1037 lines
27 KiB
C
1037 lines
27 KiB
C
|
/*
|
||
|
* Copyright 2014 Advanced Micro Devices, Inc.
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||
|
* copy of this software and associated documentation files (the "Software"),
|
||
|
* to deal in the Software without restriction, including without limitation
|
||
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
|
* and/or sell copies of the Software, and to permit persons to whom the
|
||
|
* Software is furnished to do so, subject to the following conditions:
|
||
|
*
|
||
|
* The above copyright notice and this permission notice shall be included in
|
||
|
* all copies or substantial portions of the Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
||
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
||
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
||
|
* OTHER DEALINGS IN THE SOFTWARE.
|
||
|
*/
|
||
|
|
||
|
#include <linux/mm_types.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/sched/signal.h>
|
||
|
#include <linux/sched/mm.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <linux/mman.h>
|
||
|
#include <linux/memory.h>
|
||
|
#include "kfd_priv.h"
|
||
|
#include "kfd_events.h"
|
||
|
#include "kfd_iommu.h"
|
||
|
#include <linux/device.h>
|
||
|
|
||
|
/*
|
||
|
* Wrapper around wait_queue_entry_t
|
||
|
*/
|
||
|
struct kfd_event_waiter {
|
||
|
wait_queue_entry_t wait;
|
||
|
struct kfd_event *event; /* Event to wait for */
|
||
|
bool activated; /* Becomes true when event is signaled */
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Each signal event needs a 64-bit signal slot where the signaler will write
|
||
|
* a 1 before sending an interrupt. (This is needed because some interrupts
|
||
|
* do not contain enough spare data bits to identify an event.)
|
||
|
* We get whole pages and map them to the process VA.
|
||
|
* Individual signal events use their event_id as slot index.
|
||
|
*/
|
||
|
struct kfd_signal_page {
|
||
|
uint64_t *kernel_address;
|
||
|
uint64_t __user *user_address;
|
||
|
bool need_to_free_pages;
|
||
|
};
|
||
|
|
||
|
|
||
|
static uint64_t *page_slots(struct kfd_signal_page *page)
|
||
|
{
|
||
|
return page->kernel_address;
|
||
|
}
|
||
|
|
||
|
static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
|
||
|
{
|
||
|
void *backing_store;
|
||
|
struct kfd_signal_page *page;
|
||
|
|
||
|
page = kzalloc(sizeof(*page), GFP_KERNEL);
|
||
|
if (!page)
|
||
|
return NULL;
|
||
|
|
||
|
backing_store = (void *) __get_free_pages(GFP_KERNEL,
|
||
|
get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
|
||
|
if (!backing_store)
|
||
|
goto fail_alloc_signal_store;
|
||
|
|
||
|
/* Initialize all events to unsignaled */
|
||
|
memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
|
||
|
KFD_SIGNAL_EVENT_LIMIT * 8);
|
||
|
|
||
|
page->kernel_address = backing_store;
|
||
|
page->need_to_free_pages = true;
|
||
|
pr_debug("Allocated new event signal page at %p, for process %p\n",
|
||
|
page, p);
|
||
|
|
||
|
return page;
|
||
|
|
||
|
fail_alloc_signal_store:
|
||
|
kfree(page);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static int allocate_event_notification_slot(struct kfd_process *p,
|
||
|
struct kfd_event *ev)
|
||
|
{
|
||
|
int id;
|
||
|
|
||
|
if (!p->signal_page) {
|
||
|
p->signal_page = allocate_signal_page(p);
|
||
|
if (!p->signal_page)
|
||
|
return -ENOMEM;
|
||
|
/* Oldest user mode expects 256 event slots */
|
||
|
p->signal_mapped_size = 256*8;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Compatibility with old user mode: Only use signal slots
|
||
|
* user mode has mapped, may be less than
|
||
|
* KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
|
||
|
* of the event limit without breaking user mode.
|
||
|
*/
|
||
|
id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8,
|
||
|
GFP_KERNEL);
|
||
|
if (id < 0)
|
||
|
return id;
|
||
|
|
||
|
ev->event_id = id;
|
||
|
page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Assumes that p->event_mutex is held and of course that p is not going
|
||
|
* away (current or locked).
|
||
|
*/
|
||
|
static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
|
||
|
{
|
||
|
return idr_find(&p->event_idr, id);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
|
||
|
* @p: Pointer to struct kfd_process
|
||
|
* @id: ID to look up
|
||
|
* @bits: Number of valid bits in @id
|
||
|
*
|
||
|
* Finds the first signaled event with a matching partial ID. If no
|
||
|
* matching signaled event is found, returns NULL. In that case the
|
||
|
* caller should assume that the partial ID is invalid and do an
|
||
|
* exhaustive search of all siglaned events.
|
||
|
*
|
||
|
* If multiple events with the same partial ID signal at the same
|
||
|
* time, they will be found one interrupt at a time, not necessarily
|
||
|
* in the same order the interrupts occurred. As long as the number of
|
||
|
* interrupts is correct, all signaled events will be seen by the
|
||
|
* driver.
|
||
|
*/
|
||
|
static struct kfd_event *lookup_signaled_event_by_partial_id(
|
||
|
struct kfd_process *p, uint32_t id, uint32_t bits)
|
||
|
{
|
||
|
struct kfd_event *ev;
|
||
|
|
||
|
if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
|
||
|
return NULL;
|
||
|
|
||
|
/* Fast path for the common case that @id is not a partial ID
|
||
|
* and we only need a single lookup.
|
||
|
*/
|
||
|
if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
|
||
|
if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
|
||
|
return NULL;
|
||
|
|
||
|
return idr_find(&p->event_idr, id);
|
||
|
}
|
||
|
|
||
|
/* General case for partial IDs: Iterate over all matching IDs
|
||
|
* and find the first one that has signaled.
|
||
|
*/
|
||
|
for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
|
||
|
if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
|
||
|
continue;
|
||
|
|
||
|
ev = idr_find(&p->event_idr, id);
|
||
|
}
|
||
|
|
||
|
return ev;
|
||
|
}
|
||
|
|
||
|
static int create_signal_event(struct file *devkfd,
|
||
|
struct kfd_process *p,
|
||
|
struct kfd_event *ev)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
if (p->signal_mapped_size &&
|
||
|
p->signal_event_count == p->signal_mapped_size / 8) {
|
||
|
if (!p->signal_event_limit_reached) {
|
||
|
pr_warn("Signal event wasn't created because limit was reached\n");
|
||
|
p->signal_event_limit_reached = true;
|
||
|
}
|
||
|
return -ENOSPC;
|
||
|
}
|
||
|
|
||
|
ret = allocate_event_notification_slot(p, ev);
|
||
|
if (ret) {
|
||
|
pr_warn("Signal event wasn't created because out of kernel memory\n");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
p->signal_event_count++;
|
||
|
|
||
|
ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
|
||
|
pr_debug("Signal event number %zu created with id %d, address %p\n",
|
||
|
p->signal_event_count, ev->event_id,
|
||
|
ev->user_signal_address);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int create_other_event(struct kfd_process *p, struct kfd_event *ev)
|
||
|
{
|
||
|
/* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
|
||
|
* intentional integer overflow to -1 without a compiler
|
||
|
* warning. idr_alloc treats a negative value as "maximum
|
||
|
* signed integer".
|
||
|
*/
|
||
|
int id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
|
||
|
(uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
|
||
|
GFP_KERNEL);
|
||
|
|
||
|
if (id < 0)
|
||
|
return id;
|
||
|
ev->event_id = id;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void kfd_event_init_process(struct kfd_process *p)
|
||
|
{
|
||
|
mutex_init(&p->event_mutex);
|
||
|
idr_init(&p->event_idr);
|
||
|
p->signal_page = NULL;
|
||
|
p->signal_event_count = 0;
|
||
|
}
|
||
|
|
||
|
static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
|
||
|
{
|
||
|
struct kfd_event_waiter *waiter;
|
||
|
|
||
|
/* Wake up pending waiters. They will return failure */
|
||
|
list_for_each_entry(waiter, &ev->wq.head, wait.entry)
|
||
|
waiter->event = NULL;
|
||
|
wake_up_all(&ev->wq);
|
||
|
|
||
|
if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
|
||
|
ev->type == KFD_EVENT_TYPE_DEBUG)
|
||
|
p->signal_event_count--;
|
||
|
|
||
|
idr_remove(&p->event_idr, ev->event_id);
|
||
|
kfree(ev);
|
||
|
}
|
||
|
|
||
|
static void destroy_events(struct kfd_process *p)
|
||
|
{
|
||
|
struct kfd_event *ev;
|
||
|
uint32_t id;
|
||
|
|
||
|
idr_for_each_entry(&p->event_idr, ev, id)
|
||
|
destroy_event(p, ev);
|
||
|
idr_destroy(&p->event_idr);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We assume that the process is being destroyed and there is no need to
|
||
|
* unmap the pages or keep bookkeeping data in order.
|
||
|
*/
|
||
|
static void shutdown_signal_page(struct kfd_process *p)
|
||
|
{
|
||
|
struct kfd_signal_page *page = p->signal_page;
|
||
|
|
||
|
if (page) {
|
||
|
if (page->need_to_free_pages)
|
||
|
free_pages((unsigned long)page->kernel_address,
|
||
|
get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
|
||
|
kfree(page);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void kfd_event_free_process(struct kfd_process *p)
|
||
|
{
|
||
|
destroy_events(p);
|
||
|
shutdown_signal_page(p);
|
||
|
}
|
||
|
|
||
|
static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
|
||
|
{
|
||
|
return ev->type == KFD_EVENT_TYPE_SIGNAL ||
|
||
|
ev->type == KFD_EVENT_TYPE_DEBUG;
|
||
|
}
|
||
|
|
||
|
static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
|
||
|
{
|
||
|
return ev->type == KFD_EVENT_TYPE_SIGNAL;
|
||
|
}
|
||
|
|
||
|
int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
|
||
|
uint64_t size)
|
||
|
{
|
||
|
struct kfd_signal_page *page;
|
||
|
|
||
|
if (p->signal_page)
|
||
|
return -EBUSY;
|
||
|
|
||
|
page = kzalloc(sizeof(*page), GFP_KERNEL);
|
||
|
if (!page)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/* Initialize all events to unsignaled */
|
||
|
memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT,
|
||
|
KFD_SIGNAL_EVENT_LIMIT * 8);
|
||
|
|
||
|
page->kernel_address = kernel_address;
|
||
|
|
||
|
p->signal_page = page;
|
||
|
p->signal_mapped_size = size;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int kfd_event_create(struct file *devkfd, struct kfd_process *p,
|
||
|
uint32_t event_type, bool auto_reset, uint32_t node_id,
|
||
|
uint32_t *event_id, uint32_t *event_trigger_data,
|
||
|
uint64_t *event_page_offset, uint32_t *event_slot_index)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
|
||
|
|
||
|
if (!ev)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
ev->type = event_type;
|
||
|
ev->auto_reset = auto_reset;
|
||
|
ev->signaled = false;
|
||
|
|
||
|
init_waitqueue_head(&ev->wq);
|
||
|
|
||
|
*event_page_offset = 0;
|
||
|
|
||
|
mutex_lock(&p->event_mutex);
|
||
|
|
||
|
switch (event_type) {
|
||
|
case KFD_EVENT_TYPE_SIGNAL:
|
||
|
case KFD_EVENT_TYPE_DEBUG:
|
||
|
ret = create_signal_event(devkfd, p, ev);
|
||
|
if (!ret) {
|
||
|
*event_page_offset = KFD_MMAP_TYPE_EVENTS;
|
||
|
*event_page_offset <<= PAGE_SHIFT;
|
||
|
*event_slot_index = ev->event_id;
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
ret = create_other_event(p, ev);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (!ret) {
|
||
|
*event_id = ev->event_id;
|
||
|
*event_trigger_data = ev->event_id;
|
||
|
} else {
|
||
|
kfree(ev);
|
||
|
}
|
||
|
|
||
|
mutex_unlock(&p->event_mutex);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* Assumes that p is current. */
|
||
|
int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
|
||
|
{
|
||
|
struct kfd_event *ev;
|
||
|
int ret = 0;
|
||
|
|
||
|
mutex_lock(&p->event_mutex);
|
||
|
|
||
|
ev = lookup_event_by_id(p, event_id);
|
||
|
|
||
|
if (ev)
|
||
|
destroy_event(p, ev);
|
||
|
else
|
||
|
ret = -EINVAL;
|
||
|
|
||
|
mutex_unlock(&p->event_mutex);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void set_event(struct kfd_event *ev)
|
||
|
{
|
||
|
struct kfd_event_waiter *waiter;
|
||
|
|
||
|
/* Auto reset if the list is non-empty and we're waking
|
||
|
* someone. waitqueue_active is safe here because we're
|
||
|
* protected by the p->event_mutex, which is also held when
|
||
|
* updating the wait queues in kfd_wait_on_events.
|
||
|
*/
|
||
|
ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
|
||
|
|
||
|
list_for_each_entry(waiter, &ev->wq.head, wait.entry)
|
||
|
waiter->activated = true;
|
||
|
|
||
|
wake_up_all(&ev->wq);
|
||
|
}
|
||
|
|
||
|
/* Assumes that p is current. */
|
||
|
int kfd_set_event(struct kfd_process *p, uint32_t event_id)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
struct kfd_event *ev;
|
||
|
|
||
|
mutex_lock(&p->event_mutex);
|
||
|
|
||
|
ev = lookup_event_by_id(p, event_id);
|
||
|
|
||
|
if (ev && event_can_be_cpu_signaled(ev))
|
||
|
set_event(ev);
|
||
|
else
|
||
|
ret = -EINVAL;
|
||
|
|
||
|
mutex_unlock(&p->event_mutex);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void reset_event(struct kfd_event *ev)
|
||
|
{
|
||
|
ev->signaled = false;
|
||
|
}
|
||
|
|
||
|
/* Assumes that p is current. */
|
||
|
int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
struct kfd_event *ev;
|
||
|
|
||
|
mutex_lock(&p->event_mutex);
|
||
|
|
||
|
ev = lookup_event_by_id(p, event_id);
|
||
|
|
||
|
if (ev && event_can_be_cpu_signaled(ev))
|
||
|
reset_event(ev);
|
||
|
else
|
||
|
ret = -EINVAL;
|
||
|
|
||
|
mutex_unlock(&p->event_mutex);
|
||
|
return ret;
|
||
|
|
||
|
}
|
||
|
|
||
|
static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
|
||
|
{
|
||
|
page_slots(p->signal_page)[ev->event_id] = UNSIGNALED_EVENT_SLOT;
|
||
|
}
|
||
|
|
||
|
static void set_event_from_interrupt(struct kfd_process *p,
|
||
|
struct kfd_event *ev)
|
||
|
{
|
||
|
if (ev && event_can_be_gpu_signaled(ev)) {
|
||
|
acknowledge_signal(p, ev);
|
||
|
set_event(ev);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
|
||
|
uint32_t valid_id_bits)
|
||
|
{
|
||
|
struct kfd_event *ev = NULL;
|
||
|
|
||
|
/*
|
||
|
* Because we are called from arbitrary context (workqueue) as opposed
|
||
|
* to process context, kfd_process could attempt to exit while we are
|
||
|
* running so the lookup function increments the process ref count.
|
||
|
*/
|
||
|
struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
|
||
|
|
||
|
if (!p)
|
||
|
return; /* Presumably process exited. */
|
||
|
|
||
|
mutex_lock(&p->event_mutex);
|
||
|
|
||
|
if (valid_id_bits)
|
||
|
ev = lookup_signaled_event_by_partial_id(p, partial_id,
|
||
|
valid_id_bits);
|
||
|
if (ev) {
|
||
|
set_event_from_interrupt(p, ev);
|
||
|
} else if (p->signal_page) {
|
||
|
/*
|
||
|
* Partial ID lookup failed. Assume that the event ID
|
||
|
* in the interrupt payload was invalid and do an
|
||
|
* exhaustive search of signaled events.
|
||
|
*/
|
||
|
uint64_t *slots = page_slots(p->signal_page);
|
||
|
uint32_t id;
|
||
|
|
||
|
if (valid_id_bits)
|
||
|
pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
|
||
|
partial_id, valid_id_bits);
|
||
|
|
||
|
if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) {
|
||
|
/* With relatively few events, it's faster to
|
||
|
* iterate over the event IDR
|
||
|
*/
|
||
|
idr_for_each_entry(&p->event_idr, ev, id) {
|
||
|
if (id >= KFD_SIGNAL_EVENT_LIMIT)
|
||
|
break;
|
||
|
|
||
|
if (slots[id] != UNSIGNALED_EVENT_SLOT)
|
||
|
set_event_from_interrupt(p, ev);
|
||
|
}
|
||
|
} else {
|
||
|
/* With relatively many events, it's faster to
|
||
|
* iterate over the signal slots and lookup
|
||
|
* only signaled events from the IDR.
|
||
|
*/
|
||
|
for (id = 0; id < KFD_SIGNAL_EVENT_LIMIT; id++)
|
||
|
if (slots[id] != UNSIGNALED_EVENT_SLOT) {
|
||
|
ev = lookup_event_by_id(p, id);
|
||
|
set_event_from_interrupt(p, ev);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
mutex_unlock(&p->event_mutex);
|
||
|
kfd_unref_process(p);
|
||
|
}
|
||
|
|
||
|
static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
|
||
|
{
|
||
|
struct kfd_event_waiter *event_waiters;
|
||
|
uint32_t i;
|
||
|
|
||
|
event_waiters = kmalloc_array(num_events,
|
||
|
sizeof(struct kfd_event_waiter),
|
||
|
GFP_KERNEL);
|
||
|
|
||
|
for (i = 0; (event_waiters) && (i < num_events) ; i++) {
|
||
|
init_wait(&event_waiters[i].wait);
|
||
|
event_waiters[i].activated = false;
|
||
|
}
|
||
|
|
||
|
return event_waiters;
|
||
|
}
|
||
|
|
||
|
static int init_event_waiter_get_status(struct kfd_process *p,
|
||
|
struct kfd_event_waiter *waiter,
|
||
|
uint32_t event_id)
|
||
|
{
|
||
|
struct kfd_event *ev = lookup_event_by_id(p, event_id);
|
||
|
|
||
|
if (!ev)
|
||
|
return -EINVAL;
|
||
|
|
||
|
waiter->event = ev;
|
||
|
waiter->activated = ev->signaled;
|
||
|
ev->signaled = ev->signaled && !ev->auto_reset;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void init_event_waiter_add_to_waitlist(struct kfd_event_waiter *waiter)
|
||
|
{
|
||
|
struct kfd_event *ev = waiter->event;
|
||
|
|
||
|
/* Only add to the wait list if we actually need to
|
||
|
* wait on this event.
|
||
|
*/
|
||
|
if (!waiter->activated)
|
||
|
add_wait_queue(&ev->wq, &waiter->wait);
|
||
|
}
|
||
|
|
||
|
/* test_event_condition - Test condition of events being waited for
|
||
|
* @all: Return completion only if all events have signaled
|
||
|
* @num_events: Number of events to wait for
|
||
|
* @event_waiters: Array of event waiters, one per event
|
||
|
*
|
||
|
* Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
|
||
|
* signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
|
||
|
* events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
|
||
|
* the events have been destroyed.
|
||
|
*/
|
||
|
static uint32_t test_event_condition(bool all, uint32_t num_events,
|
||
|
struct kfd_event_waiter *event_waiters)
|
||
|
{
|
||
|
uint32_t i;
|
||
|
uint32_t activated_count = 0;
|
||
|
|
||
|
for (i = 0; i < num_events; i++) {
|
||
|
if (!event_waiters[i].event)
|
||
|
return KFD_IOC_WAIT_RESULT_FAIL;
|
||
|
|
||
|
if (event_waiters[i].activated) {
|
||
|
if (!all)
|
||
|
return KFD_IOC_WAIT_RESULT_COMPLETE;
|
||
|
|
||
|
activated_count++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return activated_count == num_events ?
|
||
|
KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Copy event specific data, if defined.
|
||
|
* Currently only memory exception events have additional data to copy to user
|
||
|
*/
|
||
|
static int copy_signaled_event_data(uint32_t num_events,
|
||
|
struct kfd_event_waiter *event_waiters,
|
||
|
struct kfd_event_data __user *data)
|
||
|
{
|
||
|
struct kfd_hsa_memory_exception_data *src;
|
||
|
struct kfd_hsa_memory_exception_data __user *dst;
|
||
|
struct kfd_event_waiter *waiter;
|
||
|
struct kfd_event *event;
|
||
|
uint32_t i;
|
||
|
|
||
|
for (i = 0; i < num_events; i++) {
|
||
|
waiter = &event_waiters[i];
|
||
|
event = waiter->event;
|
||
|
if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) {
|
||
|
dst = &data[i].memory_exception_data;
|
||
|
src = &event->memory_exception_data;
|
||
|
if (copy_to_user(dst, src,
|
||
|
sizeof(struct kfd_hsa_memory_exception_data)))
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
|
||
|
{
|
||
|
if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
|
||
|
return 0;
|
||
|
|
||
|
if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
|
||
|
return MAX_SCHEDULE_TIMEOUT;
|
||
|
|
||
|
/*
|
||
|
* msecs_to_jiffies interprets all values above 2^31-1 as infinite,
|
||
|
* but we consider them finite.
|
||
|
* This hack is wrong, but nobody is likely to notice.
|
||
|
*/
|
||
|
user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
|
||
|
|
||
|
return msecs_to_jiffies(user_timeout_ms) + 1;
|
||
|
}
|
||
|
|
||
|
static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters)
|
||
|
{
|
||
|
uint32_t i;
|
||
|
|
||
|
for (i = 0; i < num_events; i++)
|
||
|
if (waiters[i].event)
|
||
|
remove_wait_queue(&waiters[i].event->wq,
|
||
|
&waiters[i].wait);
|
||
|
|
||
|
kfree(waiters);
|
||
|
}
|
||
|
|
||
|
int kfd_wait_on_events(struct kfd_process *p,
|
||
|
uint32_t num_events, void __user *data,
|
||
|
bool all, uint32_t user_timeout_ms,
|
||
|
uint32_t *wait_result)
|
||
|
{
|
||
|
struct kfd_event_data __user *events =
|
||
|
(struct kfd_event_data __user *) data;
|
||
|
uint32_t i;
|
||
|
int ret = 0;
|
||
|
|
||
|
struct kfd_event_waiter *event_waiters = NULL;
|
||
|
long timeout = user_timeout_to_jiffies(user_timeout_ms);
|
||
|
|
||
|
event_waiters = alloc_event_waiters(num_events);
|
||
|
if (!event_waiters) {
|
||
|
ret = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
mutex_lock(&p->event_mutex);
|
||
|
|
||
|
for (i = 0; i < num_events; i++) {
|
||
|
struct kfd_event_data event_data;
|
||
|
|
||
|
if (copy_from_user(&event_data, &events[i],
|
||
|
sizeof(struct kfd_event_data))) {
|
||
|
ret = -EFAULT;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
ret = init_event_waiter_get_status(p, &event_waiters[i],
|
||
|
event_data.event_id);
|
||
|
if (ret)
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
/* Check condition once. */
|
||
|
*wait_result = test_event_condition(all, num_events, event_waiters);
|
||
|
if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
|
||
|
ret = copy_signaled_event_data(num_events,
|
||
|
event_waiters, events);
|
||
|
goto out_unlock;
|
||
|
} else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
|
||
|
/* This should not happen. Events shouldn't be
|
||
|
* destroyed while we're holding the event_mutex
|
||
|
*/
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
/* Add to wait lists if we need to wait. */
|
||
|
for (i = 0; i < num_events; i++)
|
||
|
init_event_waiter_add_to_waitlist(&event_waiters[i]);
|
||
|
|
||
|
mutex_unlock(&p->event_mutex);
|
||
|
|
||
|
while (true) {
|
||
|
if (fatal_signal_pending(current)) {
|
||
|
ret = -EINTR;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (signal_pending(current)) {
|
||
|
/*
|
||
|
* This is wrong when a nonzero, non-infinite timeout
|
||
|
* is specified. We need to use
|
||
|
* ERESTARTSYS_RESTARTBLOCK, but struct restart_block
|
||
|
* contains a union with data for each user and it's
|
||
|
* in generic kernel code that I don't want to
|
||
|
* touch yet.
|
||
|
*/
|
||
|
ret = -ERESTARTSYS;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Set task state to interruptible sleep before
|
||
|
* checking wake-up conditions. A concurrent wake-up
|
||
|
* will put the task back into runnable state. In that
|
||
|
* case schedule_timeout will not put the task to
|
||
|
* sleep and we'll get a chance to re-check the
|
||
|
* updated conditions almost immediately. Otherwise,
|
||
|
* this race condition would lead to a soft hang or a
|
||
|
* very long sleep.
|
||
|
*/
|
||
|
set_current_state(TASK_INTERRUPTIBLE);
|
||
|
|
||
|
*wait_result = test_event_condition(all, num_events,
|
||
|
event_waiters);
|
||
|
if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
|
||
|
break;
|
||
|
|
||
|
if (timeout <= 0)
|
||
|
break;
|
||
|
|
||
|
timeout = schedule_timeout(timeout);
|
||
|
}
|
||
|
__set_current_state(TASK_RUNNING);
|
||
|
|
||
|
/* copy_signaled_event_data may sleep. So this has to happen
|
||
|
* after the task state is set back to RUNNING.
|
||
|
*/
|
||
|
if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
|
||
|
ret = copy_signaled_event_data(num_events,
|
||
|
event_waiters, events);
|
||
|
|
||
|
mutex_lock(&p->event_mutex);
|
||
|
out_unlock:
|
||
|
free_waiters(num_events, event_waiters);
|
||
|
mutex_unlock(&p->event_mutex);
|
||
|
out:
|
||
|
if (ret)
|
||
|
*wait_result = KFD_IOC_WAIT_RESULT_FAIL;
|
||
|
else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
|
||
|
ret = -EIO;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
|
||
|
{
|
||
|
unsigned long pfn;
|
||
|
struct kfd_signal_page *page;
|
||
|
int ret;
|
||
|
|
||
|
/* check required size doesn't exceed the allocated size */
|
||
|
if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) <
|
||
|
get_order(vma->vm_end - vma->vm_start)) {
|
||
|
pr_err("Event page mmap requested illegal size\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
page = p->signal_page;
|
||
|
if (!page) {
|
||
|
/* Probably KFD bug, but mmap is user-accessible. */
|
||
|
pr_debug("Signal page could not be found\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
pfn = __pa(page->kernel_address);
|
||
|
pfn >>= PAGE_SHIFT;
|
||
|
|
||
|
vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
|
||
|
| VM_DONTDUMP | VM_PFNMAP;
|
||
|
|
||
|
pr_debug("Mapping signal page\n");
|
||
|
pr_debug(" start user address == 0x%08lx\n", vma->vm_start);
|
||
|
pr_debug(" end user address == 0x%08lx\n", vma->vm_end);
|
||
|
pr_debug(" pfn == 0x%016lX\n", pfn);
|
||
|
pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags);
|
||
|
pr_debug(" size == 0x%08lX\n",
|
||
|
vma->vm_end - vma->vm_start);
|
||
|
|
||
|
page->user_address = (uint64_t __user *)vma->vm_start;
|
||
|
|
||
|
/* mapping the page to user process */
|
||
|
ret = remap_pfn_range(vma, vma->vm_start, pfn,
|
||
|
vma->vm_end - vma->vm_start, vma->vm_page_prot);
|
||
|
if (!ret)
|
||
|
p->signal_mapped_size = vma->vm_end - vma->vm_start;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Assumes that p->event_mutex is held and of course
|
||
|
* that p is not going away (current or locked).
|
||
|
*/
|
||
|
static void lookup_events_by_type_and_signal(struct kfd_process *p,
|
||
|
int type, void *event_data)
|
||
|
{
|
||
|
struct kfd_hsa_memory_exception_data *ev_data;
|
||
|
struct kfd_event *ev;
|
||
|
uint32_t id;
|
||
|
bool send_signal = true;
|
||
|
|
||
|
ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
|
||
|
|
||
|
id = KFD_FIRST_NONSIGNAL_EVENT_ID;
|
||
|
idr_for_each_entry_continue(&p->event_idr, ev, id)
|
||
|
if (ev->type == type) {
|
||
|
send_signal = false;
|
||
|
dev_dbg(kfd_device,
|
||
|
"Event found: id %X type %d",
|
||
|
ev->event_id, ev->type);
|
||
|
set_event(ev);
|
||
|
if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
|
||
|
ev->memory_exception_data = *ev_data;
|
||
|
}
|
||
|
|
||
|
if (type == KFD_EVENT_TYPE_MEMORY) {
|
||
|
dev_warn(kfd_device,
|
||
|
"Sending SIGSEGV to HSA Process with PID %d ",
|
||
|
p->lead_thread->pid);
|
||
|
send_sig(SIGSEGV, p->lead_thread, 0);
|
||
|
}
|
||
|
|
||
|
/* Send SIGTERM no event of type "type" has been found*/
|
||
|
if (send_signal) {
|
||
|
if (send_sigterm) {
|
||
|
dev_warn(kfd_device,
|
||
|
"Sending SIGTERM to HSA Process with PID %d ",
|
||
|
p->lead_thread->pid);
|
||
|
send_sig(SIGTERM, p->lead_thread, 0);
|
||
|
} else {
|
||
|
dev_err(kfd_device,
|
||
|
"HSA Process (PID %d) got unhandled exception",
|
||
|
p->lead_thread->pid);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef KFD_SUPPORT_IOMMU_V2
|
||
|
void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid,
|
||
|
unsigned long address, bool is_write_requested,
|
||
|
bool is_execute_requested)
|
||
|
{
|
||
|
struct kfd_hsa_memory_exception_data memory_exception_data;
|
||
|
struct vm_area_struct *vma;
|
||
|
|
||
|
/*
|
||
|
* Because we are called from arbitrary context (workqueue) as opposed
|
||
|
* to process context, kfd_process could attempt to exit while we are
|
||
|
* running so the lookup function increments the process ref count.
|
||
|
*/
|
||
|
struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
|
||
|
struct mm_struct *mm;
|
||
|
|
||
|
if (!p)
|
||
|
return; /* Presumably process exited. */
|
||
|
|
||
|
/* Take a safe reference to the mm_struct, which may otherwise
|
||
|
* disappear even while the kfd_process is still referenced.
|
||
|
*/
|
||
|
mm = get_task_mm(p->lead_thread);
|
||
|
if (!mm) {
|
||
|
kfd_unref_process(p);
|
||
|
return; /* Process is exiting */
|
||
|
}
|
||
|
|
||
|
memset(&memory_exception_data, 0, sizeof(memory_exception_data));
|
||
|
|
||
|
down_read(&mm->mmap_sem);
|
||
|
vma = find_vma(mm, address);
|
||
|
|
||
|
memory_exception_data.gpu_id = dev->id;
|
||
|
memory_exception_data.va = address;
|
||
|
/* Set failure reason */
|
||
|
memory_exception_data.failure.NotPresent = 1;
|
||
|
memory_exception_data.failure.NoExecute = 0;
|
||
|
memory_exception_data.failure.ReadOnly = 0;
|
||
|
if (vma && address >= vma->vm_start) {
|
||
|
memory_exception_data.failure.NotPresent = 0;
|
||
|
|
||
|
if (is_write_requested && !(vma->vm_flags & VM_WRITE))
|
||
|
memory_exception_data.failure.ReadOnly = 1;
|
||
|
else
|
||
|
memory_exception_data.failure.ReadOnly = 0;
|
||
|
|
||
|
if (is_execute_requested && !(vma->vm_flags & VM_EXEC))
|
||
|
memory_exception_data.failure.NoExecute = 1;
|
||
|
else
|
||
|
memory_exception_data.failure.NoExecute = 0;
|
||
|
}
|
||
|
|
||
|
up_read(&mm->mmap_sem);
|
||
|
mmput(mm);
|
||
|
|
||
|
pr_debug("notpresent %d, noexecute %d, readonly %d\n",
|
||
|
memory_exception_data.failure.NotPresent,
|
||
|
memory_exception_data.failure.NoExecute,
|
||
|
memory_exception_data.failure.ReadOnly);
|
||
|
|
||
|
/* Workaround on Raven to not kill the process when memory is freed
|
||
|
* before IOMMU is able to finish processing all the excessive PPRs
|
||
|
*/
|
||
|
if (dev->device_info->asic_family != CHIP_RAVEN) {
|
||
|
mutex_lock(&p->event_mutex);
|
||
|
|
||
|
/* Lookup events by type and signal them */
|
||
|
lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY,
|
||
|
&memory_exception_data);
|
||
|
|
||
|
mutex_unlock(&p->event_mutex);
|
||
|
}
|
||
|
|
||
|
kfd_unref_process(p);
|
||
|
}
|
||
|
#endif /* KFD_SUPPORT_IOMMU_V2 */
|
||
|
|
||
|
void kfd_signal_hw_exception_event(unsigned int pasid)
|
||
|
{
|
||
|
/*
|
||
|
* Because we are called from arbitrary context (workqueue) as opposed
|
||
|
* to process context, kfd_process could attempt to exit while we are
|
||
|
* running so the lookup function increments the process ref count.
|
||
|
*/
|
||
|
struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
|
||
|
|
||
|
if (!p)
|
||
|
return; /* Presumably process exited. */
|
||
|
|
||
|
mutex_lock(&p->event_mutex);
|
||
|
|
||
|
/* Lookup events by type and signal them */
|
||
|
lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
|
||
|
|
||
|
mutex_unlock(&p->event_mutex);
|
||
|
kfd_unref_process(p);
|
||
|
}
|
||
|
|
||
|
void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid,
|
||
|
struct kfd_vm_fault_info *info)
|
||
|
{
|
||
|
struct kfd_event *ev;
|
||
|
uint32_t id;
|
||
|
struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
|
||
|
struct kfd_hsa_memory_exception_data memory_exception_data;
|
||
|
|
||
|
if (!p)
|
||
|
return; /* Presumably process exited. */
|
||
|
memset(&memory_exception_data, 0, sizeof(memory_exception_data));
|
||
|
memory_exception_data.gpu_id = dev->id;
|
||
|
memory_exception_data.failure.imprecise = 1;
|
||
|
/* Set failure reason */
|
||
|
if (info) {
|
||
|
memory_exception_data.va = (info->page_addr) << PAGE_SHIFT;
|
||
|
memory_exception_data.failure.NotPresent =
|
||
|
info->prot_valid ? 1 : 0;
|
||
|
memory_exception_data.failure.NoExecute =
|
||
|
info->prot_exec ? 1 : 0;
|
||
|
memory_exception_data.failure.ReadOnly =
|
||
|
info->prot_write ? 1 : 0;
|
||
|
memory_exception_data.failure.imprecise = 0;
|
||
|
}
|
||
|
mutex_lock(&p->event_mutex);
|
||
|
|
||
|
id = KFD_FIRST_NONSIGNAL_EVENT_ID;
|
||
|
idr_for_each_entry_continue(&p->event_idr, ev, id)
|
||
|
if (ev->type == KFD_EVENT_TYPE_MEMORY) {
|
||
|
ev->memory_exception_data = memory_exception_data;
|
||
|
set_event(ev);
|
||
|
}
|
||
|
|
||
|
mutex_unlock(&p->event_mutex);
|
||
|
kfd_unref_process(p);
|
||
|
}
|
||
|
|
||
|
void kfd_signal_reset_event(struct kfd_dev *dev)
|
||
|
{
|
||
|
struct kfd_hsa_hw_exception_data hw_exception_data;
|
||
|
struct kfd_process *p;
|
||
|
struct kfd_event *ev;
|
||
|
unsigned int temp;
|
||
|
uint32_t id, idx;
|
||
|
|
||
|
/* Whole gpu reset caused by GPU hang and memory is lost */
|
||
|
memset(&hw_exception_data, 0, sizeof(hw_exception_data));
|
||
|
hw_exception_data.gpu_id = dev->id;
|
||
|
hw_exception_data.memory_lost = 1;
|
||
|
|
||
|
idx = srcu_read_lock(&kfd_processes_srcu);
|
||
|
hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
|
||
|
mutex_lock(&p->event_mutex);
|
||
|
id = KFD_FIRST_NONSIGNAL_EVENT_ID;
|
||
|
idr_for_each_entry_continue(&p->event_idr, ev, id)
|
||
|
if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
|
||
|
ev->hw_exception_data = hw_exception_data;
|
||
|
set_event(ev);
|
||
|
}
|
||
|
mutex_unlock(&p->event_mutex);
|
||
|
}
|
||
|
srcu_read_unlock(&kfd_processes_srcu, idx);
|
||
|
}
|