = gv->ramp_duration;
break;
default:
dev_err(component->dev, "Invalid Input- gain type:%d\n",
mc->type);
return -EINVAL;
}
return 0;
}
static int sst_gain_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int ret = 0;
struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol);
struct sst_data *drv = snd_soc_component_get_drvdata(cmpnt);
struct sst_gain_mixer_control *mc = (void *)kcontrol->private_value;
struct sst_gain_value *gv = mc->gain_val;
mutex_lock(&drv->lock);
switch (mc->type) {
case SST_GAIN_TLV:
gv->l_gain = ucontrol->value.integer.value[0];
gv->r_gain = ucontrol->value.integer.value[1];
dev_dbg(cmpnt->dev, "%s: Volume %d, %d\n",
mc->pname, gv->l_gain, gv->r_gain);
break;
case SST_GAIN_MUTE:
gv->mute = !ucontrol->value.integer.value[0];
dev_dbg(cmpnt->dev, "%s: Mute %d\n", mc->pname, gv->mute);
break;
case SST_GAIN_RAMP_DURATION:
gv->ramp_duration = ucontrol->value.integer.value[0];
dev_dbg(cmpnt->dev, "%s: Ramp Delay%d\n",
mc->pname, gv->ramp_duration);
break;
default:
mutex_unlock(&drv->lock);
dev_err(cmpnt->dev, "Invalid Input- gain type:%d\n",
mc->type);
return -EINVAL;
}
if (mc->w && mc->w->power)
ret = sst_send_gain_cmd(drv, gv, mc->task_id,
mc->pipe_id | mc->instance_id, mc->module_id, 0);
mutex_unlock(&drv->lock);
return ret;
}
static int sst_set_pipe_gain(struct sst_ids *ids,
struct sst_data *drv, int mute);
static int sst_send_pipe_module_params(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol)
{
struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm);
struct sst_data *drv = snd_soc_component_get_drvdata(c);
struct sst_ids *ids = w->priv;
mutex_lock(&drv->lock);
sst_find_and_send_pipe_algo(drv, w->name, ids);
sst_set_pipe_gain(ids, drv, 0);
mutex_unlock(&drv->lock);
return 0;
}
static int sst_generic_modules_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *k, int event)
{
if (SND_SOC_DAPM_EVENT_ON(event))
return sst_send_pipe_module_params(w, k);
return 0;
}
static const DECLARE_TLV_DB_SCALE(sst_gain_tlv_common, SST_GAIN_MIN_VALUE * 10, 10, 0);
/* Look up table to convert MIXER SW bit regs to SWM inputs */
static const uint swm_mixer_input_ids[SST_SWM_INPUT_COUNT] = {
[SST_IP_MODEM] = SST_SWM_IN_MODEM,
[SST_IP_CODEC0] = SST_SWM_IN_CODEC0,
[SST_IP_CODEC1] = SST_SWM_IN_CODEC1,
[SST_IP_LOOP0] = SST_SWM_IN_SPROT_LOOP,
[SST_IP_LOOP1] = SST_SWM_IN_MEDIA_LOOP1,
[SST_IP_LOOP2] = SST_SWM_IN_MEDIA_LOOP2,
[SST_IP_PCM0] = SST_SWM_IN_PCM0,
[SST_IP_PCM1] = SST_SWM_IN_PCM1,
[SST_IP_MEDIA0] = SST_SWM_IN_MEDIA0,
[SST_IP_MEDIA1] = SST_SWM_IN_MEDIA1,
[SST_IP_MEDIA2] = SST_SWM_IN_MEDIA2,
[SST_IP_MEDIA3] = SST_SWM_IN_MEDIA3,
};
/**
* fill_swm_input - fill in the SWM input ids given the register
*
* The register value is a bit-field inicated which mixer inputs are ON. Use the
* lookup table to get the input-id and fill it in the structure.
*/
static int fill_swm_input(struct snd_soc_component *cmpnt,
struct swm_input_ids *swm_input, unsigned int reg)
{
uint i, is_set, nb_inputs = 0;
u16 input_loc_id;
dev_dbg(cmpnt->dev, "reg: %#x\n", reg);
for (i = 0; i < SST_SWM_INPUT_COUNT; i++) {
is_set = reg & BIT(i);
if (!is_set)
continue;
input_loc_id = swm_mixer_input_ids[i];
SST_FILL_DESTINATION(2, swm_input->input_id,
input_loc_id, SST_DEFAULT_MODULE_ID);
nb_inputs++;
swm_input++;
dev_dbg(cmpnt->dev, "input id: %#x, nb_inputs: %d\n",
input_loc_id, nb_inputs);
if (nb_inputs == SST_CMD_SWM_MAX_INPUTS) {
dev_warn(cmpnt->dev, "SET_SWM cmd max inputs reached");
break;
}
}
return nb_inputs;
}
/**
* called with lock held
*/
static int sst_set_pipe_gain(struct sst_ids *ids,
struct sst_data *drv, int mute)
{
int ret = 0;
struct sst_gain_mixer_control *mc;
struct sst_gain_value *gv;
struct sst_module *gain = NULL;
list_for_each_entry(gain, &ids->gain_list, node) {
struct snd_kcontrol *kctl = gain->kctl;
dev_dbg(&drv->pdev->dev, "control name=%s\n", kctl->id.name);
mc = (void *)kctl->private_value;
gv = mc->gain_val;
ret = sst_send_gain_cmd(drv, gv, mc->task_id,
mc->pipe_id | mc->instance_id, mc->module_id, mute);
if (ret)
return ret;
}
return ret;
}
static int sst_swm_mixer_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *k, int event)
{
struct sst_cmd_set_swm cmd;
struct snd_soc_component *cmpnt = snd_soc_dapm_to_component(w->dapm);
struct sst_data *drv = snd_soc_component_get_drvdata(cmpnt);
struct sst_ids *ids = w->priv;
bool set_mixer = false;
struct soc_mixer_control *mc;
int val = 0;
int i = 0;
dev_dbg(cmpnt->dev, "widget = %s\n", w->name);
/*
* Identify which mixer input is on and send the bitmap of the
* inputs as an IPC to the DSP.
*/
for (i = 0; i < w->num_kcontrols; i++) {
if (dapm_kcontrol_get_value(w->kcontrols[i])) {
mc = (struct soc_mixer_control *)(w->kcontrols[i])->private_value;
val |= 1 << mc->shift;
}
}
dev_dbg(cmpnt->dev, "val = %#x\n", val);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
case SND_SOC_DAPM_POST_PMD:
set_mixer = true;
break;
case SND_SOC_DAPM_POST_REG:
if (w->power)
set_mixer = true;
break;
default:
set_mixer = false;
}
if (set_mixer == false)
return 0;
if (SND_SOC_DAPM_EVENT_ON(event) ||
event == SND_SOC_DAPM_POST_REG)
cmd.switch_state = SST_SWM_ON;
else
cmd.switch_state = SST_SWM_OFF;
SST_FILL_DEFAULT_DESTINATION(cmd.header.dst);
/* MMX_SET_SWM == SBA_SET_SWM */
cmd.header.command_id = SBA_SET_SWM;
SST_FILL_DESTINATION(2, cmd.output_id,
ids->location_id, SST_DEFAULT_MODULE_ID);
cmd.nb_inputs = fill_swm_input(cmpnt, &cmd.input[0], val);
cmd.header.length = offsetof(struct sst_cmd_set_swm, input)
- sizeof(struct sst_dsp_header)
+ (cmd.nb_inputs * sizeof(cmd.input[0]));
return sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED,
ids->task_id, 0, &cmd,
sizeof(cmd.header) + cmd.header.length);
}
/* SBA mixers - 16 inputs */
#define SST_SBA_DECLARE_MIX_CONTROLS(kctl_name) \
static const struct snd_kcontrol_new kctl_name[] = { \
SOC_DAPM_SINGLE("modem_in Switch", SND_SOC_NOPM, SST_IP_MODEM, 1, 0), \
SOC_DAPM_SINGLE("codec_in0 Switch", SND_SOC_NOPM, SST_IP_CODEC0, 1, 0), \
SOC_DAPM_SINGLE("codec_in1 Switch", SND_SOC_NOPM, SST_IP_CODEC1, 1, 0), \
SOC_DAPM_SINGLE("sprot_loop_in Switch", SND_SOC_NOPM, SST_IP_LOOP0, 1, 0), \
SOC_DAPM_SINGLE("media_loop1_in Switch", SND_SOC_NOPM, SST_IP_LOOP1, 1, 0), \
SOC_DAPM_SINGLE("media_loop2_in Switch", SND_SOC_NOPM, SST_IP_LOOP2, 1, 0), \
SOC_DAPM_SINGLE("pcm0_in Switch", SND_SOC_NOPM, SST_IP_PCM0, 1, 0), \
SOC_DAPM_SINGLE("pcm1_in Switch", SND_SOC_NOPM, SST_IP_PCM1, 1, 0), \
}
#define SST_SBA_MIXER_GRAPH_MAP(mix_name) \
{ mix_name, "modem_in Switch", "modem_in" }, \
{ mix_name, "codec_in0 Switch", "codec_in0" }, \
{ mix_name, "codec_in1 Switch", "codec_in1" }, \
{ mix_name, "sprot_loop_in Switch", "sprot_loop_in" }, \
{ mix_name, "media_loop1_in Switch", "media_loop1_in" }, \
{ mix_name, "media_loop2_in Switch", "media_loop2_in" }, \
{ mix_name, "pcm0_in Switch", "pcm0_in" }, \
{ mix_name, "pcm1_in Switch", "pcm1_in" }
#define SST_MMX_DECLARE_MIX_CONTROLS(kctl_name) \
static const struct snd_kcontrol_new kctl_name[] = { \
SOC_DAPM_SINGLE("media0_in Switch", SND_SOC_NOPM, SST_IP_MEDIA0, 1, 0), \
SOC_DAPM_SINGLE("media1_in Switch", SND_SOC_NOPM, SST_IP_MEDIA1, 1, 0), \
SOC_DAPM_SINGLE("media2_in Switch", SND_SOC_NOPM, SST_IP_MEDIA2, 1, 0), \
SOC_DAPM_SINGLE("media3_in Switch", SND_SOC_NOPM, SST_IP_MEDIA3, 1, 0), \
}
SST_MMX_DECLARE_MIX_CONTROLS(sst_mix_media0_controls);
SST_MMX_DECLARE_MIX_CONTROLS(sst_mix_media1_controls);
/* 18 SBA mixers */
SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_pcm0_controls);
SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_pcm1_controls);
SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_pcm2_controls);
SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_sprot_l0_controls);
SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_media_l1_controls);
SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_media_l2_controls);
SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_voip_controls);
SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_codec0_controls);
SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_codec1_controls);
SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_modem_controls);
/*
* sst_handle_vb_timer - Start/Stop the DSP scheduler
*
* The DSP expects first cmd to be SBA_VB_START, so at first startup send
* that.
* DSP expects last cmd to be SBA_VB_IDLE, so at last shutdown send that.
*
* Do refcount internally so that we send command only at first start
* and last end. Since SST driver does its own ref count, invoke sst's
* power ops always!
*/
int sst_handle_vb_timer(struct snd_soc_dai *dai, bool enable)
{
int ret = 0;
struct sst_cmd_generic cmd;
struct sst_data *drv = snd_soc_dai_get_drvdata(dai);
static int timer_usage;
if (enable)
cmd.header.command_id = SBA_VB_START;
else
cmd.header.command_id = SBA_IDLE;
dev_dbg(dai->dev, "enable=%u, usage=%d\n", enable, timer_usage);
SST_FILL_DEFAULT_DESTINATION(cmd.header.dst);
cmd.header.length = 0;
if (enable) {
ret = sst->ops->power(sst->dev, true);
if (ret < 0)
return ret;
}
mutex_lock(&drv->lock);
if (enable)
timer_usage++;
else
timer_usage--;
/*
* Send the command only if this call is the first enable or last
* disable
*/
if ((enable && (timer_usage == 1)) ||
(!enable && (timer_usage == 0))) {
ret = sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_CMD,
SST_FLAG_BLOCKED, SST_TASK_SBA, 0, &cmd,
sizeof(cmd.header) + cmd.header.length);
if (ret && enable) {
timer_usage--;
enable = false;
}
}
mutex_unlock(&drv->lock);
if (!enable)
sst->ops->power(sst->dev, false);
return ret;
}
int sst_fill_ssp_slot(struct snd_soc_dai *dai, unsigned int tx_mask,
unsigned int rx_mask, int slots, int slot_width)
{
struct sst_data *ctx = snd_soc_dai_get_drvdata(dai);
ctx->ssp_cmd.nb_slots = slots;
ctx->ssp_cmd.active_tx_slot_map = tx_mask;
ctx->ssp_cmd.active_rx_slot_map = rx_mask;
ctx->ssp_cmd.nb_bits_per_slots = slot_width;
return 0;
}
static int sst_get_frame_sync_polarity(struct snd_soc_dai *dai,
unsigned int fmt)
{
int format;
format = fmt & SND_SOC_DAIFMT_INV_MASK;
dev_dbg(dai->dev, "Enter:%s, format=%x\n", __func__, format);
switch (format) {
case SND_SOC_DAIFMT_NB_NF:
case SND_SOC_DAIFMT_IB_NF:
return SSP_FS_ACTIVE_HIGH;
case SND_SOC_DAIFMT_NB_IF:
case SND_SOC_DAIFMT_IB_IF:
return SSP_FS_ACTIVE_LOW;
default:
dev_err(dai->dev, "Invalid frame sync polarity %d\n", format);
}
return -EINVAL;
}
static int sst_get_ssp_mode(struct snd_soc_dai *dai, unsigned int fmt)
{
int format;
format = (fmt & SND_SOC_DAIFMT_MASTER_MASK);
dev_dbg(dai->dev, "Enter:%s, format=%x\n", __func__, format);
switch (format) {
case SND_SOC_DAIFMT_CBS_CFS:
return SSP_MODE_MASTER;
case SND_SOC_DAIFMT_CBM_CFM:
return SSP_MODE_SLAVE;
default:
dev_err(dai->dev, "Invalid ssp protocol: %d\n", format);
}
return -EINVAL;
}
int sst_fill_ssp_config(struct snd_soc_dai *dai, unsigned int fmt)
{
unsigned int mode;
int fs_polarity;
struct sst_data *ctx = snd_soc_dai_get_drvdata(dai);
mode = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
switch (mode) {
case SND_SOC_DAIFMT_DSP_B:
ctx->ssp_cmd.ssp_protocol = SSP_MODE_PCM;
ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NETWORK << 1);
ctx->ssp_cmd.start_delay = 0;
ctx->ssp_cmd.data_polarity = 1;
ctx->ssp_cmd.frame_sync_width = 1;
break;
case SND_SOC_DAIFMT_DSP_A:
ctx->ssp_cmd.ssp_protocol = SSP_MODE_PCM;
ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NETWORK << 1);
ctx->ssp_cmd.start_delay = 1;
ctx->ssp_cmd.data_polarity = 1;
ctx->ssp_cmd.frame_sync_width = 1;
break;
case SND_SOC_DAIFMT_I2S:
ctx->ssp_cmd.ssp_protocol = SSP_MODE_I2S;
ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NORMAL << 1);
ctx->ssp_cmd.start_delay = 1;
ctx->ssp_cmd.data_polarity = 0;
ctx->ssp_cmd.frame_sync_width = ctx->ssp_cmd.nb_bits_per_slots;
break;
case SND_SOC_DAIFMT_LEFT_J:
ctx->ssp_cmd.ssp_protocol = SSP_MODE_I2S;
ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NORMAL << 1);
ctx->ssp_cmd.start_delay = 0;
ctx->ssp_cmd.data_polarity = 0;
ctx->ssp_cmd.frame_sync_width = ctx->ssp_cmd.nb_bits_per_slots;
break;
default:
dev_dbg(dai->dev, "using default ssp configs\n");
}
fs_polarity = sst_get_frame_sync_polarity(dai, fmt);
if (fs_polarity < 0)
return fs_polarity;
ctx->ssp_cmd.frame_sync_polarity = fs_polarity;
return 0;
}
/**
* sst_ssp_config - contains SSP configuration for media UC
* this can be overwritten by set_dai_xxx APIs
*/
static const struct sst_ssp_config sst_ssp_configs = {
.ssp_id = SSP_CODEC,
.bits_per_slot = 24,
.slots = 4,
.ssp_mode = SSP_MODE_MASTER,
.pcm_mode = SSP_PCM_MODE_NETWORK,
.duplex = SSP_DUPLEX,
.ssp_protocol = SSP_MODE_PCM,
.fs_width = 1,
.fs_frequency = SSP_FS_48_KHZ,
.active_slot_map = 0xF,
.start_delay = 0,
.frame_sync_polarity = SSP_FS_ACTIVE_HIGH,
.data_polarity = 1,
};
void sst_fill_ssp_defaults(struct snd_soc_dai *dai)
{
const struct sst_ssp_config *config;
struct sst_data *ctx = snd_soc_dai_get_drvdata(dai);
config = &sst_ssp_configs;
ctx->ssp_cmd.selection = config->ssp_id;
ctx->ssp_cmd.nb_bits_per_slots = config->bits_per_slot;
ctx->ssp_cmd.nb_slots = config->slots;
ctx->ssp_cmd.mode = config->ssp_mode | (config->pcm_mode << 1);
ctx->ssp_cmd.duplex = config->duplex;
ctx->ssp_cmd.active_tx_slot_map = config->active_slot_map;
ctx->ssp_cmd.active_rx_slot_map = config->active_slot_map;
ctx->ssp_cmd.frame_sync_frequency = config->fs_frequency;
ctx->ssp_cmd.frame_sync_polarity = config->frame_sync_polarity;
ctx->ssp_cmd.data_polarity = config->data_polarity;
ctx->ssp_cmd.frame_sync_width = config->fs_width;
ctx->ssp_cmd.ssp_protocol = config->ssp_protocol;
ctx->ssp_cmd.start_delay = config->start_delay;
ctx->ssp_cmd.reserved1 = ctx->ssp_cmd.reserved2 = 0xFF;
}
int send_ssp_cmd(struct snd_soc_dai *dai, const char *id, bool enable)
{
struct sst_data *drv = snd_soc_dai_get_drvdata(dai);
int ssp_id;
dev_dbg(dai->dev, "Enter: enable=%d port_name=%s\n", enable, id);
if (strcmp(id, "ssp0-port") == 0)
ssp_id = SSP_MODEM;
else if (strcmp(id, "ssp2-port") == 0)
ssp_id = SSP_CODEC;
else {
dev_dbg(dai->dev, "port %s is not supported\n", id);
return -1;
}
SST_FILL_DEFAULT_DESTINATION(drv->ssp_cmd.header.dst);
drv->ssp_cmd.header.command_id = SBA_HW_SET_SSP;
drv->ssp_cmd.header.length = sizeof(struct sst_cmd_sba_hw_set_ssp)
- sizeof(struct sst_dsp_header);
drv->ssp_cmd.selection = ssp_id;
dev_dbg(dai->dev, "ssp_id: %u\n", ssp_id);
if (enable)
drv->ssp_cmd.switch_state = SST_SWITCH_ON;
else
drv->ssp_cmd.switch_state = SST_SWITCH_OFF;
return sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED,
SST_TASK_SBA, 0, &drv->ssp_cmd,
sizeof(drv->ssp_cmd.header) + drv->ssp_cmd.header.length);
}
static int sst_set_be_modules(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *k, int event)
{
int ret = 0;
struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm);
struct sst_data *drv = snd_soc_component_get_drvdata(c);
dev_dbg(c->dev, "Enter: widget=%s\n", w->name);
if (SND_SOC_DAPM_EVENT_ON(event)) {
mutex_lock(&drv->lock);
ret = sst_send_slot_map(drv);
mutex_unlock(&drv->lock);
if (ret)
return ret;
ret = sst_send_pipe_module_params(w, k);
}
return ret;
}
static int sst_set_media_path(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *k, int event)
{
int ret = 0;
struct sst_cmd_set_media_path cmd;
struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm);
struct sst_data *drv = snd_soc_component_get_drvdata(c);
struct sst_ids *ids = w->priv;
dev_dbg(c->dev, "widget=%s\n", w->name);
dev_dbg(c->dev, "task=%u, location=%#x\n",
ids->task_id, ids->location_id);
if (SND_SOC_DAPM_EVENT_ON(event))
cmd.switch_state = SST_PATH_ON;
else
cmd.switch_state = SST_PATH_OFF;
SST_FILL_DESTINATION(2, cmd.header.dst,
ids->location_id, SST_DEFAULT_MODULE_ID);
/* MMX_SET_MEDIA_PATH == SBA_SET_MEDIA_PATH */
cmd.header.command_id = MMX_SET_MEDIA_PATH;
cmd.header.length = sizeof(struct sst_cmd_set_media_path)
- sizeof(struct sst_dsp_header);
ret = sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED,
ids->task_id, 0, &cmd,
sizeof(cmd.header) + cmd.header.length);
if (ret)
return ret;
if (SND_SOC_DAPM_EVENT_ON(event))
ret = sst_send_pipe_module_params(w, k);
return ret;
}
static int sst_set_media_loop(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *k, int event)
{
int ret = 0;
struct sst_cmd_sba_set_media_loop_map cmd;
struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm);
struct sst_data *drv = snd_soc_component_get_drvdata(c);
struct sst_ids *ids = w->priv;
dev_dbg(c->dev, "Enter:widget=%s\n", w->name);
if (SND_SOC_DAPM_EVENT_ON(event))
cmd.switch_state = SST_SWITCH_ON;
else
cmd.switch_state = SST_SWITCH_OFF;
SST_FILL_DESTINATION(2, cmd.header.dst,
ids->location_id, SST_DEFAULT_MODULE_ID);
cmd.header.command_id = SBA_SET_MEDIA_LOOP_MAP;
cmd.header.length = sizeof(struct sst_cmd_sba_set_media_loop_map)
- sizeof(struct sst_dsp_header);
cmd.param.part.cfg.rate = 2; /* 48khz */
cmd.param.part.cfg.format = ids->format; /* stereo/Mono */
cmd.param.part.cfg.s_length = 1; /* 24bit left justified */
cmd.map = 0; /* Algo sequence: Gain - DRP - FIR - IIR */
ret = sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED,
SST_TASK_SBA, 0, &cmd,
sizeof(cmd.header) + cmd.header.length);
if (ret)
return ret;
if (SND_SOC_DAPM_EVENT_ON(event))
ret = sst_send_pipe_module_params(w, k);
return ret;
}
static const struct snd_soc_dapm_widget sst_dapm_widgets[] = {
SST_AIF_IN("modem_in", sst_set_be_modules),
SST_AIF_IN("codec_in0", sst_set_be_modules),
SST_AIF_IN("codec_in1", sst_set_be_modules),
SST_AIF_OUT("modem_out", sst_set_be_modules),
SST_AIF_OUT("codec_out0", sst_set_be_modules),
SST_AIF_OUT("codec_out1", sst_set_be_modules),
/* Media Paths */
/* MediaX IN paths are set via ALLOC, so no SET_MEDIA_PATH command */
SST_PATH_INPUT("media0_in", SST_TASK_MMX, SST_SWM_IN_MEDIA0, sst_generic_modules_event),
SST_PATH_INPUT("media1_in", SST_TASK_MMX, SST_SWM_IN_MEDIA1, NULL),
SST_PATH_INPUT("media2_in", SST_TASK_MMX, SST_SWM_IN_MEDIA2, sst_set_media_path),
SST_PATH_INPUT("media3_in", SST_TASK_MMX, SST_SWM_IN_MEDIA3, NULL),
SST_PATH_OUTPUT("media0_out", SST_TASK_MMX, SST_SWM_OUT_MEDIA0, sst_set_media_path),
SST_PATH_OUTPUT("media1_out", SST_TASK_MMX, SST_SWM_OUT_MEDIA1, sst_set_media_path),
/* SBA PCM Paths */
SST_PATH_INPUT("pcm0_in", SST_TASK_SBA, SST_SWM_IN_PCM0, sst_set_media_path),
SST_PATH_INPUT("pcm1_in", SST_TASK_SBA, SST_SWM_IN_PCM1, sst_set_media_path),
SST_PATH_OUTPUT("pcm0_out", SST_TASK_SBA, SST_SWM_OUT_PCM0, sst_set_media_path),
SST_PATH_OUTPUT("pcm1_out", SST_TASK_SBA, SST_SWM_OUT_PCM1, sst_set_media_path),
SST_PATH_OUTPUT("pcm2_out", SST_TASK_SBA, SST_SWM_OUT_PCM2, sst_set_media_path),
/* SBA Loops */
SST_PATH_INPUT("sprot_loop_in", SST_TASK_SBA, SST_SWM_IN_SPROT_LOOP, NULL),
SST_PATH_INPUT("media_loop1_in", SST_TASK_SBA, SST_SWM_IN_MEDIA_LOOP1, NULL),
SST_PATH_INPUT("media_loop2_in", SST_TASK_SBA, SST_SWM_IN_MEDIA_LOOP2, NULL),
SST_PATH_MEDIA_LOOP_OUTPUT("sprot_loop_out", SST_TASK_SBA, SST_SWM_OUT_SPROT_LOOP, SST_FMT_STEREO, sst_set_media_loop),
SST_PATH_MEDIA_LOOP_OUTPUT("media_loop1_out", SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP1, SST_FMT_STEREO, sst_set_media_loop),
SST_PATH_MEDIA_LOOP_OUTPUT("media_loop2_out", SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP2, SST_FMT_STEREO, sst_set_media_loop),
/* Media Mixers */
SST_SWM_MIXER("media0_out mix 0", SND_SOC_NOPM, SST_TASK_MMX, SST_SWM_OUT_MEDIA0,
sst_mix_media0_controls, sst_swm_mixer_event),
SST_SWM_MIXER("media1_out mix 0", SND_SOC_NOPM, SST_TASK_MMX, SST_SWM_OUT_MEDIA1,
sst_mix_media1_controls, sst_swm_mixer_event),
/* SBA PCM mixers */
SST_SWM_MIXER("pcm0_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_PCM0,
sst_mix_pcm0_controls, sst_swm_mixer_event),
SST_SWM_MIXER("pcm1_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_PCM1,
sst_mix_pcm1_controls, sst_swm_mixer_event),
SST_SWM_MIXER("pcm2_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_PCM2,
sst_mix_pcm2_controls, sst_swm_mixer_event),
/* SBA Loop mixers */
SST_SWM_MIXER("sprot_loop_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_SPROT_LOOP,
sst_mix_sprot_l0_controls, sst_swm_mixer_event),
SST_SWM_MIXER("media_loop1_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP1,
sst_mix_media_l1_controls, sst_swm_mixer_event),
SST_SWM_MIXER("media_loop2_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP2,
sst_mix_media_l2_controls, sst_swm_mixer_event),
/* SBA Backend mixers */
SST_SWM_MIXER("codec_out0 mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_CODEC0,
sst_mix_codec0_controls, sst_swm_mixer_event),
SST_SWM_MIXER("codec_out1 mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_CODEC1,
sst_mix_codec1_controls, sst_swm_mixer_event),
SST_SWM_MIXER("modem_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_MODEM,
sst_mix_modem_controls, sst_swm_mixer_event),
};
static const struct snd_soc_dapm_route intercon[] = {
{"media0_in", NULL, "Compress Playback"},
{"media1_in", NULL, "Headset Playback"},
{"media2_in", NULL, "pcm0_out"},
{"media3_in", NULL, "Deepbuffer Playback"},
{"media0_out mix 0", "media0_in Switch", "media0_in"},
{"media0_out mix 0", "media1_in Switch", "media1_in"},
{"media0_out mix 0", "media2_in Switch", "media2_in"},
{"media0_out mix 0", "media3_in Switch", "media3_in"},
{"media1_out mix 0", "media0_in Switch", "media0_in"},
{"media1_out mix 0", "media1_in Switch", "media1_in"},
{"media1_out mix 0", "media2_in Switch", "media2_in"},
{"media1_out mix 0", "media3_in Switch", "media3_in"},
{"media0_out", NULL, "media0_out mix 0"},
{"media1_out", NULL, "media1_out mix 0"},
{"pcm0_in", NULL, "media0_out"},
{"pcm1_in", NULL, "media1_out"},
{"Headset Capture", NULL, "pcm1_out"},
{"Headset Capture", NULL, "pcm2_out"},
{"pcm0_out", NULL, "pcm0_out mix 0"},
SST_SBA_MIXER_GRAPH_MAP("pcm0_out mix 0"),
{"pcm1_out", NULL, "pcm1_out mix 0"},
SST_SBA_MIXER_GRAPH_MAP("pcm1_out mix 0"),
{"pcm2_out", NULL, "pcm2_out mix 0"},
SST_SBA_MIXER_GRAPH_MAP("pcm2_out mix 0"),
{"media_loop1_in", NULL, "media_loop1_out"},
{"media_loop1_out", NULL, "media_loop1_out mix 0"},
SST_SBA_MIXER_GRAPH_MAP("media_loop1_out mix 0"),
{"media_loop2_in", NULL, "media_loop2_out"},
{"media_loop2_out", NULL, "media_loop2_out mix 0"},
SST_SBA_MIXER_GRAPH_MAP("media_loop2_out mix 0"),
{"sprot_loop_in", NULL, "sprot_loop_out"},
{"sprot_loop_out", NULL, "sprot_loop_out mix 0"},
SST_SBA_MIXER_GRAPH_MAP("sprot_loop_out mix 0"),
{"codec_out0", NULL, "codec_out0 mix 0"},
SST_SBA_MIXER_GRAPH_MAP("codec_out0 mix 0"),
{"codec_out1", NULL, "codec_out1 mix 0"},
SST_SBA_MIXER_GRAPH_MAP("codec_out1 mix 0"),
{"modem_out", NULL, "modem_out mix 0"},
SST_SBA_MIXER_GRAPH_MAP("modem_out mix 0"),
};
static const char * const slot_names[] = {
"none",
"slot 0", "slot 1", "slot 2", "slot 3",
"slot 4", "slot 5", "slot 6", "slot 7", /* not supported by FW */
};
static const char * const channel_names[] = {
"none",
"codec_out0_0", "codec_out0_1", "codec_out1_0", "codec_out1_1",
"codec_out2_0", "codec_out2_1", "codec_out3_0", "codec_out3_1", /* not supported by FW */
};
#define SST_INTERLEAVER(xpname, slot_name, slotno) \
SST_SSP_SLOT_CTL(xpname, "tx interleaver", slot_name, slotno, true, \
channel_names, sst_slot_get, sst_slot_put)
#define SST_DEINTERLEAVER(xpname, channel_name, channel_no) \
SST_SSP_SLOT_CTL(xpname, "rx deinterleaver", channel_name, channel_no, false, \
slot_names, sst_slot_get, sst_slot_put)
static const struct snd_kcontrol_new sst_slot_controls[] = {
SST_INTERLEAVER("codec_out", "slot 0", 0),
SST_INTERLEAVER("codec_out", "slot 1", 1),
SST_INTERLEAVER("codec_out", "slot 2", 2),
SST_INTERLEAVER("codec_out", "slot 3", 3),
SST_DEINTERLEAVER("codec_in", "codec_in0_0", 0),
SST_DEINTERLEAVER("codec_in", "codec_in0_1", 1),
SST_DEINTERLEAVER("codec_in", "codec_in1_0", 2),
SST_DEINTERLEAVER("codec_in", "codec_in1_1", 3),
};
/* Gain helper with min/max set */
#define SST_GAIN(name, path_id, task_id, instance, gain_var) \
SST_GAIN_KCONTROLS(name, "Gain", SST_GAIN_MIN_VALUE, SST_GAIN_MAX_VALUE, \
SST_GAIN_TC_MIN, SST_GAIN_TC_MAX, \
sst_gain_get, sst_gain_put, \
SST_MODULE_ID_GAIN_CELL, path_id, instance, task_id, \
sst_gain_tlv_common, gain_var)
#define SST_VOLUME(name, path_id, task_id, instance, gain_var) \
SST_GAIN_KCONTROLS(name, "Volume", SST_GAIN_MIN_VALUE, SST_GAIN_MAX_VALUE, \
SST_GAIN_TC_MIN, SST_GAIN_TC_MAX, \
sst_gain_get, sst_gain_put, \
SST_MODULE_ID_VOLUME, path_id, instance, task_id, \
sst_gain_tlv_common, gain_var)
static struct sst_gain_value sst_gains[];
static const struct snd_kcontrol_new sst_gain_controls[] = {
SST_GAIN("media0_in", SST_PATH_INDEX_MEDIA0_IN, SST_TASK_MMX, 0, &sst_gains[0]),
SST_GAIN("media1_in", SST_PATH_INDEX_MEDIA1_IN, SST_TASK_MMX, 0, &sst_gains[1]),
SST_GAIN("media2_in", SST_PATH_INDEX_MEDIA2_IN, SST_TASK_MMX, 0, &sst_gains[2]),
SST_GAIN("media3_in", SST_PATH_INDEX_MEDIA3_IN, SST_TASK_MMX, 0, &sst_gains[3]),
SST_GAIN("pcm0_in", SST_PATH_INDEX_PCM0_IN, SST_TASK_SBA, 0, &sst_gains[4]),
SST_GAIN("pcm1_in", SST_PATH_INDEX_PCM1_IN, SST_TASK_SBA, 0, &sst_gains[5]),
SST_GAIN("pcm1_out", SST_PATH_INDEX_PCM1_OUT, SST_TASK_SBA, 0, &sst_gains[6]),
SST_GAIN("pcm2_out", SST_PATH_INDEX_PCM2_OUT, SST_TASK_SBA, 0, &sst_gains[7]),
SST_GAIN("codec_in0", SST_PATH_INDEX_CODEC_IN0, SST_TASK_SBA, 0, &sst_gains[8]),
SST_GAIN("codec_in1", SST_PATH_INDEX_CODEC_IN1, SST_TASK_SBA, 0, &sst_gains[9]),
SST_GAIN("codec_out0", SST_PATH_INDEX_CODEC_OUT0, SST_TASK_SBA, 0, &sst_gains[10]),
SST_GAIN("codec_out1", SST_PATH_INDEX_CODEC_OUT1, SST_TASK_SBA, 0, &sst_gains[11]),
SST_GAIN("media_loop1_out", SST_PATH_INDEX_MEDIA_LOOP1_OUT, SST_TASK_SBA, 0, &sst_gains[12]),
SST_GAIN("media_loop2_out", SST_PATH_INDEX_MEDIA_LOOP2_OUT, SST_TASK_SBA, 0, &sst_gains[13]),
SST_GAIN("sprot_loop_out", SST_PATH_INDEX_SPROT_LOOP_OUT, SST_TASK_SBA, 0, &sst_gains[14]),
SST_VOLUME("media0_in", SST_PATH_INDEX_MEDIA0_IN, SST_TASK_MMX, 0, &sst_gains[15]),
SST_GAIN("modem_in", SST_PATH_INDEX_MODEM_IN, SST_TASK_SBA, 0, &sst_gains[16]),
SST_GAIN("modem_out", SST_PATH_INDEX_MODEM_OUT, SST_TASK_SBA, 0, &sst_gains[17]),
};
#define SST_GAIN_NUM_CONTROLS 3
/* the SST_GAIN macro above will create three alsa controls for each
* instance invoked, gain, mute and ramp duration, which use the same gain
* cell sst_gain to keep track of data
* To calculate number of gain cell instances we need to device by 3 in
* below caulcation for gain cell memory.
* This gets rid of static number and issues while adding new controls
*/
static struct sst_gain_value sst_gains[ARRAY_SIZE(sst_gain_controls)/SST_GAIN_NUM_CONTROLS];
static const struct snd_kcontrol_new sst_algo_controls[] = {
SST_ALGO_KCONTROL_BYTES("media_loop1_out", "fir", 272, SST_MODULE_ID_FIR_24,
SST_PATH_INDEX_MEDIA_LOOP1_OUT, 0, SST_TASK_SBA, SBA_VB_SET_FIR),
SST_ALGO_KCONTROL_BYTES("media_loop1_out", "iir", 300, SST_MODULE_ID_IIR_24,
SST_PATH_INDEX_MEDIA_LOOP1_OUT, 0, SST_TASK_SBA, SBA_VB_SET_IIR),
SST_ALGO_KCONTROL_BYTES("media_loop1_out", "mdrp", 286, SST_MODULE_ID_MDRP,
SST_PATH_INDEX_MEDIA_LOOP1_OUT, 0, SST_TASK_SBA, SBA_SET_MDRP),
SST_ALGO_KCONTROL_BYTES("media_loop2_out", "fir", 272, SST_MODULE_ID_FIR_24,
SST_PATH_INDEX_MEDIA_LOOP2_OUT, 0, SST_TASK_SBA, SBA_VB_SET_FIR),
SST_ALGO_KCONTROL_BYTES("media_loop2_out", "iir", 300, SST_MODULE_ID_IIR_24,
SST_PATH_INDEX_MEDIA_LOOP2_OUT, 0, SST_TASK_SBA, SBA_VB_SET_IIR),
SST_ALGO_KCONTROL_BYTES("media_loop2_out", "mdrp", 286, SST_MODULE_ID_MDRP,
SST_PATH_INDEX_MEDIA_LOOP2_OUT, 0, SST_TASK_SBA, SBA_SET_MDRP),
SST_ALGO_KCONTROL_BYTES("sprot_loop_out", "lpro", 192, SST_MODULE_ID_SPROT,
SST_PATH_INDEX_SPROT_LOOP_OUT, 0, SST_TASK_SBA, SBA_VB_LPRO),
SST_ALGO_KCONTROL_BYTES("codec_in0", "dcr", 52, SST_MODULE_ID_FILT_DCR,
SST_PATH_INDEX_CODEC_IN0, 0, SST_TASK_SBA, SBA_VB_SET_IIR),
SST_ALGO_KCONTROL_BYTES("codec_in1", "dcr", 52, SST_MODULE_ID_FILT_DCR,
SST_PATH_INDEX_CODEC_IN1, 0, SST_TASK_SBA, SBA_VB_SET_IIR),
};
static int sst_algo_control_init(struct device *dev)
{
int i = 0;
struct sst_algo_control *bc;
/*allocate space to cache the algo parameters in the driver*/
for (i = 0; i < ARRAY_SIZE(sst_algo_controls); i++) {
bc = (struct sst_algo_control *)sst_algo_controls[i].private_value;
bc->params = devm_kzalloc(dev, bc->max, GFP_KERNEL);
if (bc->params == NULL)
return -ENOMEM;
}
return 0;
}
static bool is_sst_dapm_widget(struct snd_soc_dapm_widget *w)
{
switch (w->id) {
case snd_soc_dapm_pga:
case snd_soc_dapm_aif_in:
case snd_soc_dapm_aif_out:
case snd_soc_dapm_input:
case snd_soc_dapm_output:
case snd_soc_dapm_mixer:
return true;
default:
return false;
}
}
/**
* sst_send_pipe_gains - send gains for the front-end DAIs
*
* The gains in the pipes connected to the front-ends are muted/unmuted
* automatically via the digital_mute() DAPM callback. This function sends the
* gains for the front-end pipes.
*/
int sst_send_pipe_gains(struct snd_soc_dai *dai, int stream, int mute)
{
struct sst_data *drv = snd_soc_dai_get_drvdata(dai);
struct snd_soc_dapm_widget *w;
struct snd_soc_dapm_path *p = NULL;
dev_dbg(dai->dev, "enter, dai-name=%s dir=%d\n", dai->name, stream);
if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
dev_dbg(dai->dev, "Stream name=%s\n",
dai->playback_widget->name);
w = dai->playback_widget;
snd_soc_dapm_widget_for_each_sink_path(w, p) {
if (p->connected && !p->connected(w, p->sink))
continue;
if (p->connect && p->sink->power &&
is_sst_dapm_widget(p->sink)) {
struct sst_ids *ids = p->sink->priv;
dev_dbg(dai->dev, "send gains for widget=%s\n",
p->sink->name);
mutex_lock(&drv->lock);
sst_set_pipe_gain(ids, drv, mute);
mutex_unlock(&drv->lock);
}
}
} else {
dev_dbg(dai->dev, "Stream name=%s\n",
dai->capture_widget->name);
w = dai->capture_widget;
snd_soc_dapm_widget_for_each_source_path(w, p) {
if (p->connected && !p->connected(w, p->source))
continue;
if (p->connect && p->source->power &&
is_sst_dapm_widget(p->source)) {
struct sst_ids *ids = p->source->priv;
dev_dbg(dai->dev, "send gain for widget=%s\n",
p->source->name);
mutex_lock(&drv->lock);
sst_set_pipe_gain(ids, drv, mute);
mutex_unlock(&drv->lock);
}
}
}
return 0;
}
/**
* sst_fill_module_list - populate the list of modules/gains for a pipe
*
*
* Fills the widget pointer in the kcontrol private data, and also fills the
* kcontrol pointer in the widget private data.
*
* Widget pointer is used to send the algo/gain in the .put() handler if the
* widget is powerd on.
*
* Kcontrol pointer is used to send the algo/gain in the widget power ON/OFF
* event handler. Each widget (pipe) has multiple algos stored in the algo_list.
*/
static int sst_fill_module_list(struct snd_kcontrol *kctl,
struct snd_soc_dapm_widget *w, int type)
{
struct sst_module *module = NULL;
struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm);
struct sst_ids *ids = w->priv;
int ret = 0;
module = devm_kzalloc(c->dev, sizeof(*module), GFP_KERNEL);
if (!module)
return -ENOMEM;
if (type == SST_MODULE_GAIN) {
struct sst_gain_mixer_control *mc = (void *)kctl->private_value;
mc->w = w;
module->kctl = kctl;
list_add_tail(&module->node, &ids->gain_list);
} else if (type == SST_MODULE_ALGO) {
struct sst_algo_control *bc = (void *)kctl->private_value;
bc->w = w;
module->kctl = kctl;
list_add_tail(&module->node, &ids->algo_list);
} else {
dev_err(c->dev, "invoked for unknown type %d module %s",
type, kctl->id.name);
ret = -EINVAL;
}
return ret;
}
/**
* sst_fill_widget_module_info - fill list of gains/algos for the pipe
* @widget: pipe modelled as a DAPM widget
*
* Fill the list of gains/algos for the widget by looking at all the card
* controls and comparing the name of the widget with the first part of control
* name. First part of control name contains the pipe name (widget name).
*/
static int sst_fill_widget_module_info(struct snd_soc_dapm_widget *w,
struct snd_soc_component *component)
{
struct snd_kcontrol *kctl;
int index, ret = 0;
struct snd_card *card = component->card->snd_card;
char *idx;
down_read(&card->controls_rwsem);
list_for_each_entry(kctl, &card->controls, list) {
idx = strchr(kctl->id.name, ' ');
if (idx == NULL)
continue;
index = idx - (char*)kctl->id.name;
if (strncmp(kctl->id.name, w->name, index))
continue;
if (strstr(kctl->id.name, "Volume"))
ret = sst_fill_module_list(kctl, w, SST_MODULE_GAIN);
else if (strstr(kctl->id.name, "params"))
ret = sst_fill_module_list(kctl, w, SST_MODULE_ALGO);
else if (strstr(kctl->id.name, "Switch") &&
strstr(kctl->id.name, "Gain")) {
struct sst_gain_mixer_control *mc =
(void *)kctl->private_value;
mc->w = w;
} else if (strstr(kctl->id.name, "interleaver")) {
struct sst_enum *e = (void *)kctl->private_value;
e->w = w;
} else if (strstr(kctl->id.name, "deinterleaver")) {
struct sst_enum *e = (void *)kctl->private_value;
e->w = w;
}
if (ret < 0) {
up_read(&card->controls_rwsem);
return ret;
}
}
up_read(&card->controls_rwsem);
return 0;
}
/**
* sst_fill_linked_widgets - fill the parent pointer for the linked widget
*/
static void sst_fill_linked_widgets(struct snd_soc_component *component,
struct sst_ids *ids)
{
struct snd_soc_dapm_widget *w;
unsigned int len = strlen(ids->parent_wname);
list_for_each_entry(w, &component->card->widgets, list) {
if (!strncmp(ids->parent_wname, w->name, len)) {
ids->parent_w = w;
break;
}
}
}
/**
* sst_map_modules_to_pipe - fill algo/gains list for all pipes
*/
static int sst_map_modules_to_pipe(struct snd_soc_component *component)
{
struct snd_soc_dapm_widget *w;
int ret = 0;
list_for_each_entry(w, &component->card->widgets, list) {
if (is_sst_dapm_widget(w) && (w->priv)) {
struct sst_ids *ids = w->priv;
dev_dbg(component->dev, "widget type=%d name=%s\n",
w->id, w->name);
INIT_LIST_HEAD(&ids->algo_list);
INIT_LIST_HEAD(&ids->gain_list);
ret = sst_fill_widget_module_info(w, component);
if (ret < 0)
return ret;
/* fill linked widgets */
if (ids->parent_wname != NULL)
sst_fill_linked_widgets(component, ids);
}
}
return 0;
}
int sst_dsp_init_v2_dpcm(struct snd_soc_component *component)
{
int i, ret = 0;
struct snd_soc_dapm_context *dapm =
snd_soc_component_get_dapm(component);
struct sst_data *drv = snd_soc_component_get_drvdata(component);
unsigned int gains = ARRAY_SIZE(sst_gain_controls)/3;
drv->byte_stream = devm_kzalloc(component->dev,
SST_MAX_BIN_BYTES, GFP_KERNEL);
if (!drv->byte_stream)
return -ENOMEM;
snd_soc_dapm_new_controls(dapm, sst_dapm_widgets,
ARRAY_SIZE(sst_dapm_widgets));
snd_soc_dapm_add_routes(dapm, intercon,
ARRAY_SIZE(intercon));
snd_soc_dapm_new_widgets(dapm->card);
for (i = 0; i < gains; i++) {
sst_gains[i].mute = SST_GAIN_MUTE_DEFAULT;
sst_gains[i].l_gain = SST_GAIN_VOLUME_DEFAULT;
sst_gains[i].r_gain = SST_GAIN_VOLUME_DEFAULT;
sst_gains[i].ramp_duration = SST_GAIN_RAMP_DURATION_DEFAULT;
}
ret = snd_soc_add_component_controls(component, sst_gain_controls,
ARRAY_SIZE(sst_gain_controls));
if (ret)
return ret;
/* Initialize algo control params */
ret = sst_algo_control_init(component->dev);
if (ret)
return ret;
ret = snd_soc_add_component_controls(component, sst_algo_controls,
ARRAY_SIZE(sst_algo_controls));
if (ret)
return ret;
ret = snd_soc_add_component_controls(component, sst_slot_controls,
ARRAY_SIZE(sst_slot_controls));
if (ret)
return ret;
ret = sst_map_modules_to_pipe(component);
return ret;
}