1012 lines
27 KiB
C
1012 lines
27 KiB
C
|
/*
|
||
|
* Multi buffer SHA1 algorithm Glue Code
|
||
|
*
|
||
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
||
|
* redistributing this file, you may do so under either license.
|
||
|
*
|
||
|
* GPL LICENSE SUMMARY
|
||
|
*
|
||
|
* Copyright(c) 2014 Intel Corporation.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of version 2 of the GNU General Public License as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful, but
|
||
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* General Public License for more details.
|
||
|
*
|
||
|
* Contact Information:
|
||
|
* Tim Chen <tim.c.chen@linux.intel.com>
|
||
|
*
|
||
|
* BSD LICENSE
|
||
|
*
|
||
|
* Copyright(c) 2014 Intel Corporation.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in
|
||
|
* the documentation and/or other materials provided with the
|
||
|
* distribution.
|
||
|
* * Neither the name of Intel Corporation nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
||
|
|
||
|
#include <crypto/internal/hash.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/cryptohash.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/list.h>
|
||
|
#include <crypto/scatterwalk.h>
|
||
|
#include <crypto/sha.h>
|
||
|
#include <crypto/mcryptd.h>
|
||
|
#include <crypto/crypto_wq.h>
|
||
|
#include <asm/byteorder.h>
|
||
|
#include <linux/hardirq.h>
|
||
|
#include <asm/fpu/api.h>
|
||
|
#include "sha1_mb_ctx.h"
|
||
|
|
||
|
#define FLUSH_INTERVAL 1000 /* in usec */
|
||
|
|
||
|
static struct mcryptd_alg_state sha1_mb_alg_state;
|
||
|
|
||
|
struct sha1_mb_ctx {
|
||
|
struct mcryptd_ahash *mcryptd_tfm;
|
||
|
};
|
||
|
|
||
|
static inline struct mcryptd_hash_request_ctx
|
||
|
*cast_hash_to_mcryptd_ctx(struct sha1_hash_ctx *hash_ctx)
|
||
|
{
|
||
|
struct ahash_request *areq;
|
||
|
|
||
|
areq = container_of((void *) hash_ctx, struct ahash_request, __ctx);
|
||
|
return container_of(areq, struct mcryptd_hash_request_ctx, areq);
|
||
|
}
|
||
|
|
||
|
static inline struct ahash_request
|
||
|
*cast_mcryptd_ctx_to_req(struct mcryptd_hash_request_ctx *ctx)
|
||
|
{
|
||
|
return container_of((void *) ctx, struct ahash_request, __ctx);
|
||
|
}
|
||
|
|
||
|
static void req_ctx_init(struct mcryptd_hash_request_ctx *rctx,
|
||
|
struct ahash_request *areq)
|
||
|
{
|
||
|
rctx->flag = HASH_UPDATE;
|
||
|
}
|
||
|
|
||
|
static asmlinkage void (*sha1_job_mgr_init)(struct sha1_mb_mgr *state);
|
||
|
static asmlinkage struct job_sha1* (*sha1_job_mgr_submit)
|
||
|
(struct sha1_mb_mgr *state, struct job_sha1 *job);
|
||
|
static asmlinkage struct job_sha1* (*sha1_job_mgr_flush)
|
||
|
(struct sha1_mb_mgr *state);
|
||
|
static asmlinkage struct job_sha1* (*sha1_job_mgr_get_comp_job)
|
||
|
(struct sha1_mb_mgr *state);
|
||
|
|
||
|
static inline uint32_t sha1_pad(uint8_t padblock[SHA1_BLOCK_SIZE * 2],
|
||
|
uint64_t total_len)
|
||
|
{
|
||
|
uint32_t i = total_len & (SHA1_BLOCK_SIZE - 1);
|
||
|
|
||
|
memset(&padblock[i], 0, SHA1_BLOCK_SIZE);
|
||
|
padblock[i] = 0x80;
|
||
|
|
||
|
i += ((SHA1_BLOCK_SIZE - 1) &
|
||
|
(0 - (total_len + SHA1_PADLENGTHFIELD_SIZE + 1)))
|
||
|
+ 1 + SHA1_PADLENGTHFIELD_SIZE;
|
||
|
|
||
|
#if SHA1_PADLENGTHFIELD_SIZE == 16
|
||
|
*((uint64_t *) &padblock[i - 16]) = 0;
|
||
|
#endif
|
||
|
|
||
|
*((uint64_t *) &padblock[i - 8]) = cpu_to_be64(total_len << 3);
|
||
|
|
||
|
/* Number of extra blocks to hash */
|
||
|
return i >> SHA1_LOG2_BLOCK_SIZE;
|
||
|
}
|
||
|
|
||
|
static struct sha1_hash_ctx *sha1_ctx_mgr_resubmit(struct sha1_ctx_mgr *mgr,
|
||
|
struct sha1_hash_ctx *ctx)
|
||
|
{
|
||
|
while (ctx) {
|
||
|
if (ctx->status & HASH_CTX_STS_COMPLETE) {
|
||
|
/* Clear PROCESSING bit */
|
||
|
ctx->status = HASH_CTX_STS_COMPLETE;
|
||
|
return ctx;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If the extra blocks are empty, begin hashing what remains
|
||
|
* in the user's buffer.
|
||
|
*/
|
||
|
if (ctx->partial_block_buffer_length == 0 &&
|
||
|
ctx->incoming_buffer_length) {
|
||
|
|
||
|
const void *buffer = ctx->incoming_buffer;
|
||
|
uint32_t len = ctx->incoming_buffer_length;
|
||
|
uint32_t copy_len;
|
||
|
|
||
|
/*
|
||
|
* Only entire blocks can be hashed.
|
||
|
* Copy remainder to extra blocks buffer.
|
||
|
*/
|
||
|
copy_len = len & (SHA1_BLOCK_SIZE-1);
|
||
|
|
||
|
if (copy_len) {
|
||
|
len -= copy_len;
|
||
|
memcpy(ctx->partial_block_buffer,
|
||
|
((const char *) buffer + len),
|
||
|
copy_len);
|
||
|
ctx->partial_block_buffer_length = copy_len;
|
||
|
}
|
||
|
|
||
|
ctx->incoming_buffer_length = 0;
|
||
|
|
||
|
/* len should be a multiple of the block size now */
|
||
|
assert((len % SHA1_BLOCK_SIZE) == 0);
|
||
|
|
||
|
/* Set len to the number of blocks to be hashed */
|
||
|
len >>= SHA1_LOG2_BLOCK_SIZE;
|
||
|
|
||
|
if (len) {
|
||
|
|
||
|
ctx->job.buffer = (uint8_t *) buffer;
|
||
|
ctx->job.len = len;
|
||
|
ctx = (struct sha1_hash_ctx *)sha1_job_mgr_submit(&mgr->mgr,
|
||
|
&ctx->job);
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If the extra blocks are not empty, then we are
|
||
|
* either on the last block(s) or we need more
|
||
|
* user input before continuing.
|
||
|
*/
|
||
|
if (ctx->status & HASH_CTX_STS_LAST) {
|
||
|
|
||
|
uint8_t *buf = ctx->partial_block_buffer;
|
||
|
uint32_t n_extra_blocks =
|
||
|
sha1_pad(buf, ctx->total_length);
|
||
|
|
||
|
ctx->status = (HASH_CTX_STS_PROCESSING |
|
||
|
HASH_CTX_STS_COMPLETE);
|
||
|
ctx->job.buffer = buf;
|
||
|
ctx->job.len = (uint32_t) n_extra_blocks;
|
||
|
ctx = (struct sha1_hash_ctx *)
|
||
|
sha1_job_mgr_submit(&mgr->mgr, &ctx->job);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
ctx->status = HASH_CTX_STS_IDLE;
|
||
|
return ctx;
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static struct sha1_hash_ctx
|
||
|
*sha1_ctx_mgr_get_comp_ctx(struct sha1_ctx_mgr *mgr)
|
||
|
{
|
||
|
/*
|
||
|
* If get_comp_job returns NULL, there are no jobs complete.
|
||
|
* If get_comp_job returns a job, verify that it is safe to return to
|
||
|
* the user.
|
||
|
* If it is not ready, resubmit the job to finish processing.
|
||
|
* If sha1_ctx_mgr_resubmit returned a job, it is ready to be returned.
|
||
|
* Otherwise, all jobs currently being managed by the hash_ctx_mgr
|
||
|
* still need processing.
|
||
|
*/
|
||
|
struct sha1_hash_ctx *ctx;
|
||
|
|
||
|
ctx = (struct sha1_hash_ctx *) sha1_job_mgr_get_comp_job(&mgr->mgr);
|
||
|
return sha1_ctx_mgr_resubmit(mgr, ctx);
|
||
|
}
|
||
|
|
||
|
static void sha1_ctx_mgr_init(struct sha1_ctx_mgr *mgr)
|
||
|
{
|
||
|
sha1_job_mgr_init(&mgr->mgr);
|
||
|
}
|
||
|
|
||
|
static struct sha1_hash_ctx *sha1_ctx_mgr_submit(struct sha1_ctx_mgr *mgr,
|
||
|
struct sha1_hash_ctx *ctx,
|
||
|
const void *buffer,
|
||
|
uint32_t len,
|
||
|
int flags)
|
||
|
{
|
||
|
if (flags & ~(HASH_UPDATE | HASH_LAST)) {
|
||
|
/* User should not pass anything other than UPDATE or LAST */
|
||
|
ctx->error = HASH_CTX_ERROR_INVALID_FLAGS;
|
||
|
return ctx;
|
||
|
}
|
||
|
|
||
|
if (ctx->status & HASH_CTX_STS_PROCESSING) {
|
||
|
/* Cannot submit to a currently processing job. */
|
||
|
ctx->error = HASH_CTX_ERROR_ALREADY_PROCESSING;
|
||
|
return ctx;
|
||
|
}
|
||
|
|
||
|
if (ctx->status & HASH_CTX_STS_COMPLETE) {
|
||
|
/* Cannot update a finished job. */
|
||
|
ctx->error = HASH_CTX_ERROR_ALREADY_COMPLETED;
|
||
|
return ctx;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If we made it here, there were no errors during this call to
|
||
|
* submit
|
||
|
*/
|
||
|
ctx->error = HASH_CTX_ERROR_NONE;
|
||
|
|
||
|
/* Store buffer ptr info from user */
|
||
|
ctx->incoming_buffer = buffer;
|
||
|
ctx->incoming_buffer_length = len;
|
||
|
|
||
|
/*
|
||
|
* Store the user's request flags and mark this ctx as currently
|
||
|
* being processed.
|
||
|
*/
|
||
|
ctx->status = (flags & HASH_LAST) ?
|
||
|
(HASH_CTX_STS_PROCESSING | HASH_CTX_STS_LAST) :
|
||
|
HASH_CTX_STS_PROCESSING;
|
||
|
|
||
|
/* Advance byte counter */
|
||
|
ctx->total_length += len;
|
||
|
|
||
|
/*
|
||
|
* If there is anything currently buffered in the extra blocks,
|
||
|
* append to it until it contains a whole block.
|
||
|
* Or if the user's buffer contains less than a whole block,
|
||
|
* append as much as possible to the extra block.
|
||
|
*/
|
||
|
if (ctx->partial_block_buffer_length || len < SHA1_BLOCK_SIZE) {
|
||
|
/*
|
||
|
* Compute how many bytes to copy from user buffer into
|
||
|
* extra block
|
||
|
*/
|
||
|
uint32_t copy_len = SHA1_BLOCK_SIZE -
|
||
|
ctx->partial_block_buffer_length;
|
||
|
if (len < copy_len)
|
||
|
copy_len = len;
|
||
|
|
||
|
if (copy_len) {
|
||
|
/* Copy and update relevant pointers and counters */
|
||
|
memcpy(&ctx->partial_block_buffer[ctx->partial_block_buffer_length],
|
||
|
buffer, copy_len);
|
||
|
|
||
|
ctx->partial_block_buffer_length += copy_len;
|
||
|
ctx->incoming_buffer = (const void *)
|
||
|
((const char *)buffer + copy_len);
|
||
|
ctx->incoming_buffer_length = len - copy_len;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The extra block should never contain more than 1 block
|
||
|
* here
|
||
|
*/
|
||
|
assert(ctx->partial_block_buffer_length <= SHA1_BLOCK_SIZE);
|
||
|
|
||
|
/*
|
||
|
* If the extra block buffer contains exactly 1 block, it can
|
||
|
* be hashed.
|
||
|
*/
|
||
|
if (ctx->partial_block_buffer_length >= SHA1_BLOCK_SIZE) {
|
||
|
ctx->partial_block_buffer_length = 0;
|
||
|
|
||
|
ctx->job.buffer = ctx->partial_block_buffer;
|
||
|
ctx->job.len = 1;
|
||
|
ctx = (struct sha1_hash_ctx *)
|
||
|
sha1_job_mgr_submit(&mgr->mgr, &ctx->job);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return sha1_ctx_mgr_resubmit(mgr, ctx);
|
||
|
}
|
||
|
|
||
|
static struct sha1_hash_ctx *sha1_ctx_mgr_flush(struct sha1_ctx_mgr *mgr)
|
||
|
{
|
||
|
struct sha1_hash_ctx *ctx;
|
||
|
|
||
|
while (1) {
|
||
|
ctx = (struct sha1_hash_ctx *) sha1_job_mgr_flush(&mgr->mgr);
|
||
|
|
||
|
/* If flush returned 0, there are no more jobs in flight. */
|
||
|
if (!ctx)
|
||
|
return NULL;
|
||
|
|
||
|
/*
|
||
|
* If flush returned a job, resubmit the job to finish
|
||
|
* processing.
|
||
|
*/
|
||
|
ctx = sha1_ctx_mgr_resubmit(mgr, ctx);
|
||
|
|
||
|
/*
|
||
|
* If sha1_ctx_mgr_resubmit returned a job, it is ready to be
|
||
|
* returned. Otherwise, all jobs currently being managed by the
|
||
|
* sha1_ctx_mgr still need processing. Loop.
|
||
|
*/
|
||
|
if (ctx)
|
||
|
return ctx;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int sha1_mb_init(struct ahash_request *areq)
|
||
|
{
|
||
|
struct sha1_hash_ctx *sctx = ahash_request_ctx(areq);
|
||
|
|
||
|
hash_ctx_init(sctx);
|
||
|
sctx->job.result_digest[0] = SHA1_H0;
|
||
|
sctx->job.result_digest[1] = SHA1_H1;
|
||
|
sctx->job.result_digest[2] = SHA1_H2;
|
||
|
sctx->job.result_digest[3] = SHA1_H3;
|
||
|
sctx->job.result_digest[4] = SHA1_H4;
|
||
|
sctx->total_length = 0;
|
||
|
sctx->partial_block_buffer_length = 0;
|
||
|
sctx->status = HASH_CTX_STS_IDLE;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int sha1_mb_set_results(struct mcryptd_hash_request_ctx *rctx)
|
||
|
{
|
||
|
int i;
|
||
|
struct sha1_hash_ctx *sctx = ahash_request_ctx(&rctx->areq);
|
||
|
__be32 *dst = (__be32 *) rctx->out;
|
||
|
|
||
|
for (i = 0; i < 5; ++i)
|
||
|
dst[i] = cpu_to_be32(sctx->job.result_digest[i]);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int sha_finish_walk(struct mcryptd_hash_request_ctx **ret_rctx,
|
||
|
struct mcryptd_alg_cstate *cstate, bool flush)
|
||
|
{
|
||
|
int flag = HASH_UPDATE;
|
||
|
int nbytes, err = 0;
|
||
|
struct mcryptd_hash_request_ctx *rctx = *ret_rctx;
|
||
|
struct sha1_hash_ctx *sha_ctx;
|
||
|
|
||
|
/* more work ? */
|
||
|
while (!(rctx->flag & HASH_DONE)) {
|
||
|
nbytes = crypto_ahash_walk_done(&rctx->walk, 0);
|
||
|
if (nbytes < 0) {
|
||
|
err = nbytes;
|
||
|
goto out;
|
||
|
}
|
||
|
/* check if the walk is done */
|
||
|
if (crypto_ahash_walk_last(&rctx->walk)) {
|
||
|
rctx->flag |= HASH_DONE;
|
||
|
if (rctx->flag & HASH_FINAL)
|
||
|
flag |= HASH_LAST;
|
||
|
|
||
|
}
|
||
|
sha_ctx = (struct sha1_hash_ctx *)
|
||
|
ahash_request_ctx(&rctx->areq);
|
||
|
kernel_fpu_begin();
|
||
|
sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx,
|
||
|
rctx->walk.data, nbytes, flag);
|
||
|
if (!sha_ctx) {
|
||
|
if (flush)
|
||
|
sha_ctx = sha1_ctx_mgr_flush(cstate->mgr);
|
||
|
}
|
||
|
kernel_fpu_end();
|
||
|
if (sha_ctx)
|
||
|
rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
|
||
|
else {
|
||
|
rctx = NULL;
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* copy the results */
|
||
|
if (rctx->flag & HASH_FINAL)
|
||
|
sha1_mb_set_results(rctx);
|
||
|
|
||
|
out:
|
||
|
*ret_rctx = rctx;
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static int sha_complete_job(struct mcryptd_hash_request_ctx *rctx,
|
||
|
struct mcryptd_alg_cstate *cstate,
|
||
|
int err)
|
||
|
{
|
||
|
struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
|
||
|
struct sha1_hash_ctx *sha_ctx;
|
||
|
struct mcryptd_hash_request_ctx *req_ctx;
|
||
|
int ret;
|
||
|
|
||
|
/* remove from work list */
|
||
|
spin_lock(&cstate->work_lock);
|
||
|
list_del(&rctx->waiter);
|
||
|
spin_unlock(&cstate->work_lock);
|
||
|
|
||
|
if (irqs_disabled())
|
||
|
rctx->complete(&req->base, err);
|
||
|
else {
|
||
|
local_bh_disable();
|
||
|
rctx->complete(&req->base, err);
|
||
|
local_bh_enable();
|
||
|
}
|
||
|
|
||
|
/* check to see if there are other jobs that are done */
|
||
|
sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr);
|
||
|
while (sha_ctx) {
|
||
|
req_ctx = cast_hash_to_mcryptd_ctx(sha_ctx);
|
||
|
ret = sha_finish_walk(&req_ctx, cstate, false);
|
||
|
if (req_ctx) {
|
||
|
spin_lock(&cstate->work_lock);
|
||
|
list_del(&req_ctx->waiter);
|
||
|
spin_unlock(&cstate->work_lock);
|
||
|
|
||
|
req = cast_mcryptd_ctx_to_req(req_ctx);
|
||
|
if (irqs_disabled())
|
||
|
req_ctx->complete(&req->base, ret);
|
||
|
else {
|
||
|
local_bh_disable();
|
||
|
req_ctx->complete(&req->base, ret);
|
||
|
local_bh_enable();
|
||
|
}
|
||
|
}
|
||
|
sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void sha1_mb_add_list(struct mcryptd_hash_request_ctx *rctx,
|
||
|
struct mcryptd_alg_cstate *cstate)
|
||
|
{
|
||
|
unsigned long next_flush;
|
||
|
unsigned long delay = usecs_to_jiffies(FLUSH_INTERVAL);
|
||
|
|
||
|
/* initialize tag */
|
||
|
rctx->tag.arrival = jiffies; /* tag the arrival time */
|
||
|
rctx->tag.seq_num = cstate->next_seq_num++;
|
||
|
next_flush = rctx->tag.arrival + delay;
|
||
|
rctx->tag.expire = next_flush;
|
||
|
|
||
|
spin_lock(&cstate->work_lock);
|
||
|
list_add_tail(&rctx->waiter, &cstate->work_list);
|
||
|
spin_unlock(&cstate->work_lock);
|
||
|
|
||
|
mcryptd_arm_flusher(cstate, delay);
|
||
|
}
|
||
|
|
||
|
static int sha1_mb_update(struct ahash_request *areq)
|
||
|
{
|
||
|
struct mcryptd_hash_request_ctx *rctx =
|
||
|
container_of(areq, struct mcryptd_hash_request_ctx, areq);
|
||
|
struct mcryptd_alg_cstate *cstate =
|
||
|
this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
|
||
|
|
||
|
struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
|
||
|
struct sha1_hash_ctx *sha_ctx;
|
||
|
int ret = 0, nbytes;
|
||
|
|
||
|
|
||
|
/* sanity check */
|
||
|
if (rctx->tag.cpu != smp_processor_id()) {
|
||
|
pr_err("mcryptd error: cpu clash\n");
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
/* need to init context */
|
||
|
req_ctx_init(rctx, areq);
|
||
|
|
||
|
nbytes = crypto_ahash_walk_first(req, &rctx->walk);
|
||
|
|
||
|
if (nbytes < 0) {
|
||
|
ret = nbytes;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
if (crypto_ahash_walk_last(&rctx->walk))
|
||
|
rctx->flag |= HASH_DONE;
|
||
|
|
||
|
/* submit */
|
||
|
sha_ctx = (struct sha1_hash_ctx *) ahash_request_ctx(areq);
|
||
|
sha1_mb_add_list(rctx, cstate);
|
||
|
kernel_fpu_begin();
|
||
|
sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data,
|
||
|
nbytes, HASH_UPDATE);
|
||
|
kernel_fpu_end();
|
||
|
|
||
|
/* check if anything is returned */
|
||
|
if (!sha_ctx)
|
||
|
return -EINPROGRESS;
|
||
|
|
||
|
if (sha_ctx->error) {
|
||
|
ret = sha_ctx->error;
|
||
|
rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
|
||
|
ret = sha_finish_walk(&rctx, cstate, false);
|
||
|
|
||
|
if (!rctx)
|
||
|
return -EINPROGRESS;
|
||
|
done:
|
||
|
sha_complete_job(rctx, cstate, ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int sha1_mb_finup(struct ahash_request *areq)
|
||
|
{
|
||
|
struct mcryptd_hash_request_ctx *rctx =
|
||
|
container_of(areq, struct mcryptd_hash_request_ctx, areq);
|
||
|
struct mcryptd_alg_cstate *cstate =
|
||
|
this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
|
||
|
|
||
|
struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
|
||
|
struct sha1_hash_ctx *sha_ctx;
|
||
|
int ret = 0, flag = HASH_UPDATE, nbytes;
|
||
|
|
||
|
/* sanity check */
|
||
|
if (rctx->tag.cpu != smp_processor_id()) {
|
||
|
pr_err("mcryptd error: cpu clash\n");
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
/* need to init context */
|
||
|
req_ctx_init(rctx, areq);
|
||
|
|
||
|
nbytes = crypto_ahash_walk_first(req, &rctx->walk);
|
||
|
|
||
|
if (nbytes < 0) {
|
||
|
ret = nbytes;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
if (crypto_ahash_walk_last(&rctx->walk)) {
|
||
|
rctx->flag |= HASH_DONE;
|
||
|
flag = HASH_LAST;
|
||
|
}
|
||
|
|
||
|
/* submit */
|
||
|
rctx->flag |= HASH_FINAL;
|
||
|
sha_ctx = (struct sha1_hash_ctx *) ahash_request_ctx(areq);
|
||
|
sha1_mb_add_list(rctx, cstate);
|
||
|
|
||
|
kernel_fpu_begin();
|
||
|
sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data,
|
||
|
nbytes, flag);
|
||
|
kernel_fpu_end();
|
||
|
|
||
|
/* check if anything is returned */
|
||
|
if (!sha_ctx)
|
||
|
return -EINPROGRESS;
|
||
|
|
||
|
if (sha_ctx->error) {
|
||
|
ret = sha_ctx->error;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
|
||
|
ret = sha_finish_walk(&rctx, cstate, false);
|
||
|
if (!rctx)
|
||
|
return -EINPROGRESS;
|
||
|
done:
|
||
|
sha_complete_job(rctx, cstate, ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int sha1_mb_final(struct ahash_request *areq)
|
||
|
{
|
||
|
struct mcryptd_hash_request_ctx *rctx =
|
||
|
container_of(areq, struct mcryptd_hash_request_ctx, areq);
|
||
|
struct mcryptd_alg_cstate *cstate =
|
||
|
this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
|
||
|
|
||
|
struct sha1_hash_ctx *sha_ctx;
|
||
|
int ret = 0;
|
||
|
u8 data;
|
||
|
|
||
|
/* sanity check */
|
||
|
if (rctx->tag.cpu != smp_processor_id()) {
|
||
|
pr_err("mcryptd error: cpu clash\n");
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
/* need to init context */
|
||
|
req_ctx_init(rctx, areq);
|
||
|
|
||
|
rctx->flag |= HASH_DONE | HASH_FINAL;
|
||
|
|
||
|
sha_ctx = (struct sha1_hash_ctx *) ahash_request_ctx(areq);
|
||
|
/* flag HASH_FINAL and 0 data size */
|
||
|
sha1_mb_add_list(rctx, cstate);
|
||
|
kernel_fpu_begin();
|
||
|
sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, &data, 0,
|
||
|
HASH_LAST);
|
||
|
kernel_fpu_end();
|
||
|
|
||
|
/* check if anything is returned */
|
||
|
if (!sha_ctx)
|
||
|
return -EINPROGRESS;
|
||
|
|
||
|
if (sha_ctx->error) {
|
||
|
ret = sha_ctx->error;
|
||
|
rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
|
||
|
ret = sha_finish_walk(&rctx, cstate, false);
|
||
|
if (!rctx)
|
||
|
return -EINPROGRESS;
|
||
|
done:
|
||
|
sha_complete_job(rctx, cstate, ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int sha1_mb_export(struct ahash_request *areq, void *out)
|
||
|
{
|
||
|
struct sha1_hash_ctx *sctx = ahash_request_ctx(areq);
|
||
|
|
||
|
memcpy(out, sctx, sizeof(*sctx));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int sha1_mb_import(struct ahash_request *areq, const void *in)
|
||
|
{
|
||
|
struct sha1_hash_ctx *sctx = ahash_request_ctx(areq);
|
||
|
|
||
|
memcpy(sctx, in, sizeof(*sctx));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int sha1_mb_async_init_tfm(struct crypto_tfm *tfm)
|
||
|
{
|
||
|
struct mcryptd_ahash *mcryptd_tfm;
|
||
|
struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);
|
||
|
struct mcryptd_hash_ctx *mctx;
|
||
|
|
||
|
mcryptd_tfm = mcryptd_alloc_ahash("__intel_sha1-mb",
|
||
|
CRYPTO_ALG_INTERNAL,
|
||
|
CRYPTO_ALG_INTERNAL);
|
||
|
if (IS_ERR(mcryptd_tfm))
|
||
|
return PTR_ERR(mcryptd_tfm);
|
||
|
mctx = crypto_ahash_ctx(&mcryptd_tfm->base);
|
||
|
mctx->alg_state = &sha1_mb_alg_state;
|
||
|
ctx->mcryptd_tfm = mcryptd_tfm;
|
||
|
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
|
||
|
sizeof(struct ahash_request) +
|
||
|
crypto_ahash_reqsize(&mcryptd_tfm->base));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void sha1_mb_async_exit_tfm(struct crypto_tfm *tfm)
|
||
|
{
|
||
|
struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);
|
||
|
|
||
|
mcryptd_free_ahash(ctx->mcryptd_tfm);
|
||
|
}
|
||
|
|
||
|
static int sha1_mb_areq_init_tfm(struct crypto_tfm *tfm)
|
||
|
{
|
||
|
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
|
||
|
sizeof(struct ahash_request) +
|
||
|
sizeof(struct sha1_hash_ctx));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void sha1_mb_areq_exit_tfm(struct crypto_tfm *tfm)
|
||
|
{
|
||
|
struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);
|
||
|
|
||
|
mcryptd_free_ahash(ctx->mcryptd_tfm);
|
||
|
}
|
||
|
|
||
|
static struct ahash_alg sha1_mb_areq_alg = {
|
||
|
.init = sha1_mb_init,
|
||
|
.update = sha1_mb_update,
|
||
|
.final = sha1_mb_final,
|
||
|
.finup = sha1_mb_finup,
|
||
|
.export = sha1_mb_export,
|
||
|
.import = sha1_mb_import,
|
||
|
.halg = {
|
||
|
.digestsize = SHA1_DIGEST_SIZE,
|
||
|
.statesize = sizeof(struct sha1_hash_ctx),
|
||
|
.base = {
|
||
|
.cra_name = "__sha1-mb",
|
||
|
.cra_driver_name = "__intel_sha1-mb",
|
||
|
.cra_priority = 100,
|
||
|
/*
|
||
|
* use ASYNC flag as some buffers in multi-buffer
|
||
|
* algo may not have completed before hashing thread
|
||
|
* sleep
|
||
|
*/
|
||
|
.cra_flags = CRYPTO_ALG_ASYNC |
|
||
|
CRYPTO_ALG_INTERNAL,
|
||
|
.cra_blocksize = SHA1_BLOCK_SIZE,
|
||
|
.cra_module = THIS_MODULE,
|
||
|
.cra_list = LIST_HEAD_INIT
|
||
|
(sha1_mb_areq_alg.halg.base.cra_list),
|
||
|
.cra_init = sha1_mb_areq_init_tfm,
|
||
|
.cra_exit = sha1_mb_areq_exit_tfm,
|
||
|
.cra_ctxsize = sizeof(struct sha1_hash_ctx),
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static int sha1_mb_async_init(struct ahash_request *req)
|
||
|
{
|
||
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||
|
struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
|
||
|
struct ahash_request *mcryptd_req = ahash_request_ctx(req);
|
||
|
struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
|
||
|
|
||
|
memcpy(mcryptd_req, req, sizeof(*req));
|
||
|
ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
|
||
|
return crypto_ahash_init(mcryptd_req);
|
||
|
}
|
||
|
|
||
|
static int sha1_mb_async_update(struct ahash_request *req)
|
||
|
{
|
||
|
struct ahash_request *mcryptd_req = ahash_request_ctx(req);
|
||
|
|
||
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||
|
struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
|
||
|
struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
|
||
|
|
||
|
memcpy(mcryptd_req, req, sizeof(*req));
|
||
|
ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
|
||
|
return crypto_ahash_update(mcryptd_req);
|
||
|
}
|
||
|
|
||
|
static int sha1_mb_async_finup(struct ahash_request *req)
|
||
|
{
|
||
|
struct ahash_request *mcryptd_req = ahash_request_ctx(req);
|
||
|
|
||
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||
|
struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
|
||
|
struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
|
||
|
|
||
|
memcpy(mcryptd_req, req, sizeof(*req));
|
||
|
ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
|
||
|
return crypto_ahash_finup(mcryptd_req);
|
||
|
}
|
||
|
|
||
|
static int sha1_mb_async_final(struct ahash_request *req)
|
||
|
{
|
||
|
struct ahash_request *mcryptd_req = ahash_request_ctx(req);
|
||
|
|
||
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||
|
struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
|
||
|
struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
|
||
|
|
||
|
memcpy(mcryptd_req, req, sizeof(*req));
|
||
|
ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
|
||
|
return crypto_ahash_final(mcryptd_req);
|
||
|
}
|
||
|
|
||
|
static int sha1_mb_async_digest(struct ahash_request *req)
|
||
|
{
|
||
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||
|
struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
|
||
|
struct ahash_request *mcryptd_req = ahash_request_ctx(req);
|
||
|
struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
|
||
|
|
||
|
memcpy(mcryptd_req, req, sizeof(*req));
|
||
|
ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
|
||
|
return crypto_ahash_digest(mcryptd_req);
|
||
|
}
|
||
|
|
||
|
static int sha1_mb_async_export(struct ahash_request *req, void *out)
|
||
|
{
|
||
|
struct ahash_request *mcryptd_req = ahash_request_ctx(req);
|
||
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||
|
struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
|
||
|
struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
|
||
|
|
||
|
memcpy(mcryptd_req, req, sizeof(*req));
|
||
|
ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
|
||
|
return crypto_ahash_export(mcryptd_req, out);
|
||
|
}
|
||
|
|
||
|
static int sha1_mb_async_import(struct ahash_request *req, const void *in)
|
||
|
{
|
||
|
struct ahash_request *mcryptd_req = ahash_request_ctx(req);
|
||
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||
|
struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
|
||
|
struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
|
||
|
struct crypto_ahash *child = mcryptd_ahash_child(mcryptd_tfm);
|
||
|
struct mcryptd_hash_request_ctx *rctx;
|
||
|
struct ahash_request *areq;
|
||
|
|
||
|
memcpy(mcryptd_req, req, sizeof(*req));
|
||
|
ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
|
||
|
rctx = ahash_request_ctx(mcryptd_req);
|
||
|
areq = &rctx->areq;
|
||
|
|
||
|
ahash_request_set_tfm(areq, child);
|
||
|
ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_SLEEP,
|
||
|
rctx->complete, req);
|
||
|
|
||
|
return crypto_ahash_import(mcryptd_req, in);
|
||
|
}
|
||
|
|
||
|
static struct ahash_alg sha1_mb_async_alg = {
|
||
|
.init = sha1_mb_async_init,
|
||
|
.update = sha1_mb_async_update,
|
||
|
.final = sha1_mb_async_final,
|
||
|
.finup = sha1_mb_async_finup,
|
||
|
.digest = sha1_mb_async_digest,
|
||
|
.export = sha1_mb_async_export,
|
||
|
.import = sha1_mb_async_import,
|
||
|
.halg = {
|
||
|
.digestsize = SHA1_DIGEST_SIZE,
|
||
|
.statesize = sizeof(struct sha1_hash_ctx),
|
||
|
.base = {
|
||
|
.cra_name = "sha1",
|
||
|
.cra_driver_name = "sha1_mb",
|
||
|
/*
|
||
|
* Low priority, since with few concurrent hash requests
|
||
|
* this is extremely slow due to the flush delay. Users
|
||
|
* whose workloads would benefit from this can request
|
||
|
* it explicitly by driver name, or can increase its
|
||
|
* priority at runtime using NETLINK_CRYPTO.
|
||
|
*/
|
||
|
.cra_priority = 50,
|
||
|
.cra_flags = CRYPTO_ALG_ASYNC,
|
||
|
.cra_blocksize = SHA1_BLOCK_SIZE,
|
||
|
.cra_module = THIS_MODULE,
|
||
|
.cra_list = LIST_HEAD_INIT(sha1_mb_async_alg.halg.base.cra_list),
|
||
|
.cra_init = sha1_mb_async_init_tfm,
|
||
|
.cra_exit = sha1_mb_async_exit_tfm,
|
||
|
.cra_ctxsize = sizeof(struct sha1_mb_ctx),
|
||
|
.cra_alignmask = 0,
|
||
|
},
|
||
|
},
|
||
|
};
|
||
|
|
||
|
static unsigned long sha1_mb_flusher(struct mcryptd_alg_cstate *cstate)
|
||
|
{
|
||
|
struct mcryptd_hash_request_ctx *rctx;
|
||
|
unsigned long cur_time;
|
||
|
unsigned long next_flush = 0;
|
||
|
struct sha1_hash_ctx *sha_ctx;
|
||
|
|
||
|
|
||
|
cur_time = jiffies;
|
||
|
|
||
|
while (!list_empty(&cstate->work_list)) {
|
||
|
rctx = list_entry(cstate->work_list.next,
|
||
|
struct mcryptd_hash_request_ctx, waiter);
|
||
|
if (time_before(cur_time, rctx->tag.expire))
|
||
|
break;
|
||
|
kernel_fpu_begin();
|
||
|
sha_ctx = (struct sha1_hash_ctx *)
|
||
|
sha1_ctx_mgr_flush(cstate->mgr);
|
||
|
kernel_fpu_end();
|
||
|
if (!sha_ctx) {
|
||
|
pr_err("sha1_mb error: nothing got flushed for non-empty list\n");
|
||
|
break;
|
||
|
}
|
||
|
rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
|
||
|
sha_finish_walk(&rctx, cstate, true);
|
||
|
sha_complete_job(rctx, cstate, 0);
|
||
|
}
|
||
|
|
||
|
if (!list_empty(&cstate->work_list)) {
|
||
|
rctx = list_entry(cstate->work_list.next,
|
||
|
struct mcryptd_hash_request_ctx, waiter);
|
||
|
/* get the hash context and then flush time */
|
||
|
next_flush = rctx->tag.expire;
|
||
|
mcryptd_arm_flusher(cstate, get_delay(next_flush));
|
||
|
}
|
||
|
return next_flush;
|
||
|
}
|
||
|
|
||
|
static int __init sha1_mb_mod_init(void)
|
||
|
{
|
||
|
|
||
|
int cpu;
|
||
|
int err;
|
||
|
struct mcryptd_alg_cstate *cpu_state;
|
||
|
|
||
|
/* check for dependent cpu features */
|
||
|
if (!boot_cpu_has(X86_FEATURE_AVX2) ||
|
||
|
!boot_cpu_has(X86_FEATURE_BMI2))
|
||
|
return -ENODEV;
|
||
|
|
||
|
/* initialize multibuffer structures */
|
||
|
sha1_mb_alg_state.alg_cstate = alloc_percpu(struct mcryptd_alg_cstate);
|
||
|
|
||
|
sha1_job_mgr_init = sha1_mb_mgr_init_avx2;
|
||
|
sha1_job_mgr_submit = sha1_mb_mgr_submit_avx2;
|
||
|
sha1_job_mgr_flush = sha1_mb_mgr_flush_avx2;
|
||
|
sha1_job_mgr_get_comp_job = sha1_mb_mgr_get_comp_job_avx2;
|
||
|
|
||
|
if (!sha1_mb_alg_state.alg_cstate)
|
||
|
return -ENOMEM;
|
||
|
for_each_possible_cpu(cpu) {
|
||
|
cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
|
||
|
cpu_state->next_flush = 0;
|
||
|
cpu_state->next_seq_num = 0;
|
||
|
cpu_state->flusher_engaged = false;
|
||
|
INIT_DELAYED_WORK(&cpu_state->flush, mcryptd_flusher);
|
||
|
cpu_state->cpu = cpu;
|
||
|
cpu_state->alg_state = &sha1_mb_alg_state;
|
||
|
cpu_state->mgr = kzalloc(sizeof(struct sha1_ctx_mgr),
|
||
|
GFP_KERNEL);
|
||
|
if (!cpu_state->mgr)
|
||
|
goto err2;
|
||
|
sha1_ctx_mgr_init(cpu_state->mgr);
|
||
|
INIT_LIST_HEAD(&cpu_state->work_list);
|
||
|
spin_lock_init(&cpu_state->work_lock);
|
||
|
}
|
||
|
sha1_mb_alg_state.flusher = &sha1_mb_flusher;
|
||
|
|
||
|
err = crypto_register_ahash(&sha1_mb_areq_alg);
|
||
|
if (err)
|
||
|
goto err2;
|
||
|
err = crypto_register_ahash(&sha1_mb_async_alg);
|
||
|
if (err)
|
||
|
goto err1;
|
||
|
|
||
|
|
||
|
return 0;
|
||
|
err1:
|
||
|
crypto_unregister_ahash(&sha1_mb_areq_alg);
|
||
|
err2:
|
||
|
for_each_possible_cpu(cpu) {
|
||
|
cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
|
||
|
kfree(cpu_state->mgr);
|
||
|
}
|
||
|
free_percpu(sha1_mb_alg_state.alg_cstate);
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
static void __exit sha1_mb_mod_fini(void)
|
||
|
{
|
||
|
int cpu;
|
||
|
struct mcryptd_alg_cstate *cpu_state;
|
||
|
|
||
|
crypto_unregister_ahash(&sha1_mb_async_alg);
|
||
|
crypto_unregister_ahash(&sha1_mb_areq_alg);
|
||
|
for_each_possible_cpu(cpu) {
|
||
|
cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
|
||
|
kfree(cpu_state->mgr);
|
||
|
}
|
||
|
free_percpu(sha1_mb_alg_state.alg_cstate);
|
||
|
}
|
||
|
|
||
|
module_init(sha1_mb_mod_init);
|
||
|
module_exit(sha1_mb_mod_fini);
|
||
|
|
||
|
MODULE_LICENSE("GPL");
|
||
|
MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, multi buffer accelerated");
|
||
|
|
||
|
MODULE_ALIAS_CRYPTO("sha1");
|