kernel_samsung_a34x-permissive/tools/testing/selftests/powerpc/alignment/alignment_handler.c

576 lines
13 KiB
C
Raw Normal View History

/*
* Test the powerpc alignment handler on POWER8/POWER9
*
* Copyright (C) 2017 IBM Corporation (Michael Neuling, Andrew Donnellan)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/*
* This selftest exercises the powerpc alignment fault handler.
*
* We create two sets of source and destination buffers, one in regular memory,
* the other cache-inhibited (we use /dev/fb0 for this).
*
* We initialise the source buffers, then use whichever set of load/store
* instructions is under test to copy bytes from the source buffers to the
* destination buffers. For the regular buffers, these instructions will
* execute normally. For the cache-inhibited buffers, these instructions
* will trap and cause an alignment fault, and the alignment fault handler
* will emulate the particular instruction under test. We then compare the
* destination buffers to ensure that the native and emulated cases give the
* same result.
*
* TODO:
* - Any FIXMEs below
* - Test VSX regs < 32 and > 32
* - Test all loads and stores
* - Check update forms do update register
* - Test alignment faults over page boundary
*
* Some old binutils may not support all the instructions.
*/
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <getopt.h>
#include <setjmp.h>
#include <signal.h>
#include <asm/cputable.h>
#include "utils.h"
int bufsize;
int debug;
int testing;
volatile int gotsig;
void sighandler(int sig, siginfo_t *info, void *ctx)
{
ucontext_t *ucp = ctx;
if (!testing) {
signal(sig, SIG_DFL);
kill(0, sig);
}
gotsig = sig;
#ifdef __powerpc64__
ucp->uc_mcontext.gp_regs[PT_NIP] += 4;
#else
ucp->uc_mcontext.uc_regs->gregs[PT_NIP] += 4;
#endif
}
#define XFORM(reg, n) " " #reg " ,%"#n",%2 ;"
#define DFORM(reg, n) " " #reg " ,0(%"#n") ;"
#define TEST(name, ld_op, st_op, form, ld_reg, st_reg) \
void test_##name(char *s, char *d) \
{ \
asm volatile( \
#ld_op form(ld_reg, 0) \
#st_op form(st_reg, 1) \
:: "r"(s), "r"(d), "r"(0) \
: "memory", "vs0", "vs32", "r31"); \
} \
rc |= do_test(#name, test_##name)
#define LOAD_VSX_XFORM_TEST(op) TEST(op, op, stxvd2x, XFORM, 32, 32)
#define STORE_VSX_XFORM_TEST(op) TEST(op, lxvd2x, op, XFORM, 32, 32)
#define LOAD_VSX_DFORM_TEST(op) TEST(op, op, stxv, DFORM, 32, 32)
#define STORE_VSX_DFORM_TEST(op) TEST(op, lxv, op, DFORM, 32, 32)
#define LOAD_VMX_XFORM_TEST(op) TEST(op, op, stxvd2x, XFORM, 0, 32)
#define STORE_VMX_XFORM_TEST(op) TEST(op, lxvd2x, op, XFORM, 32, 0)
#define LOAD_VMX_DFORM_TEST(op) TEST(op, op, stxv, DFORM, 0, 32)
#define STORE_VMX_DFORM_TEST(op) TEST(op, lxv, op, DFORM, 32, 0)
#define LOAD_XFORM_TEST(op) TEST(op, op, stdx, XFORM, 31, 31)
#define STORE_XFORM_TEST(op) TEST(op, ldx, op, XFORM, 31, 31)
#define LOAD_DFORM_TEST(op) TEST(op, op, std, DFORM, 31, 31)
#define STORE_DFORM_TEST(op) TEST(op, ld, op, DFORM, 31, 31)
#define LOAD_FLOAT_DFORM_TEST(op) TEST(op, op, stfd, DFORM, 0, 0)
#define STORE_FLOAT_DFORM_TEST(op) TEST(op, lfd, op, DFORM, 0, 0)
#define LOAD_FLOAT_XFORM_TEST(op) TEST(op, op, stfdx, XFORM, 0, 0)
#define STORE_FLOAT_XFORM_TEST(op) TEST(op, lfdx, op, XFORM, 0, 0)
/* FIXME: Unimplemented tests: */
// STORE_DFORM_TEST(stq) /* FIXME: need two registers for quad */
// STORE_DFORM_TEST(stswi) /* FIXME: string instruction */
// STORE_XFORM_TEST(stwat) /* AMO can't emulate or run on CI */
// STORE_XFORM_TEST(stdat) /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ */
/* preload byte by byte */
void preload_data(void *dst, int offset, int width)
{
char *c = dst;
int i;
c += offset;
for (i = 0 ; i < width ; i++)
c[i] = i;
}
int test_memcpy(void *dst, void *src, int size, int offset,
void (*test_func)(char *, char *))
{
char *s, *d;
s = src;
s += offset;
d = dst;
d += offset;
assert(size == 16);
gotsig = 0;
testing = 1;
test_func(s, d); /* run the actual test */
testing = 0;
if (gotsig) {
if (debug)
printf(" Got signal %i\n", gotsig);
return 1;
}
return 0;
}
void dumpdata(char *s1, char *s2, int n, char *test_name)
{
int i;
printf(" %s: unexpected result:\n", test_name);
printf(" mem:");
for (i = 0; i < n; i++)
printf(" %02x", s1[i]);
printf("\n");
printf(" ci: ");
for (i = 0; i < n; i++)
printf(" %02x", s2[i]);
printf("\n");
}
int test_memcmp(void *s1, void *s2, int n, int offset, char *test_name)
{
char *s1c, *s2c;
s1c = s1;
s1c += offset;
s2c = s2;
s2c += offset;
if (memcmp(s1c, s2c, n)) {
if (debug) {
printf("\n Compare failed. Offset:%i length:%i\n",
offset, n);
dumpdata(s1c, s2c, n, test_name);
}
return 1;
}
return 0;
}
/*
* Do two memcpy tests using the same instructions. One cachable
* memory and the other doesn't.
*/
int do_test(char *test_name, void (*test_func)(char *, char *))
{
int offset, width, fd, rc, r;
void *mem0, *mem1, *ci0, *ci1;
printf("\tDoing %s:\t", test_name);
fd = open("/dev/fb0", O_RDWR);
if (fd < 0) {
printf("\n");
perror("Can't open /dev/fb0 now?");
return 1;
}
ci0 = mmap(NULL, bufsize, PROT_WRITE, MAP_SHARED,
fd, 0x0);
ci1 = mmap(NULL, bufsize, PROT_WRITE, MAP_SHARED,
fd, bufsize);
if ((ci0 == MAP_FAILED) || (ci1 == MAP_FAILED)) {
printf("\n");
perror("mmap failed");
SKIP_IF(1);
}
rc = posix_memalign(&mem0, bufsize, bufsize);
if (rc) {
printf("\n");
return rc;
}
rc = posix_memalign(&mem1, bufsize, bufsize);
if (rc) {
printf("\n");
free(mem0);
return rc;
}
rc = 0;
/* offset = 0 no alignment fault, so skip */
for (offset = 1; offset < 16; offset++) {
width = 16; /* vsx == 16 bytes */
r = 0;
/* load pattern into memory byte by byte */
preload_data(ci0, offset, width);
preload_data(mem0, offset, width); // FIXME: remove??
memcpy(ci0, mem0, bufsize);
memcpy(ci1, mem1, bufsize); /* initialise output to the same */
/* sanity check */
test_memcmp(mem0, ci0, width, offset, test_name);
r |= test_memcpy(ci1, ci0, width, offset, test_func);
r |= test_memcpy(mem1, mem0, width, offset, test_func);
if (r && !debug) {
printf("FAILED: Got signal");
rc = 1;
break;
}
r |= test_memcmp(mem1, ci1, width, offset, test_name);
if (r && !debug) {
printf("FAILED: Wrong Data");
rc = 1;
break;
}
}
if (rc == 0)
printf("PASSED");
printf("\n");
munmap(ci0, bufsize);
munmap(ci1, bufsize);
free(mem0);
free(mem1);
close(fd);
return rc;
}
static bool can_open_fb0(void)
{
int fd;
fd = open("/dev/fb0", O_RDWR);
if (fd < 0)
return false;
close(fd);
return true;
}
int test_alignment_handler_vsx_206(void)
{
int rc = 0;
SKIP_IF(!can_open_fb0());
SKIP_IF(!have_hwcap(PPC_FEATURE_ARCH_2_06));
printf("VSX: 2.06B\n");
LOAD_VSX_XFORM_TEST(lxvd2x);
LOAD_VSX_XFORM_TEST(lxvw4x);
LOAD_VSX_XFORM_TEST(lxsdx);
LOAD_VSX_XFORM_TEST(lxvdsx);
STORE_VSX_XFORM_TEST(stxvd2x);
STORE_VSX_XFORM_TEST(stxvw4x);
STORE_VSX_XFORM_TEST(stxsdx);
return rc;
}
int test_alignment_handler_vsx_207(void)
{
int rc = 0;
SKIP_IF(!can_open_fb0());
SKIP_IF(!have_hwcap2(PPC_FEATURE2_ARCH_2_07));
printf("VSX: 2.07B\n");
LOAD_VSX_XFORM_TEST(lxsspx);
LOAD_VSX_XFORM_TEST(lxsiwax);
LOAD_VSX_XFORM_TEST(lxsiwzx);
STORE_VSX_XFORM_TEST(stxsspx);
STORE_VSX_XFORM_TEST(stxsiwx);
return rc;
}
int test_alignment_handler_vsx_300(void)
{
int rc = 0;
SKIP_IF(!can_open_fb0());
SKIP_IF(!have_hwcap2(PPC_FEATURE2_ARCH_3_00));
printf("VSX: 3.00B\n");
LOAD_VMX_DFORM_TEST(lxsd);
LOAD_VSX_XFORM_TEST(lxsibzx);
LOAD_VSX_XFORM_TEST(lxsihzx);
LOAD_VMX_DFORM_TEST(lxssp);
LOAD_VSX_DFORM_TEST(lxv);
LOAD_VSX_XFORM_TEST(lxvb16x);
LOAD_VSX_XFORM_TEST(lxvh8x);
LOAD_VSX_XFORM_TEST(lxvx);
LOAD_VSX_XFORM_TEST(lxvwsx);
LOAD_VSX_XFORM_TEST(lxvl);
LOAD_VSX_XFORM_TEST(lxvll);
STORE_VMX_DFORM_TEST(stxsd);
STORE_VSX_XFORM_TEST(stxsibx);
STORE_VSX_XFORM_TEST(stxsihx);
STORE_VMX_DFORM_TEST(stxssp);
STORE_VSX_DFORM_TEST(stxv);
STORE_VSX_XFORM_TEST(stxvb16x);
STORE_VSX_XFORM_TEST(stxvh8x);
STORE_VSX_XFORM_TEST(stxvx);
STORE_VSX_XFORM_TEST(stxvl);
STORE_VSX_XFORM_TEST(stxvll);
return rc;
}
int test_alignment_handler_integer(void)
{
int rc = 0;
SKIP_IF(!can_open_fb0());
printf("Integer\n");
LOAD_DFORM_TEST(lbz);
LOAD_DFORM_TEST(lbzu);
LOAD_XFORM_TEST(lbzx);
LOAD_XFORM_TEST(lbzux);
LOAD_DFORM_TEST(lhz);
LOAD_DFORM_TEST(lhzu);
LOAD_XFORM_TEST(lhzx);
LOAD_XFORM_TEST(lhzux);
LOAD_DFORM_TEST(lha);
LOAD_DFORM_TEST(lhau);
LOAD_XFORM_TEST(lhax);
LOAD_XFORM_TEST(lhaux);
LOAD_XFORM_TEST(lhbrx);
LOAD_DFORM_TEST(lwz);
LOAD_DFORM_TEST(lwzu);
LOAD_XFORM_TEST(lwzx);
LOAD_XFORM_TEST(lwzux);
LOAD_DFORM_TEST(lwa);
LOAD_XFORM_TEST(lwax);
LOAD_XFORM_TEST(lwaux);
LOAD_XFORM_TEST(lwbrx);
LOAD_DFORM_TEST(ld);
LOAD_DFORM_TEST(ldu);
LOAD_XFORM_TEST(ldx);
LOAD_XFORM_TEST(ldux);
STORE_DFORM_TEST(stb);
STORE_XFORM_TEST(stbx);
STORE_DFORM_TEST(stbu);
STORE_XFORM_TEST(stbux);
STORE_DFORM_TEST(sth);
STORE_XFORM_TEST(sthx);
STORE_DFORM_TEST(sthu);
STORE_XFORM_TEST(sthux);
STORE_XFORM_TEST(sthbrx);
STORE_DFORM_TEST(stw);
STORE_XFORM_TEST(stwx);
STORE_DFORM_TEST(stwu);
STORE_XFORM_TEST(stwux);
STORE_XFORM_TEST(stwbrx);
STORE_DFORM_TEST(std);
STORE_XFORM_TEST(stdx);
STORE_DFORM_TEST(stdu);
STORE_XFORM_TEST(stdux);
#ifdef __BIG_ENDIAN__
LOAD_DFORM_TEST(lmw);
STORE_DFORM_TEST(stmw);
#endif
return rc;
}
int test_alignment_handler_integer_206(void)
{
int rc = 0;
SKIP_IF(!can_open_fb0());
SKIP_IF(!have_hwcap(PPC_FEATURE_ARCH_2_06));
printf("Integer: 2.06\n");
LOAD_XFORM_TEST(ldbrx);
STORE_XFORM_TEST(stdbrx);
return rc;
}
int test_alignment_handler_vmx(void)
{
int rc = 0;
SKIP_IF(!can_open_fb0());
SKIP_IF(!have_hwcap(PPC_FEATURE_HAS_ALTIVEC));
printf("VMX\n");
LOAD_VMX_XFORM_TEST(lvx);
/*
* FIXME: These loads only load part of the register, so our
* testing method doesn't work. Also they don't take alignment
* faults, so it's kinda pointless anyway
*
LOAD_VMX_XFORM_TEST(lvebx)
LOAD_VMX_XFORM_TEST(lvehx)
LOAD_VMX_XFORM_TEST(lvewx)
LOAD_VMX_XFORM_TEST(lvxl)
*/
STORE_VMX_XFORM_TEST(stvx);
STORE_VMX_XFORM_TEST(stvebx);
STORE_VMX_XFORM_TEST(stvehx);
STORE_VMX_XFORM_TEST(stvewx);
STORE_VMX_XFORM_TEST(stvxl);
return rc;
}
int test_alignment_handler_fp(void)
{
int rc = 0;
SKIP_IF(!can_open_fb0());
printf("Floating point\n");
LOAD_FLOAT_DFORM_TEST(lfd);
LOAD_FLOAT_XFORM_TEST(lfdx);
LOAD_FLOAT_DFORM_TEST(lfdu);
LOAD_FLOAT_XFORM_TEST(lfdux);
LOAD_FLOAT_DFORM_TEST(lfs);
LOAD_FLOAT_XFORM_TEST(lfsx);
LOAD_FLOAT_DFORM_TEST(lfsu);
LOAD_FLOAT_XFORM_TEST(lfsux);
STORE_FLOAT_DFORM_TEST(stfd);
STORE_FLOAT_XFORM_TEST(stfdx);
STORE_FLOAT_DFORM_TEST(stfdu);
STORE_FLOAT_XFORM_TEST(stfdux);
STORE_FLOAT_DFORM_TEST(stfs);
STORE_FLOAT_XFORM_TEST(stfsx);
STORE_FLOAT_DFORM_TEST(stfsu);
STORE_FLOAT_XFORM_TEST(stfsux);
STORE_FLOAT_XFORM_TEST(stfiwx);
return rc;
}
int test_alignment_handler_fp_205(void)
{
int rc = 0;
SKIP_IF(!can_open_fb0());
SKIP_IF(!have_hwcap(PPC_FEATURE_ARCH_2_05));
printf("Floating point: 2.05\n");
LOAD_FLOAT_DFORM_TEST(lfdp);
LOAD_FLOAT_XFORM_TEST(lfdpx);
LOAD_FLOAT_XFORM_TEST(lfiwax);
STORE_FLOAT_DFORM_TEST(stfdp);
STORE_FLOAT_XFORM_TEST(stfdpx);
return rc;
}
int test_alignment_handler_fp_206(void)
{
int rc = 0;
SKIP_IF(!can_open_fb0());
SKIP_IF(!have_hwcap(PPC_FEATURE_ARCH_2_06));
printf("Floating point: 2.06\n");
LOAD_FLOAT_XFORM_TEST(lfiwzx);
return rc;
}
void usage(char *prog)
{
printf("Usage: %s [options]\n", prog);
printf(" -d Enable debug error output\n");
printf("\n");
printf("This test requires a POWER8 or POWER9 CPU and a usable ");
printf("framebuffer at /dev/fb0.\n");
}
int main(int argc, char *argv[])
{
struct sigaction sa;
int rc = 0;
int option = 0;
while ((option = getopt(argc, argv, "d")) != -1) {
switch (option) {
case 'd':
debug++;
break;
default:
usage(argv[0]);
exit(1);
}
}
bufsize = getpagesize();
sa.sa_sigaction = sighandler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_SIGINFO;
if (sigaction(SIGSEGV, &sa, NULL) == -1
|| sigaction(SIGBUS, &sa, NULL) == -1
|| sigaction(SIGILL, &sa, NULL) == -1) {
perror("sigaction");
exit(1);
}
rc |= test_harness(test_alignment_handler_vsx_206,
"test_alignment_handler_vsx_206");
rc |= test_harness(test_alignment_handler_vsx_207,
"test_alignment_handler_vsx_207");
rc |= test_harness(test_alignment_handler_vsx_300,
"test_alignment_handler_vsx_300");
rc |= test_harness(test_alignment_handler_integer,
"test_alignment_handler_integer");
rc |= test_harness(test_alignment_handler_integer_206,
"test_alignment_handler_integer_206");
rc |= test_harness(test_alignment_handler_vmx,
"test_alignment_handler_vmx");
rc |= test_harness(test_alignment_handler_fp,
"test_alignment_handler_fp");
rc |= test_harness(test_alignment_handler_fp_205,
"test_alignment_handler_fp_205");
rc |= test_harness(test_alignment_handler_fp_206,
"test_alignment_handler_fp_206");
return rc;
}