302 lines
12 KiB
C
302 lines
12 KiB
C
|
/*
|
||
|
* {read,write}{b,w,l,q} based on arch/arm64/include/asm/io.h
|
||
|
* which was based on arch/arm/include/io.h
|
||
|
*
|
||
|
* Copyright (C) 1996-2000 Russell King
|
||
|
* Copyright (C) 2012 ARM Ltd.
|
||
|
* Copyright (C) 2014 Regents of the University of California
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License
|
||
|
* as published by the Free Software Foundation, version 2.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*/
|
||
|
|
||
|
#ifndef _ASM_RISCV_IO_H
|
||
|
#define _ASM_RISCV_IO_H
|
||
|
|
||
|
#include <linux/types.h>
|
||
|
|
||
|
extern void __iomem *ioremap(phys_addr_t offset, unsigned long size);
|
||
|
|
||
|
/*
|
||
|
* The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't
|
||
|
* change the properties of memory regions. This should be fixed by the
|
||
|
* upcoming platform spec.
|
||
|
*/
|
||
|
#define ioremap_nocache(addr, size) ioremap((addr), (size))
|
||
|
#define ioremap_wc(addr, size) ioremap((addr), (size))
|
||
|
#define ioremap_wt(addr, size) ioremap((addr), (size))
|
||
|
|
||
|
extern void iounmap(volatile void __iomem *addr);
|
||
|
|
||
|
/* Generic IO read/write. These perform native-endian accesses. */
|
||
|
#define __raw_writeb __raw_writeb
|
||
|
static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
|
||
|
{
|
||
|
asm volatile("sb %0, 0(%1)" : : "r" (val), "r" (addr));
|
||
|
}
|
||
|
|
||
|
#define __raw_writew __raw_writew
|
||
|
static inline void __raw_writew(u16 val, volatile void __iomem *addr)
|
||
|
{
|
||
|
asm volatile("sh %0, 0(%1)" : : "r" (val), "r" (addr));
|
||
|
}
|
||
|
|
||
|
#define __raw_writel __raw_writel
|
||
|
static inline void __raw_writel(u32 val, volatile void __iomem *addr)
|
||
|
{
|
||
|
asm volatile("sw %0, 0(%1)" : : "r" (val), "r" (addr));
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_64BIT
|
||
|
#define __raw_writeq __raw_writeq
|
||
|
static inline void __raw_writeq(u64 val, volatile void __iomem *addr)
|
||
|
{
|
||
|
asm volatile("sd %0, 0(%1)" : : "r" (val), "r" (addr));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#define __raw_readb __raw_readb
|
||
|
static inline u8 __raw_readb(const volatile void __iomem *addr)
|
||
|
{
|
||
|
u8 val;
|
||
|
|
||
|
asm volatile("lb %0, 0(%1)" : "=r" (val) : "r" (addr));
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
#define __raw_readw __raw_readw
|
||
|
static inline u16 __raw_readw(const volatile void __iomem *addr)
|
||
|
{
|
||
|
u16 val;
|
||
|
|
||
|
asm volatile("lh %0, 0(%1)" : "=r" (val) : "r" (addr));
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
#define __raw_readl __raw_readl
|
||
|
static inline u32 __raw_readl(const volatile void __iomem *addr)
|
||
|
{
|
||
|
u32 val;
|
||
|
|
||
|
asm volatile("lw %0, 0(%1)" : "=r" (val) : "r" (addr));
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_64BIT
|
||
|
#define __raw_readq __raw_readq
|
||
|
static inline u64 __raw_readq(const volatile void __iomem *addr)
|
||
|
{
|
||
|
u64 val;
|
||
|
|
||
|
asm volatile("ld %0, 0(%1)" : "=r" (val) : "r" (addr));
|
||
|
return val;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* FIXME: I'm flip-flopping on whether or not we should keep this or enforce
|
||
|
* the ordering with I/O on spinlocks like PowerPC does. The worry is that
|
||
|
* drivers won't get this correct, but I also don't want to introduce a fence
|
||
|
* into the lock code that otherwise only uses AMOs (and is essentially defined
|
||
|
* by the ISA to be correct). For now I'm leaving this here: "o,w" is
|
||
|
* sufficient to ensure that all writes to the device have completed before the
|
||
|
* write to the spinlock is allowed to commit. I surmised this from reading
|
||
|
* "ACQUIRES VS I/O ACCESSES" in memory-barriers.txt.
|
||
|
*/
|
||
|
#define mmiowb() __asm__ __volatile__ ("fence o,w" : : : "memory");
|
||
|
|
||
|
/*
|
||
|
* Unordered I/O memory access primitives. These are even more relaxed than
|
||
|
* the relaxed versions, as they don't even order accesses between successive
|
||
|
* operations to the I/O regions.
|
||
|
*/
|
||
|
#define readb_cpu(c) ({ u8 __r = __raw_readb(c); __r; })
|
||
|
#define readw_cpu(c) ({ u16 __r = le16_to_cpu((__force __le16)__raw_readw(c)); __r; })
|
||
|
#define readl_cpu(c) ({ u32 __r = le32_to_cpu((__force __le32)__raw_readl(c)); __r; })
|
||
|
|
||
|
#define writeb_cpu(v,c) ((void)__raw_writeb((v),(c)))
|
||
|
#define writew_cpu(v,c) ((void)__raw_writew((__force u16)cpu_to_le16(v),(c)))
|
||
|
#define writel_cpu(v,c) ((void)__raw_writel((__force u32)cpu_to_le32(v),(c)))
|
||
|
|
||
|
#ifdef CONFIG_64BIT
|
||
|
#define readq_cpu(c) ({ u64 __r = le64_to_cpu((__force __le64)__raw_readq(c)); __r; })
|
||
|
#define writeq_cpu(v,c) ((void)__raw_writeq((__force u64)cpu_to_le64(v),(c)))
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Relaxed I/O memory access primitives. These follow the Device memory
|
||
|
* ordering rules but do not guarantee any ordering relative to Normal memory
|
||
|
* accesses. These are defined to order the indicated access (either a read or
|
||
|
* write) with all other I/O memory accesses. Since the platform specification
|
||
|
* defines that all I/O regions are strongly ordered on channel 2, no explicit
|
||
|
* fences are required to enforce this ordering.
|
||
|
*/
|
||
|
/* FIXME: These are now the same as asm-generic */
|
||
|
#define __io_rbr() do {} while (0)
|
||
|
#define __io_rar() do {} while (0)
|
||
|
#define __io_rbw() do {} while (0)
|
||
|
#define __io_raw() do {} while (0)
|
||
|
|
||
|
#define readb_relaxed(c) ({ u8 __v; __io_rbr(); __v = readb_cpu(c); __io_rar(); __v; })
|
||
|
#define readw_relaxed(c) ({ u16 __v; __io_rbr(); __v = readw_cpu(c); __io_rar(); __v; })
|
||
|
#define readl_relaxed(c) ({ u32 __v; __io_rbr(); __v = readl_cpu(c); __io_rar(); __v; })
|
||
|
|
||
|
#define writeb_relaxed(v,c) ({ __io_rbw(); writeb_cpu((v),(c)); __io_raw(); })
|
||
|
#define writew_relaxed(v,c) ({ __io_rbw(); writew_cpu((v),(c)); __io_raw(); })
|
||
|
#define writel_relaxed(v,c) ({ __io_rbw(); writel_cpu((v),(c)); __io_raw(); })
|
||
|
|
||
|
#ifdef CONFIG_64BIT
|
||
|
#define readq_relaxed(c) ({ u64 __v; __io_rbr(); __v = readq_cpu(c); __io_rar(); __v; })
|
||
|
#define writeq_relaxed(v,c) ({ __io_rbw(); writeq_cpu((v),(c)); __io_raw(); })
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* I/O memory access primitives. Reads are ordered relative to any
|
||
|
* following Normal memory access. Writes are ordered relative to any prior
|
||
|
* Normal memory access. The memory barriers here are necessary as RISC-V
|
||
|
* doesn't define any ordering between the memory space and the I/O space.
|
||
|
*/
|
||
|
#define __io_br() do {} while (0)
|
||
|
#define __io_ar() __asm__ __volatile__ ("fence i,r" : : : "memory");
|
||
|
#define __io_bw() __asm__ __volatile__ ("fence w,o" : : : "memory");
|
||
|
#define __io_aw() do {} while (0)
|
||
|
|
||
|
#define readb(c) ({ u8 __v; __io_br(); __v = readb_cpu(c); __io_ar(); __v; })
|
||
|
#define readw(c) ({ u16 __v; __io_br(); __v = readw_cpu(c); __io_ar(); __v; })
|
||
|
#define readl(c) ({ u32 __v; __io_br(); __v = readl_cpu(c); __io_ar(); __v; })
|
||
|
|
||
|
#define writeb(v,c) ({ __io_bw(); writeb_cpu((v),(c)); __io_aw(); })
|
||
|
#define writew(v,c) ({ __io_bw(); writew_cpu((v),(c)); __io_aw(); })
|
||
|
#define writel(v,c) ({ __io_bw(); writel_cpu((v),(c)); __io_aw(); })
|
||
|
|
||
|
#ifdef CONFIG_64BIT
|
||
|
#define readq(c) ({ u64 __v; __io_br(); __v = readq_cpu(c); __io_ar(); __v; })
|
||
|
#define writeq(v,c) ({ __io_bw(); writeq_cpu((v),(c)); __io_aw(); })
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Emulation routines for the port-mapped IO space used by some PCI drivers.
|
||
|
* These are defined as being "fully synchronous", but also "not guaranteed to
|
||
|
* be fully ordered with respect to other memory and I/O operations". We're
|
||
|
* going to be on the safe side here and just make them:
|
||
|
* - Fully ordered WRT each other, by bracketing them with two fences. The
|
||
|
* outer set contains both I/O so inX is ordered with outX, while the inner just
|
||
|
* needs the type of the access (I for inX and O for outX).
|
||
|
* - Ordered in the same manner as readX/writeX WRT memory by subsuming their
|
||
|
* fences.
|
||
|
* - Ordered WRT timer reads, so udelay and friends don't get elided by the
|
||
|
* implementation.
|
||
|
* Note that there is no way to actually enforce that outX is a non-posted
|
||
|
* operation on RISC-V, but hopefully the timer ordering constraint is
|
||
|
* sufficient to ensure this works sanely on controllers that support I/O
|
||
|
* writes.
|
||
|
*/
|
||
|
#define __io_pbr() __asm__ __volatile__ ("fence io,i" : : : "memory");
|
||
|
#define __io_par() __asm__ __volatile__ ("fence i,ior" : : : "memory");
|
||
|
#define __io_pbw() __asm__ __volatile__ ("fence iow,o" : : : "memory");
|
||
|
#define __io_paw() __asm__ __volatile__ ("fence o,io" : : : "memory");
|
||
|
|
||
|
#define inb(c) ({ u8 __v; __io_pbr(); __v = readb_cpu((void*)(PCI_IOBASE + (c))); __io_par(); __v; })
|
||
|
#define inw(c) ({ u16 __v; __io_pbr(); __v = readw_cpu((void*)(PCI_IOBASE + (c))); __io_par(); __v; })
|
||
|
#define inl(c) ({ u32 __v; __io_pbr(); __v = readl_cpu((void*)(PCI_IOBASE + (c))); __io_par(); __v; })
|
||
|
|
||
|
#define outb(v,c) ({ __io_pbw(); writeb_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
|
||
|
#define outw(v,c) ({ __io_pbw(); writew_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
|
||
|
#define outl(v,c) ({ __io_pbw(); writel_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
|
||
|
|
||
|
#ifdef CONFIG_64BIT
|
||
|
#define inq(c) ({ u64 __v; __io_pbr(); __v = readq_cpu((void*)(c)); __io_par(); __v; })
|
||
|
#define outq(v,c) ({ __io_pbw(); writeq_cpu((v),(void*)(c)); __io_paw(); })
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Accesses from a single hart to a single I/O address must be ordered. This
|
||
|
* allows us to use the raw read macros, but we still need to fence before and
|
||
|
* after the block to ensure ordering WRT other macros. These are defined to
|
||
|
* perform host-endian accesses so we use __raw instead of __cpu.
|
||
|
*/
|
||
|
#define __io_reads_ins(port, ctype, len, bfence, afence) \
|
||
|
static inline void __ ## port ## len(const volatile void __iomem *addr, \
|
||
|
void *buffer, \
|
||
|
unsigned int count) \
|
||
|
{ \
|
||
|
bfence; \
|
||
|
if (count) { \
|
||
|
ctype *buf = buffer; \
|
||
|
\
|
||
|
do { \
|
||
|
ctype x = __raw_read ## len(addr); \
|
||
|
*buf++ = x; \
|
||
|
} while (--count); \
|
||
|
} \
|
||
|
afence; \
|
||
|
}
|
||
|
|
||
|
#define __io_writes_outs(port, ctype, len, bfence, afence) \
|
||
|
static inline void __ ## port ## len(volatile void __iomem *addr, \
|
||
|
const void *buffer, \
|
||
|
unsigned int count) \
|
||
|
{ \
|
||
|
bfence; \
|
||
|
if (count) { \
|
||
|
const ctype *buf = buffer; \
|
||
|
\
|
||
|
do { \
|
||
|
__raw_write ## len(*buf++, addr); \
|
||
|
} while (--count); \
|
||
|
} \
|
||
|
afence; \
|
||
|
}
|
||
|
|
||
|
__io_reads_ins(reads, u8, b, __io_br(), __io_ar())
|
||
|
__io_reads_ins(reads, u16, w, __io_br(), __io_ar())
|
||
|
__io_reads_ins(reads, u32, l, __io_br(), __io_ar())
|
||
|
#define readsb(addr, buffer, count) __readsb(addr, buffer, count)
|
||
|
#define readsw(addr, buffer, count) __readsw(addr, buffer, count)
|
||
|
#define readsl(addr, buffer, count) __readsl(addr, buffer, count)
|
||
|
|
||
|
__io_reads_ins(ins, u8, b, __io_pbr(), __io_par())
|
||
|
__io_reads_ins(ins, u16, w, __io_pbr(), __io_par())
|
||
|
__io_reads_ins(ins, u32, l, __io_pbr(), __io_par())
|
||
|
#define insb(addr, buffer, count) __insb((void __iomem *)(long)addr, buffer, count)
|
||
|
#define insw(addr, buffer, count) __insw((void __iomem *)(long)addr, buffer, count)
|
||
|
#define insl(addr, buffer, count) __insl((void __iomem *)(long)addr, buffer, count)
|
||
|
|
||
|
__io_writes_outs(writes, u8, b, __io_bw(), __io_aw())
|
||
|
__io_writes_outs(writes, u16, w, __io_bw(), __io_aw())
|
||
|
__io_writes_outs(writes, u32, l, __io_bw(), __io_aw())
|
||
|
#define writesb(addr, buffer, count) __writesb(addr, buffer, count)
|
||
|
#define writesw(addr, buffer, count) __writesw(addr, buffer, count)
|
||
|
#define writesl(addr, buffer, count) __writesl(addr, buffer, count)
|
||
|
|
||
|
__io_writes_outs(outs, u8, b, __io_pbw(), __io_paw())
|
||
|
__io_writes_outs(outs, u16, w, __io_pbw(), __io_paw())
|
||
|
__io_writes_outs(outs, u32, l, __io_pbw(), __io_paw())
|
||
|
#define outsb(addr, buffer, count) __outsb((void __iomem *)(long)addr, buffer, count)
|
||
|
#define outsw(addr, buffer, count) __outsw((void __iomem *)(long)addr, buffer, count)
|
||
|
#define outsl(addr, buffer, count) __outsl((void __iomem *)(long)addr, buffer, count)
|
||
|
|
||
|
#ifdef CONFIG_64BIT
|
||
|
__io_reads_ins(reads, u64, q, __io_br(), __io_ar())
|
||
|
#define readsq(addr, buffer, count) __readsq(addr, buffer, count)
|
||
|
|
||
|
__io_reads_ins(ins, u64, q, __io_pbr(), __io_par())
|
||
|
#define insq(addr, buffer, count) __insq((void __iomem *)addr, buffer, count)
|
||
|
|
||
|
__io_writes_outs(writes, u64, q, __io_bw(), __io_aw())
|
||
|
#define writesq(addr, buffer, count) __writesq(addr, buffer, count)
|
||
|
|
||
|
__io_writes_outs(outs, u64, q, __io_pbr(), __io_paw())
|
||
|
#define outsq(addr, buffer, count) __outsq((void __iomem *)addr, buffer, count)
|
||
|
#endif
|
||
|
|
||
|
#include <asm-generic/io.h>
|
||
|
|
||
|
#endif /* _ASM_RISCV_IO_H */
|