kernel_samsung_a34x-permissive/arch/s390/mm/hugetlbpage.c

371 lines
10 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* IBM System z Huge TLB Page Support for Kernel.
*
* Copyright IBM Corp. 2007,2020
* Author(s): Gerald Schaefer <gerald.schaefer@de.ibm.com>
*/
#define KMSG_COMPONENT "hugetlb"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/sched/mm.h>
#include <linux/security.h>
/*
* If the bit selected by single-bit bitmask "a" is set within "x", move
* it to the position indicated by single-bit bitmask "b".
*/
#define move_set_bit(x, a, b) (((x) & (a)) >> ilog2(a) << ilog2(b))
static inline unsigned long __pte_to_rste(pte_t pte)
{
unsigned long rste;
/*
* Convert encoding pte bits pmd / pud bits
* lIR.uswrdy.p dy..R...I...wr
* empty 010.000000.0 -> 00..0...1...00
* prot-none, clean, old 111.000000.1 -> 00..1...1...00
* prot-none, clean, young 111.000001.1 -> 01..1...1...00
* prot-none, dirty, old 111.000010.1 -> 10..1...1...00
* prot-none, dirty, young 111.000011.1 -> 11..1...1...00
* read-only, clean, old 111.000100.1 -> 00..1...1...01
* read-only, clean, young 101.000101.1 -> 01..1...0...01
* read-only, dirty, old 111.000110.1 -> 10..1...1...01
* read-only, dirty, young 101.000111.1 -> 11..1...0...01
* read-write, clean, old 111.001100.1 -> 00..1...1...11
* read-write, clean, young 101.001101.1 -> 01..1...0...11
* read-write, dirty, old 110.001110.1 -> 10..0...1...11
* read-write, dirty, young 100.001111.1 -> 11..0...0...11
* HW-bits: R read-only, I invalid
* SW-bits: p present, y young, d dirty, r read, w write, s special,
* u unused, l large
*/
if (pte_present(pte)) {
rste = pte_val(pte) & PAGE_MASK;
rste |= move_set_bit(pte_val(pte), _PAGE_READ,
_SEGMENT_ENTRY_READ);
rste |= move_set_bit(pte_val(pte), _PAGE_WRITE,
_SEGMENT_ENTRY_WRITE);
rste |= move_set_bit(pte_val(pte), _PAGE_INVALID,
_SEGMENT_ENTRY_INVALID);
rste |= move_set_bit(pte_val(pte), _PAGE_PROTECT,
_SEGMENT_ENTRY_PROTECT);
rste |= move_set_bit(pte_val(pte), _PAGE_DIRTY,
_SEGMENT_ENTRY_DIRTY);
rste |= move_set_bit(pte_val(pte), _PAGE_YOUNG,
_SEGMENT_ENTRY_YOUNG);
#ifdef CONFIG_MEM_SOFT_DIRTY
rste |= move_set_bit(pte_val(pte), _PAGE_SOFT_DIRTY,
_SEGMENT_ENTRY_SOFT_DIRTY);
#endif
rste |= move_set_bit(pte_val(pte), _PAGE_NOEXEC,
_SEGMENT_ENTRY_NOEXEC);
} else
rste = _SEGMENT_ENTRY_EMPTY;
return rste;
}
static inline pte_t __rste_to_pte(unsigned long rste)
{
int present;
pte_t pte;
if ((rste & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
present = pud_present(__pud(rste));
else
present = pmd_present(__pmd(rste));
/*
* Convert encoding pmd / pud bits pte bits
* dy..R...I...wr lIR.uswrdy.p
* empty 00..0...1...00 -> 010.000000.0
* prot-none, clean, old 00..1...1...00 -> 111.000000.1
* prot-none, clean, young 01..1...1...00 -> 111.000001.1
* prot-none, dirty, old 10..1...1...00 -> 111.000010.1
* prot-none, dirty, young 11..1...1...00 -> 111.000011.1
* read-only, clean, old 00..1...1...01 -> 111.000100.1
* read-only, clean, young 01..1...0...01 -> 101.000101.1
* read-only, dirty, old 10..1...1...01 -> 111.000110.1
* read-only, dirty, young 11..1...0...01 -> 101.000111.1
* read-write, clean, old 00..1...1...11 -> 111.001100.1
* read-write, clean, young 01..1...0...11 -> 101.001101.1
* read-write, dirty, old 10..0...1...11 -> 110.001110.1
* read-write, dirty, young 11..0...0...11 -> 100.001111.1
* HW-bits: R read-only, I invalid
* SW-bits: p present, y young, d dirty, r read, w write, s special,
* u unused, l large
*/
if (present) {
pte_val(pte) = rste & _SEGMENT_ENTRY_ORIGIN_LARGE;
pte_val(pte) |= _PAGE_LARGE | _PAGE_PRESENT;
pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_READ,
_PAGE_READ);
pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_WRITE,
_PAGE_WRITE);
pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_INVALID,
_PAGE_INVALID);
pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_PROTECT,
_PAGE_PROTECT);
pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_DIRTY,
_PAGE_DIRTY);
pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_YOUNG,
_PAGE_YOUNG);
#ifdef CONFIG_MEM_SOFT_DIRTY
pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_SOFT_DIRTY,
_PAGE_SOFT_DIRTY);
#endif
pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_NOEXEC,
_PAGE_NOEXEC);
} else
pte_val(pte) = _PAGE_INVALID;
return pte;
}
static void clear_huge_pte_skeys(struct mm_struct *mm, unsigned long rste)
{
struct page *page;
unsigned long size, paddr;
if (!mm_uses_skeys(mm) ||
rste & _SEGMENT_ENTRY_INVALID)
return;
if ((rste & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) {
page = pud_page(__pud(rste));
size = PUD_SIZE;
paddr = rste & PUD_MASK;
} else {
page = pmd_page(__pmd(rste));
size = PMD_SIZE;
paddr = rste & PMD_MASK;
}
if (!test_and_set_bit(PG_arch_1, &page->flags))
__storage_key_init_range(paddr, paddr + size - 1);
}
void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte)
{
unsigned long rste;
rste = __pte_to_rste(pte);
if (!MACHINE_HAS_NX)
rste &= ~_SEGMENT_ENTRY_NOEXEC;
/* Set correct table type for 2G hugepages */
if ((pte_val(*ptep) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) {
if (likely(pte_present(pte)))
rste |= _REGION3_ENTRY_LARGE;
rste |= _REGION_ENTRY_TYPE_R3;
} else if (likely(pte_present(pte)))
rste |= _SEGMENT_ENTRY_LARGE;
clear_huge_pte_skeys(mm, rste);
pte_val(*ptep) = rste;
}
pte_t huge_ptep_get(pte_t *ptep)
{
return __rste_to_pte(pte_val(*ptep));
}
pte_t huge_ptep_get_and_clear(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
pte_t pte = huge_ptep_get(ptep);
pmd_t *pmdp = (pmd_t *) ptep;
pud_t *pudp = (pud_t *) ptep;
if ((pte_val(*ptep) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
pudp_xchg_direct(mm, addr, pudp, __pud(_REGION3_ENTRY_EMPTY));
else
pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
return pte;
}
pte_t *huge_pte_alloc(struct mm_struct *mm,
unsigned long addr, unsigned long sz)
{
pgd_t *pgdp;
p4d_t *p4dp;
pud_t *pudp;
pmd_t *pmdp = NULL;
pgdp = pgd_offset(mm, addr);
p4dp = p4d_alloc(mm, pgdp, addr);
if (p4dp) {
pudp = pud_alloc(mm, p4dp, addr);
if (pudp) {
if (sz == PUD_SIZE)
return (pte_t *) pudp;
else if (sz == PMD_SIZE)
pmdp = pmd_alloc(mm, pudp, addr);
}
}
return (pte_t *) pmdp;
}
pte_t *huge_pte_offset(struct mm_struct *mm,
unsigned long addr, unsigned long sz)
{
pgd_t *pgdp;
p4d_t *p4dp;
pud_t *pudp;
pmd_t *pmdp = NULL;
pgdp = pgd_offset(mm, addr);
if (pgd_present(*pgdp)) {
p4dp = p4d_offset(pgdp, addr);
if (p4d_present(*p4dp)) {
pudp = pud_offset(p4dp, addr);
if (pud_present(*pudp)) {
if (pud_large(*pudp))
return (pte_t *) pudp;
pmdp = pmd_offset(pudp, addr);
}
}
}
return (pte_t *) pmdp;
}
int pmd_huge(pmd_t pmd)
{
return pmd_large(pmd);
}
int pud_huge(pud_t pud)
{
return pud_large(pud);
}
struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
pud_t *pud, int flags)
{
if (flags & FOLL_GET)
return NULL;
return pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
}
static __init int setup_hugepagesz(char *opt)
{
unsigned long size;
char *string = opt;
size = memparse(opt, &opt);
if (MACHINE_HAS_EDAT1 && size == PMD_SIZE) {
hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
} else if (MACHINE_HAS_EDAT2 && size == PUD_SIZE) {
hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
} else {
hugetlb_bad_size();
pr_err("hugepagesz= specifies an unsupported page size %s\n",
string);
return 0;
}
return 1;
}
__setup("hugepagesz=", setup_hugepagesz);
static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
struct hstate *h = hstate_file(file);
struct vm_unmapped_area_info info;
info.flags = 0;
info.length = len;
info.low_limit = current->mm->mmap_base;
info.high_limit = TASK_SIZE;
info.align_mask = PAGE_MASK & ~huge_page_mask(h);
info.align_offset = 0;
return vm_unmapped_area(&info);
}
static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
unsigned long addr0, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
struct hstate *h = hstate_file(file);
struct vm_unmapped_area_info info;
unsigned long addr;
info.flags = VM_UNMAPPED_AREA_TOPDOWN;
info.length = len;
info.low_limit = max(PAGE_SIZE, mmap_min_addr);
info.high_limit = current->mm->mmap_base;
info.align_mask = PAGE_MASK & ~huge_page_mask(h);
info.align_offset = 0;
addr = vm_unmapped_area(&info);
/*
* A failed mmap() very likely causes application failure,
* so fall back to the bottom-up function here. This scenario
* can happen with large stack limits and large mmap()
* allocations.
*/
if (addr & ~PAGE_MASK) {
VM_BUG_ON(addr != -ENOMEM);
info.flags = 0;
info.low_limit = TASK_UNMAPPED_BASE;
info.high_limit = TASK_SIZE;
addr = vm_unmapped_area(&info);
}
return addr;
}
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags)
{
struct hstate *h = hstate_file(file);
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
int rc;
if (len & ~huge_page_mask(h))
return -EINVAL;
if (len > TASK_SIZE - mmap_min_addr)
return -ENOMEM;
if (flags & MAP_FIXED) {
if (prepare_hugepage_range(file, addr, len))
return -EINVAL;
goto check_asce_limit;
}
if (addr) {
addr = ALIGN(addr, huge_page_size(h));
vma = find_vma(mm, addr);
if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
(!vma || addr + len <= vm_start_gap(vma)))
goto check_asce_limit;
}
if (mm->get_unmapped_area == arch_get_unmapped_area)
addr = hugetlb_get_unmapped_area_bottomup(file, addr, len,
pgoff, flags);
else
addr = hugetlb_get_unmapped_area_topdown(file, addr, len,
pgoff, flags);
if (addr & ~PAGE_MASK)
return addr;
check_asce_limit:
if (addr + len > current->mm->context.asce_limit &&
addr + len <= TASK_SIZE) {
rc = crst_table_upgrade(mm, addr + len);
if (rc)
return (unsigned long) rc;
}
return addr;
}