kernel_samsung_a34x-permissive/drivers/input/touchscreen/mediatek/GT1151/gt1x_generic.c

1800 lines
42 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2019 MediaTek Inc.
*/
#include <linux/input.h>
#include "include/gt1x_tpd_common.h"
#include "gt1x_config.h"
#ifdef CONFIG_GTP_PROXIMITY
#include <linux/hwmsensor.h>
#include <linux/hwmsen_dev.h>
#include <linux/sensors_io.h>
#endif
#ifdef CONFIG_GTP_ICS_SLOT_REPORT
#include <linux/input/mt.h>
#endif
/*******************GLOBAL VARIABLE*********************/
struct i2c_client *gt1x_i2c_client;
static struct workqueue_struct *gt1x_workqueue;
u8 gt1x_config[GTP_CONFIG_MAX_LENGTH] = { 0 };
u32 gt1x_cfg_length = GTP_CONFIG_MAX_LENGTH;
bool check_flag;
enum CHIP_TYPE_T gt1x_chip_type = CHIP_TYPE_GT1X;
struct gt1x_version_info gt1x_version = {
.product_id = {0},
.patch_id = 0,
.mask_id = 0,
.sensor_id = 0,
.match_opt = 0
};
#if defined(CONFIG_GTP_WITH_STYLUS) && defined(CONFIG_GTP_HAVE_STYLUS_KEY)
const u16 gt1x_stylus_key_array[] = GTP_STYLUS_KEY_TAB;
#endif
u8 gt1x_clk_buf[6];
u8 gt1x_clk_retries;
u8 gt1x_ref_retries;
u8 gt1x_driver_num;
u8 gt1x_sensor_num;
u8 gt1x_int_type;
u8 gt1x_wakeup_level;
u32 gt1x_abs_x_max;
u32 gt1x_abs_y_max;
u8 gt1x_rawdiff_mode;
u8 gt1x_init_failed;
u8 is_resetting;
static int addr_selected;
static ssize_t gt1x_debug_read_proc(struct file *, char __user *,
size_t, loff_t *);
static ssize_t gt1x_debug_write_proc(struct file *, const char __user *,
size_t, loff_t *);
static struct proc_dir_entry *gt1x_debug_proc_entry;
static const struct file_operations gt1x_debug_fops = {
.owner = THIS_MODULE,
.read = gt1x_debug_read_proc,
.write = gt1x_debug_write_proc,
};
s32 gt1x_init_debug_node(void)
{
gt1x_debug_proc_entry = proc_create(GT1X_DEBUG_PROC_FILE,
0660, NULL, &gt1x_debug_fops);
if (gt1x_debug_proc_entry == NULL) {
GTP_ERROR("create_proc_entry %s FAILED!",
GT1X_DEBUG_PROC_FILE);
return -1;
}
GTP_ERROR("create_proc_entry %s SUCCESS.", GT1X_DEBUG_PROC_FILE);
return 0;
}
void gt1x_deinit_debug_node(void)
{
if (gt1x_debug_proc_entry != NULL)
remove_proc_entry(GT1X_DEBUG_PROC_FILE, NULL);
}
static ssize_t gt1x_debug_read_proc(struct file *file, char __user *page,
size_t size, loff_t *ppos)
{
char *ptr = NULL;
char temp_data[GTP_CONFIG_MAX_LENGTH] = { 0 };
int i;
ssize_t ret = 0;
if (*ppos)
return 0;
if (size > 1024*1024)
return -EMSGSIZE;
ptr = kzalloc((size + 10), GFP_KERNEL);
if (ptr == NULL)
return -EMSGSIZE;
ret += snprintf(ptr + ret, size - ret,
"==== GT1X default config setting in driver====\n");
for (i = 0; i < GTP_CONFIG_MAX_LENGTH; i++) {
ret += snprintf(ptr + ret, size - ret,
"0x%02X,", gt1x_config[i]);
if (i % 10 == 9)
ret += snprintf(ptr + ret, size - ret, "\n");
}
ret += snprintf(ptr + ret, size - ret, "\n");
ret += snprintf(ptr + ret, size - ret,
"==== GT1X config read from chip====\n");
i = gt1x_i2c_read(GTP_REG_CONFIG_DATA,
temp_data, GTP_CONFIG_MAX_LENGTH);
GTP_INFO("I2C TRANSFER: %d", i);
for (i = 0; i < GTP_CONFIG_MAX_LENGTH; i++) {
ret += snprintf(ptr + ret, size - ret,
"0x%02X,", temp_data[i]);
if (i % 10 == 9)
ret += snprintf(ptr + ret, size - ret, "\n");
}
/* Touch PID & VID */
ret += snprintf(ptr + ret, size - ret, "\n");
ret += snprintf(ptr + ret, size - ret,
"==== GT1X Version Info ====\n");
gt1x_i2c_read(GTP_REG_VERSION, temp_data, 12);
ret += snprintf(ptr + ret, size - ret,
"ProductID: GT%c%c%c%c\n",
temp_data[0], temp_data[1],
temp_data[2], temp_data[3]);
ret += snprintf(ptr + ret, size - ret,
"PatchID: %02X%02X\n", temp_data[4], temp_data[5]);
ret += snprintf(ptr + ret, size - ret,
"MaskID: %02X%02X\n", temp_data[7], temp_data[8]);
ret += snprintf(ptr + ret, size - ret,
"SensorID: %02X\n", temp_data[10] & 0x0F);
ret += snprintf(ptr + ret, size - ret,
"Driver Num: %02d. Sensor Num: %02d\n",
gt1x_driver_num, gt1x_sensor_num);
*ppos += ret;
if (copy_to_user(page, ptr, size)) {
GTP_INFO("Failed to copy from kernel to user\n");
ret = -EFAULT;
}
kfree(ptr);
return ret;
}
static ssize_t gt1x_debug_write_proc(struct file *file,
const char __user *buffer,
size_t count, loff_t *ppos)
{
s32 ret = 0;
u8 buf[GTP_CONFIG_MAX_LENGTH] = { 0 };
char mode_str[50] = { 0 };
int mode;
char arg1[50] = { 0 };
GTP_DEBUG("write count %ld\n", (unsigned long)count);
if (count > GTP_CONFIG_MAX_LENGTH) {
GTP_ERROR("Too much data, buffer size: %d, data:%ld",
GTP_CONFIG_MAX_LENGTH, (unsigned long)count);
return -EFAULT;
}
if (copy_from_user(buf, buffer, count)) {
GTP_ERROR("copy from user fail!");
return -EFAULT;
}
/*send config*/
if (count == gt1x_cfg_length) {
memcpy(gt1x_config, buf, count);
ret = gt1x_send_cfg(gt1x_config, gt1x_cfg_length);
if (ret < 0) {
GTP_ERROR("send gt1x_config failed.");
return -EFAULT;
}
gt1x_abs_x_max = (gt1x_config[RESOLUTION_LOC + 1] << 8) +
gt1x_config[RESOLUTION_LOC];
gt1x_abs_y_max = (gt1x_config[RESOLUTION_LOC + 3] << 8) +
gt1x_config[RESOLUTION_LOC + 2];
return count;
}
ret = sscanf(buf, "%49s %d", (char *)&mode_str, &mode);
if (ret < 0) {
GTP_ERROR("Sscanf buf ERROR1");
return ret;
}
/*force clear gt1x_config*/
if (strcmp(mode_str, "clear_config") == 0) {
GTP_INFO("Force clear gt1x_config");
gt1x_send_cmd(GTP_CMD_CLEAR_CFG, 0);
return count;
}
if (strcmp(mode_str, "init") == 0) {
GTP_INFO("Init panel");
gt1x_init_panel();
return count;
}
if (strcmp(mode_str, "chip") == 0) {
GTP_INFO("Get chip type:");
gt1x_get_chip_type();
return count;
}
if (strcmp(mode_str, "int") == 0) {
if (mode == 0) {
GTP_INFO("Disable irq.");
gt1x_irq_disable();
} else {
GTP_INFO("Enable irq.");
gt1x_irq_enable();
}
return count;
}
if (strcmp(mode_str, "poweron") == 0) {
gt1x_power_switch(1);
return count;
}
if (strcmp(mode_str, "poweroff") == 0) {
gt1x_power_switch(0);
return count;
}
if (strcmp(mode_str, "version") == 0) {
gt1x_read_version(NULL);
return count;
}
if (strcmp(mode_str, "reset") == 0) {
gt1x_reset_guitar();
return count;
}
#ifdef CONFIG_GTP_CHARGER_SWITCH
if (strcmp(mode_str, "charger") == 0) {
gt1x_charger_config(mode);
return count;
}
#endif
ret = sscanf(buf, "%49s %49s", (char *)&mode_str, (char *)&arg1);
if (ret < 0) {
GTP_ERROR("Sscanf buf ERROR2");
return ret;
}
if (strcmp(mode_str, "update") == 0) {
gt1x_update_firmware(arg1);
return count;
}
return gt1x_debug_proc(buf, count);
}
s32 _do_i2c_read(struct i2c_msg *msgs, u16 addr, u8 *buffer, s32 len)
{
s32 ret = -1;
s32 pos = 0;
s32 data_length = len;
s32 transfer_length = 0;
u8 *data = NULL;
u16 address = addr;
data = kmalloc(IIC_MAX_TRANSFER_SIZE < (len + GTP_ADDR_LENGTH) ?
IIC_MAX_TRANSFER_SIZE :
(len + GTP_ADDR_LENGTH), GFP_KERNEL);
if (data == NULL)
return ERROR_MEM;
msgs[1].buf = data;
while (pos != data_length) {
if ((data_length - pos) > IIC_MAX_TRANSFER_SIZE)
transfer_length = IIC_MAX_TRANSFER_SIZE;
else
transfer_length = data_length - pos;
msgs[0].buf[0] = (address >> 8) & 0xFF;
msgs[0].buf[1] = address & 0xFF;
msgs[1].len = transfer_length;
ret = i2c_transfer(gt1x_i2c_client->adapter, msgs, 2);
if (ret != 2) {
GTP_INFO("I2c Transfer error! (%d)", ret);
kfree(data);
return ERROR_IIC;
}
memcpy(&buffer[pos], msgs[1].buf, transfer_length);
pos += transfer_length;
address += transfer_length;
}
kfree(data);
return 0;
}
s32 _do_i2c_write(struct i2c_msg *msg, u16 addr, u8 *buffer, s32 len)
{
s32 ret = -1;
s32 pos = 0;
s32 data_length = len;
s32 transfer_length = 0;
u8 *data = NULL;
u16 address = addr;
data = kmalloc(IIC_MAX_TRANSFER_SIZE < (len + GTP_ADDR_LENGTH) ?
IIC_MAX_TRANSFER_SIZE :
(len + GTP_ADDR_LENGTH), GFP_KERNEL);
if (data == NULL)
return ERROR_MEM;
msg->buf = data;
while (pos != data_length) {
if ((data_length - pos) >
(IIC_MAX_TRANSFER_SIZE - GTP_ADDR_LENGTH))
transfer_length =
IIC_MAX_TRANSFER_SIZE - GTP_ADDR_LENGTH;
else
transfer_length = data_length - pos;
msg->buf[0] = (address >> 8) & 0xFF;
msg->buf[1] = address & 0xFF;
msg->len = transfer_length + GTP_ADDR_LENGTH;
memcpy(&msg->buf[GTP_ADDR_LENGTH],
&buffer[pos], transfer_length);
ret = i2c_transfer(gt1x_i2c_client->adapter, msg, 1);
if (ret != 1) {
GTP_INFO("I2c Transfer error! (%d)", ret);
kfree(data);
return ERROR_IIC;
}
pos += transfer_length;
address += transfer_length;
}
kfree(data);
return 0;
}
s32 gt1x_i2c_test(void)
{
u8 retry = 0;
s32 ret = -1;
u32 hw_info = 0;
GTP_DEBUG_FUNC();
while (retry++ < 5) {
ret = gt1x_i2c_read(GTP_REG_HW_INFO,
(u8 *) &hw_info, sizeof(hw_info));
if (!ret) {
GTP_INFO("GTP_REG_HW_INFO : %08X", hw_info);
return ret;
}
msleep(20);
GTP_ERROR("GTP_REG_HW_INFO : %08X", hw_info);
GTP_ERROR("GTP i2c test failed time %d.", retry);
}
return ERROR_RETRY;
}
s32 gt1x_i2c_read_dbl_check(u16 addr, u8 *buffer, s32 len)
{
u8 buf[16] = { 0 };
u8 confirm_buf[16] = { 0 };
if (len > 16) {
GTP_ERROR("length %d is too long, do not beyond %d",
len, (int)(sizeof(buf)));
return ERROR;
}
memset(buf, 0xAA, 16);
gt1x_i2c_read(addr, buf, len);
msleep(20);
memset(confirm_buf, 0, 16);
gt1x_i2c_read(addr, confirm_buf, len);
if (!memcmp(buf, confirm_buf, len)) {
memcpy(buffer, confirm_buf, len);
return 0;
}
GTP_ERROR("i2c read 0x%04X, %d bytes, double check failed!",
addr, len);
return ERROR;
}
/**
* gt1x_get_info - Get information from ic, such as resolution and
* int trigger type
* Return <0: i2c failed, 0: i2c ok
*/
s32 gt1x_get_info(void)
{
u8 opr_buf[4] = { 0 };
s32 ret = 0;
ret = gt1x_i2c_read(GTP_REG_CONFIG_DATA + 1, opr_buf, 4);
if (ret < 0)
return ret;
gt1x_abs_x_max = (opr_buf[1] << 8) + opr_buf[0];
gt1x_abs_y_max = (opr_buf[3] << 8) + opr_buf[2];
ret = gt1x_i2c_read(GTP_REG_CONFIG_DATA + 6, opr_buf, 1);
if (ret < 0)
return ret;
gt1x_int_type = opr_buf[0] & 0x03;
GTP_INFO("X_MAX = %d, Y_MAX = %d, TRIGGER = 0x%02x",
gt1x_abs_x_max, gt1x_abs_y_max, gt1x_int_type);
return 0;
}
/**
* gt1x_send_cfg - Send gt1x_config Function.
* @config: pointer of the configuration array.
* @cfg_len: length of configuration array.
* Return 0--success,non-0--fail.
*/
s32 gt1x_send_cfg(u8 *config, int cfg_len)
{
#ifdef CONFIG_GTP_DRIVER_SEND_CFG
int i;
s32 ret = 0;
s32 retry = 0;
u16 checksum = 0;
GTP_DEBUG("Driver Send Config, length: %d", cfg_len);
for (i = 0; i < cfg_len - 3; i += 2)
checksum += (config[i] << 8) + config[i + 1];
if (!checksum) {
GTP_ERROR("Invalid config, all of the bytes is zero!");
return -1;
}
checksum = 0 - checksum;
GTP_DEBUG("Config checksum: 0x%04X", checksum);
config[cfg_len - 3] = (checksum >> 8) & 0xFF;
config[cfg_len - 2] = checksum & 0xFF;
config[cfg_len - 1] = 0x01;
while (retry++ < 5) {
ret = gt1x_i2c_write(GTP_REG_CONFIG_DATA, config, cfg_len);
if (!ret) {
/* must 200ms, wait for storing config into flash. */
msleep(200);
GTP_DEBUG("Send config successfully!");
return 0;
}
}
GTP_ERROR("Send config failed!");
return ret;
#endif
return 0;
}
s32 gt1x_init_panel(void)
{
s32 ret = 0;
u8 cfg_len = 0;
#ifdef CONFIG_GTP_DRIVER_SEND_CFG
u8 sensor_id = 0;
const u8 cfg_grp0[] = GTP_CFG_GROUP0;
const u8 cfg_grp1[] = GTP_CFG_GROUP1;
const u8 cfg_grp2[] = GTP_CFG_GROUP2;
const u8 cfg_grp3[] = GTP_CFG_GROUP3;
const u8 cfg_grp4[] = GTP_CFG_GROUP4;
const u8 cfg_grp5[] = GTP_CFG_GROUP5;
const u8 *cfgs[] = {
cfg_grp0, cfg_grp1, cfg_grp2,
cfg_grp3, cfg_grp4, cfg_grp5
};
u8 cfg_lens[] = {
CFG_GROUP_LEN(cfg_grp0),
CFG_GROUP_LEN(cfg_grp1),
CFG_GROUP_LEN(cfg_grp2),
CFG_GROUP_LEN(cfg_grp3),
CFG_GROUP_LEN(cfg_grp4),
CFG_GROUP_LEN(cfg_grp5)
};
#ifdef CONFIG_GTP_CHARGER_SWITCH
const u8 cfg_grp0_charger[] = GTP_CFG_GROUP0_CHARGER;
const u8 cfg_grp1_charger[] = GTP_CFG_GROUP1_CHARGER;
const u8 cfg_grp2_charger[] = GTP_CFG_GROUP2_CHARGER;
const u8 cfg_grp3_charger[] = GTP_CFG_GROUP3_CHARGER;
const u8 cfg_grp4_charger[] = GTP_CFG_GROUP4_CHARGER;
const u8 cfg_grp5_charger[] = GTP_CFG_GROUP5_CHARGER;
const u8 *cfgs_charger[] = {
cfg_grp0_charger, cfg_grp1_charger, cfg_grp2_charger,
cfg_grp3_charger, cfg_grp4_charger, cfg_grp5_charger
};
u8 cfg_lens_charger[] = {
CFG_GROUP_LEN(cfg_grp0_charger),
CFG_GROUP_LEN(cfg_grp1_charger),
CFG_GROUP_LEN(cfg_grp2_charger),
CFG_GROUP_LEN(cfg_grp3_charger),
CFG_GROUP_LEN(cfg_grp4_charger),
CFG_GROUP_LEN(cfg_grp5_charger)
};
#endif /* end CONFIG_GTP_CHARGER_SWITCH */
GTP_DEBUG("Config Groups Length: %d, %d, %d, %d, %d, %d",
cfg_lens[0], cfg_lens[1], cfg_lens[2],
cfg_lens[3], cfg_lens[4], cfg_lens[5]);
sensor_id = gt1x_version.sensor_id;
if (sensor_id >= 6 || cfg_lens[sensor_id] < GTP_CONFIG_MIN_LENGTH
|| cfg_lens[sensor_id] > GTP_CONFIG_MAX_LENGTH) {
sensor_id = 0;
}
cfg_len = cfg_lens[sensor_id];
GTP_INFO("CTP_CONFIG_GROUP%d used, gt1x_config length: %d",
sensor_id, cfg_len);
if (cfg_len < GTP_CONFIG_MIN_LENGTH ||
cfg_len > GTP_CONFIG_MAX_LENGTH) {
GTP_ERROR("CTP_CONFIG_GROUP%d is INVALID CONFIG GROUP!\n",
sensor_id + 1);
/* NO Config sent. You need to check you header
* file CFG_GROUP section
*/
return -1;
}
memset(gt1x_config, 0, sizeof(gt1x_config));
memcpy(gt1x_config, cfgs[sensor_id], cfg_len);
/* clear the flag, avoid failure when send the_config of driver. */
gt1x_config[0] &= 0x7F;
#ifdef CONFIG_GTP_CUSTOM_CFG
gt1x_config[RESOLUTION_LOC] =
(u8) tpd_dts_data.tpd_resolution[0];
gt1x_config[RESOLUTION_LOC + 1] =
(u8) (tpd_dts_data.tpd_resolution[0] >> 8);
gt1x_config[RESOLUTION_LOC + 2] =
(u8) tpd_dts_data.tpd_resolution[1];
gt1x_config[RESOLUTION_LOC + 3] =
(u8) (tpd_dts_data.tpd_resolution[1] >> 8);
GTP_INFO("Res: %d * %d, trigger: %d", tpd_dts_data.tpd_resolution[0],
tpd_dts_data.tpd_resolution[1], GTP_INT_TRIGGER);
if (GTP_INT_TRIGGER == 0) { /* RISING */
gt1x_config[TRIGGER_LOC] &= 0xfe;
} else if (GTP_INT_TRIGGER == 1) { /* FALLING */
gt1x_config[TRIGGER_LOC] |= 0x01;
}
#endif /* END CONFIG_GTP_CUSTOM_CFG */
#ifdef CONFIG_GTP_CHARGER_SWITCH
GTP_DEBUG("Charger Config Groups Length: %d, %d, %d, %d, %d, %d",
cfg_lens_charger[0], cfg_lens_charger[1],
cfg_lens_charger[2], cfg_lens_charger[3],
cfg_lens_charger[4], cfg_lens_charger[5]);
memset(gt1x_config_charger, 0, sizeof(gt1x_config_charger));
if (cfg_lens_charger[sensor_id] == cfg_len)
memcpy(gt1x_config_charger, cfgs_charger[sensor_id], cfg_len);
/* clear the flag, avoid failure when send the config of driver. */
gt1x_config_charger[0] &= 0x7F;
#ifdef CONFIG_GTP_CUSTOM_CFG
gt1x_config_charger[RESOLUTION_LOC] =
(u8) tpd_dts_data.tpd_resolution[0];
gt1x_config_charger[RESOLUTION_LOC + 1] =
(u8) (tpd_dts_data.tpd_resolution[0] >> 8);
gt1x_config_charger[RESOLUTION_LOC + 2] =
(u8) tpd_dts_data.tpd_resolution[1];
gt1x_config_charger[RESOLUTION_LOC + 3] =
(u8) (tpd_dts_data.tpd_resolution[1] >> 8);
if (GTP_INT_TRIGGER == 0) { /* RISING */
gt1x_config_charger[TRIGGER_LOC] &= 0xfe;
} else if (GTP_INT_TRIGGER == 1) { /* FALLING */
gt1x_config_charger[TRIGGER_LOC] |= 0x01;
}
#endif /* END CONFIG_GTP_CUSTOM_CFG */
if (cfg_lens_charger[sensor_id] != cfg_len)
memset(gt1x_config_charger, 0, sizeof(gt1x_config_charger));
#endif /* END CONFIG_GTP_CHARGER_SWITCH */
#else /* DRIVER NOT SEND CONFIG */
cfg_len = GTP_CONFIG_MAX_LENGTH;
ret = gt1x_i2c_read(GTP_REG_CONFIG_DATA, gt1x_config, cfg_len);
if (ret < 0)
return ret;
#endif /* END CONFIG_GTP_DRIVER_SEND_CFG */
GTP_DEBUG_FUNC();
/* match resolution when gt1x_abs_x_max & gt1x_abs_y_max
* have been set already
*/
if ((gt1x_abs_x_max == 0) && (gt1x_abs_y_max == 0)) {
gt1x_abs_x_max = (gt1x_config[RESOLUTION_LOC + 1] << 8) +
gt1x_config[RESOLUTION_LOC];
gt1x_abs_y_max = (gt1x_config[RESOLUTION_LOC + 3] << 8) +
gt1x_config[RESOLUTION_LOC + 2];
gt1x_int_type = (gt1x_config[TRIGGER_LOC]) & 0x03;
gt1x_wakeup_level = !(gt1x_config[MODULE_SWITCH3_LOC] & 0x20);
} else {
gt1x_config[RESOLUTION_LOC] = (u8) gt1x_abs_x_max;
gt1x_config[RESOLUTION_LOC + 1] = (u8) (gt1x_abs_x_max >> 8);
gt1x_config[RESOLUTION_LOC + 2] = (u8) gt1x_abs_y_max;
gt1x_config[RESOLUTION_LOC + 3] = (u8) (gt1x_abs_y_max >> 8);
set_reg_bit(gt1x_config[MODULE_SWITCH3_LOC],
5, !gt1x_wakeup_level);
gt1x_config[TRIGGER_LOC] =
(gt1x_config[TRIGGER_LOC] & 0xFC) | gt1x_int_type;
#ifdef CONFIG_GTP_CHARGER_SWITCH
gt1x_config_charger[RESOLUTION_LOC] =
(u8) gt1x_abs_x_max;
gt1x_config_charger[RESOLUTION_LOC + 1] =
(u8) (gt1x_abs_x_max >> 8);
gt1x_config_charger[RESOLUTION_LOC + 2] =
(u8) gt1x_abs_y_max;
gt1x_config_charger[RESOLUTION_LOC + 3] =
(u8) (gt1x_abs_y_max >> 8);
set_reg_bit(gt1x_config[MODULE_SWITCH3_LOC],
5, !gt1x_wakeup_level);
gt1x_config[TRIGGER_LOC] =
(gt1x_config[TRIGGER_LOC] & 0xFC) |
gt1x_int_type;
#endif
}
GTP_INFO("X_MAX=%d,Y_MAX=%d,TRIGGER=0x%02x,WAKEUP_LEVEL=%d",
gt1x_abs_x_max, gt1x_abs_y_max,
gt1x_int_type, gt1x_wakeup_level);
gt1x_cfg_length = cfg_len;
ret = gt1x_send_cfg(gt1x_config, gt1x_cfg_length);
return ret;
}
void gt1x_select_addr(void)
{
GTP_GPIO_OUTPUT(GTP_RST_PORT, 0);
msleep(20);
GTP_GPIO_OUTPUT(GTP_INT_PORT, gt1x_i2c_client->addr == 0x14);
msleep(20);
GTP_GPIO_OUTPUT(GTP_RST_PORT, 1);
}
s32 gt1x_reset_guitar(void)
{
s32 ret = 0;
GTP_INFO("GTP RESET!\n");
if (addr_selected == 1) {
addr_selected = 0;
} else {
/* select i2c address */
gt1x_select_addr();
msleep(20); /*must >= 6ms*/
}
/* int synchronization */
if (gt1x_chip_type == CHIP_TYPE_GT2X) {
/* for GT2X */
} else {
GTP_GPIO_OUTPUT(GTP_INT_PORT, 0);
msleep(50);
GTP_GPIO_AS_INT(GTP_INT_PORT);
}
#ifdef CONFIG_GTP_ESD_PROTECT
ret = gt1x_init_ext_watchdog();
#else
ret = gt1x_i2c_test();
#endif
return ret;
}
/**
* gt1x_read_version - Read gt1x version info.
* @ver_info: address to store version info
* Return 0-succeed.
*/
s32 gt1x_read_version(struct gt1x_version_info *ver_info)
{
s32 ret = -1;
u8 buf[12] = { 0 };
u32 mask_id = 0;
u32 patch_id = 0;
u8 product_id[5] = { 0 };
u8 sensor_id = 0;
u8 match_opt = 0;
int i, retry = 3;
u8 checksum = 0;
GTP_DEBUG_FUNC();
while (retry--) {
ret = gt1x_i2c_read_dbl_check(GTP_REG_VERSION,
buf, sizeof(buf));
if (!ret) {
checksum = 0;
for (i = 0; i < sizeof(buf); i++)
checksum += buf[i];
if (checksum == 0 &&
/* first 3 bytes must be number or char */
/*sensor id == 0xFF, retry */
IS_NUM_OR_CHAR(buf[0]) && IS_NUM_OR_CHAR(buf[1]) &&
IS_NUM_OR_CHAR(buf[2]) &&
buf[10] != 0xFF) {
break;
}
GTP_ERROR("GTP read version failed!(checksum error)");
} else {
GTP_ERROR("GTP read version failed!");
}
GTP_DEBUG("GTP reread version : %d", retry);
msleep(100);
}
if (retry <= 0)
return -1;
mask_id = (u32) ((buf[7] << 16) | (buf[8] << 8) | buf[9]);
patch_id = (u32) ((buf[4] << 16) | (buf[5] << 8) | buf[6]);
memcpy(product_id, buf, 4);
sensor_id = buf[10] & 0x0F;
match_opt = (buf[10] >> 4) & 0x0F;
GTP_INFO("IC VERSION: GT%s_%04X(Patch)_%04X(Mask)_%02X(SensorID)",
product_id, patch_id >> 8,
mask_id >> 8, sensor_id);
if (ver_info != NULL) {
ver_info->mask_id = mask_id;
ver_info->patch_id = patch_id;
memcpy(ver_info->product_id, product_id, 5);
ver_info->sensor_id = sensor_id;
ver_info->match_opt = match_opt;
}
return 0;
}
/**
* gt1x_get_chip_type - get chip type .
*
* different chip synchronize in different way,
*/
s32 gt1x_get_chip_type(void)
{
u8 opr_buf[4] = { 0x00 };
u8 gt1x_data[] = { 0x02, 0x08, 0x90, 0x00 };
u8 gt9l_data[] = { 0x01, 0x10, 0x90, 0x00 };
s32 ret = -1;
/* chip type already exist */
if (gt1x_chip_type != CHIP_TYPE_NONE)
return 0;
/* read hardware */
ret = gt1x_i2c_read_dbl_check(GTP_REG_HW_INFO,
opr_buf, sizeof(opr_buf));
if (ret) {
GTP_ERROR("I2c communication error.");
return -1;
}
/* find chip type */
if (!memcmp(opr_buf, gt1x_data, sizeof(gt1x_data)))
gt1x_chip_type = CHIP_TYPE_GT1X;
else if (!memcmp(opr_buf, gt9l_data, sizeof(gt9l_data)))
gt1x_chip_type = CHIP_TYPE_GT2X;
if (gt1x_chip_type != CHIP_TYPE_NONE) {
GTP_INFO("Chip Type: %s",
(gt1x_chip_type == CHIP_TYPE_GT1X)
? "GT1X" : "GT2X");
return 0;
} else {
return -1;
}
}
/**
* gt1x_enter_sleep - Eter sleep function.
*
* Returns 0--success,non-0--fail.
*/
s32 gt1x_enter_sleep(void)
{
s32 ret = ERROR;
if (gt1x_chip_type == CHIP_TYPE_GT2X) {
/*Store bak ref*/
/*ret = gt1x_bak_ref_proc(GTP_BAK_REF_STORE);*/
if (ret)
GTP_ERROR("[%s]Store bak ref failed.", __func__);
}
#ifdef CONFIG_GTP_POWER_CTRL_SLEEP
gt1x_power_switch(SWITCH_OFF);
GTP_INFO("GTP enter sleep by poweroff!");
return 0;
#else
{
s32 retry = 0;
if (gt1x_wakeup_level == 1) { /* high level wakeup */
GTP_GPIO_OUTPUT(GTP_INT_PORT, 0);
}
msleep(20);
while (retry++ < 5) {
if (!gt1x_send_cmd(GTP_CMD_SLEEP, 0)) {
GTP_INFO("GTP enter sleep!");
return 0;
}
msleep(20);
}
GTP_ERROR("GTP send sleep cmd failed.");
return -1;
}
#endif
}
/**
* gt1x_wakeup_sleep - wakeup from sleep mode Function.
*
* Return: 0--success,non-0--fail.
*/
s32 gt1x_wakeup_sleep(void)
{
#ifndef CONFIG_GTP_POWER_CTRL_SLEEP
u8 retry = 0;
s32 ret = -1;
#endif
GTP_DEBUG("GTP wakeup begin.");
/* power manager unit control the procedure */
#ifdef CONFIG_GTP_POWER_CTRL_SLEEP
gt1x_power_reset2();
GTP_INFO("Ic wakeup by poweron");
return 0;
#else
/* gesture wakeup & int port wakeup */
while (retry++ < 2) {
/* wake up through int port */
GTP_GPIO_OUTPUT(GTP_INT_PORT, gt1x_wakeup_level);
msleep(20);
if (gt1x_chip_type == CHIP_TYPE_GT2X) {
/* for GT2X */
} else {
/* Synchronize int IO */
GTP_GPIO_OUTPUT(GTP_INT_PORT, 0);
msleep(50);
GTP_GPIO_AS_INT(GTP_INT_PORT);
}
/* test i2c */
ret = gt1x_i2c_test();
if (!ret) {
/* i2c test succeed, init externl watchdog */
#ifdef CONFIG_GTP_ESD_PROTECT
ret = gt1x_init_ext_watchdog();
if (!ret)
break;
#else
break;
#endif
}
}
if (ret) { /* wakeup failed , try waking up by resetting */
while (retry--) {
ret = gt1x_reset_guitar();
if (!ret)
break;
}
}
if (ret) {
GTP_ERROR("GTP wakeup sleep failed.");
return -1;
}
GTP_INFO("GTP wakeup sleep.");
return 0;
#endif /* END CONFIG_GTP_POWER_CTRL_SLEEP */
}
/**
* gt1x_send_cmd - seng cmd
* must write data & checksum first
* byte content
* 0 cmd
* 1 data
* 2 checksum
* Returns 0 - succeed,non-0 - failed
*/
s32 gt1x_send_cmd(u8 cmd, u8 data)
{
s32 ret;
static DEFINE_MUTEX(cmd_mutex);
u8 buffer[3] = { cmd, data, 0 };
mutex_lock(&cmd_mutex);
buffer[2] = (u8) ((0 - cmd - data) & 0xFF);
ret = gt1x_i2c_write(GTP_REG_CMD + 1, &buffer[1], 2);
ret |= gt1x_i2c_write(GTP_REG_CMD, &buffer[0], 1);
msleep(50);
mutex_unlock(&cmd_mutex);
return ret;
}
/**
* gt1x_power_reset2 - compare with gt1x_power_reset(), remove irq operation
* additional irq operation may lead to flow: enable->irq(disable)->enable
* if irq and second enable are very close, it could lead to touch hang
*/
void gt1x_power_reset2(void)
{
s32 i = 0;
s32 ret = 0;
if (is_resetting || update_info.status)
return;
GTP_INFO("force_reset_guitar");
is_resetting = 1;
gt1x_power_switch(SWITCH_OFF);
msleep(30);
gt1x_power_switch(SWITCH_ON);
msleep(30);
for (i = 0; i < 5; i++) {
ret = gt1x_reset_guitar();
if (ret < 0)
continue;
ret = gt1x_send_cfg(gt1x_config, gt1x_cfg_length);
if (ret < 0) {
msleep(500);
continue;
}
break;
}
is_resetting = 0;
}
void gt1x_power_reset(void)
{
s32 i = 0;
s32 ret = 0;
if (is_resetting || update_info.status)
return;
GTP_INFO("force_reset_guitar");
is_resetting = 1;
gt1x_irq_disable();
gt1x_power_switch(SWITCH_OFF);
msleep(30);
gt1x_power_switch(SWITCH_ON);
msleep(30);
for (i = 0; i < 5; i++) {
ret = gt1x_reset_guitar();
if (ret < 0)
continue;
ret = gt1x_send_cfg(gt1x_config, gt1x_cfg_length);
if (ret < 0) {
msleep(500);
continue;
}
break;
}
gt1x_irq_enable();
is_resetting = 0;
}
s32 gt1x_request_event_handler(void)
{
s32 ret = -1;
u8 rqst_data = 0;
ret = gt1x_i2c_read(GTP_REG_RQST, &rqst_data, 1);
if (ret) {
GTP_ERROR("I2C transfer error. errno:%d", ret);
return -1;
}
GTP_DEBUG("Request state:0x%02x.", rqst_data);
switch (rqst_data & 0x0F) {
case GTP_RQST_CONFIG:
GTP_INFO("Request Config.");
ret = gt1x_send_cfg(gt1x_config, gt1x_cfg_length);
if (ret) {
GTP_ERROR("Send gt1x_config error.");
} else {
GTP_INFO("Send gt1x_config success.");
rqst_data = GTP_RQST_RESPONDED;
gt1x_i2c_write(GTP_REG_RQST, &rqst_data, 1);
}
break;
case GTP_RQST_RESET:
GTP_INFO("Request Reset.");
gt1x_reset_guitar();
rqst_data = GTP_RQST_RESPONDED;
gt1x_i2c_write(GTP_REG_RQST, &rqst_data, 1);
break;
case GTP_RQST_BAK_REF:
GTP_INFO("Request Ref.");
break;
case GTP_RQST_MAIN_CLOCK:
GTP_INFO("Request main clock.");
break;
#if 0
#ifdef CONFIG_GTP_HOTKNOT
case GTP_RQST_HOTKNOT_CODE:
GTP_INFO("Request HotKnot Code.");
break;
#endif
#endif
default:
break;
}
return 0;
}
/**
* gt1x_touch_event_handler - handle touch event
* (pen event, key event, finger touch envent)
* @data:
* Return <0: failed, 0: succeed
*/
s32 gt1x_touch_event_handler(u8 *data, struct input_dev *dev,
struct input_dev *pen_dev)
{
u8 touch_data[1 + 8 * DEFAULT_MAX_TOUCH_NUM + 2] = { 0 };
u8 touch_num = 0;
u16 cur_event = 0;
static u16 pre_event;
static u16 pre_index;
u8 key_value = 0;
u8 *coor_data = NULL;
s32 input_x = 0;
s32 input_y = 0;
s32 input_w = 0;
s32 id = 0;
s32 i = 0;
s32 ret = -1;
GTP_DEBUG_FUNC();
touch_num = data[0] & 0x0f;
if (touch_num > tpd_dts_data.touch_max_num) {
GTP_ERROR("Illegal finger number = %d!", touch_num);
return ERROR_VALUE;
}
memcpy(touch_data, data, 11);
/* read the remaining coor data */
if (touch_num > 1) {
ret = gt1x_i2c_read((GTP_READ_COOR_ADDR + 11),
&touch_data[11],
1 + 8 * touch_num + 2 - 11);
if (ret) {
GTP_ERROR("Read coordinate i2c error.");
return ret;
}
}
/* checksum */
/*
* cur_event , pre_event bit defination
* bit4 bit3 bit2 bit1 bit0
* hover stylus_key stylus key touch
*
*/
key_value = touch_data[1 + 8 * touch_num];
/* check current event */
if ((touch_data[0] & 0x10) && key_value) {
#ifdef CONFIG_GTP_HAVE_STYLUS_KEY
/* get current key states */
if (key_value & 0xF0)
SET_BIT(cur_event, BIT_STYLUS_KEY);
else if (key_value & 0x0F)
SET_BIT(cur_event, BIT_TOUCH_KEY);
#endif
if (tpd_dts_data.use_tpd_button) {
/* get current key states */
if (key_value & 0xF0)
SET_BIT(cur_event, BIT_STYLUS_KEY);
else if (key_value & 0x0F)
SET_BIT(cur_event, BIT_TOUCH_KEY);
}
}
#ifdef CONFIG_GTP_WITH_STYLUS
else if (touch_data[1] & 0x80)
SET_BIT(cur_event, BIT_STYLUS);
#endif
else if (touch_num)
SET_BIT(cur_event, BIT_TOUCH);
/* handle current event and pre-event */
#ifdef CONFIG_GTP_HAVE_STYLUS_KEY
if (CHK_BIT(cur_event, BIT_STYLUS_KEY) ||
CHK_BIT(pre_event, BIT_STYLUS_KEY)) {
/*
* 0x10 -- stylus key0 down
* 0x20 -- stylus key1 down
* 0x40 -- stylus key0 & stylus key1 both down
*/
u8 temp = (key_value & 0x40) ? 0x30 : key_value;
for (i = 4; i < 6; i++)
input_report_key(pen_dev,
gt1x_stylus_key_array[i - 4],
temp & (0x01 << i));
GTP_DEBUG("Stulus key event.");
}
#endif
#ifdef CONFIG_GTP_WITH_STYLUS
if (CHK_BIT(cur_event, BIT_STYLUS)) {
coor_data = &touch_data[1];
id = coor_data[0] & 0x7F;
input_x = coor_data[1] | (coor_data[2] << 8);
input_y = coor_data[3] | (coor_data[4] << 8);
input_w = coor_data[5] | (coor_data[6] << 8);
input_x = GTP_WARP_X(gt1x_abs_x_max, input_x);
input_y = GTP_WARP_Y(gt1x_abs_y_max, input_y);
GTP_DEBUG("Pen touch DOWN.");
gt1x_pen_down(input_x, input_y, input_w, 0);
} else if (CHK_BIT(pre_event, BIT_STYLUS)) {
GTP_DEBUG("Pen touch UP.");
gt1x_pen_up(0);
}
#endif
if (tpd_dts_data.use_tpd_button) {
if (CHK_BIT(cur_event,
BIT_TOUCH_KEY) || CHK_BIT(pre_event, BIT_TOUCH_KEY)) {
for (i = 0; i < tpd_dts_data.tpd_key_num; i++)
input_report_key(dev,
tpd_dts_data.tpd_key_local[i],
key_value & (0x01 << i));
if (CHK_BIT(cur_event, BIT_TOUCH_KEY))
GTP_DEBUG("Key Down.");
else
GTP_DEBUG("Key Up.");
}
}
/* finger touch event*/
if (CHK_BIT(cur_event, BIT_TOUCH)) {
u8 report_num = 0;
coor_data = &touch_data[1];
id = coor_data[0] & 0x0F;
for (i = 0; i < tpd_dts_data.touch_max_num; i++) {
if (i == id) {
input_x = coor_data[1] | (coor_data[2] << 8);
input_y = coor_data[3] | (coor_data[4] << 8);
input_w = coor_data[5] | (coor_data[6] << 8);
input_x = GTP_WARP_X(gt1x_abs_x_max, input_x);
input_y = GTP_WARP_Y(gt1x_abs_y_max, input_y);
GTP_DEBUG("(%d)(%d, %d)[%d]",
id, input_x, input_y, input_w);
gt1x_touch_down(input_x, input_y, input_w, i);
if (report_num++ < touch_num) {
coor_data += 8;
id = coor_data[0] & 0x0F;
}
pre_index |= 0x01 << i;
} else if (pre_index & (0x01 << i)) {
#ifdef CONFIG_GTP_ICS_SLOT_REPORT
gt1x_touch_up(i);
#endif
pre_index &= ~(0x01 << i);
}
}
} else if (CHK_BIT(pre_event, BIT_TOUCH)) {
#ifdef CONFIG_GTP_ICS_SLOT_REPORT
int cycles = pre_index < 3 ? 3 : tpd_dts_data.touch_max_num;
input_report_key(tpd->dev, BTN_TOUCH, 0);
for (i = 0; i < cycles; i++) {
if (pre_index >> i & 0x01)
gt1x_touch_up(i);
}
#else
input_report_key(tpd->dev, BTN_TOUCH, 0);
gt1x_touch_up(0);
#endif
GTP_DEBUG("Released Touch.");
pre_index = 0;
}
/* input sync report */
if (CHK_BIT(cur_event, BIT_STYLUS_KEY | BIT_STYLUS)
|| CHK_BIT(pre_event, BIT_STYLUS_KEY | BIT_STYLUS)) {
input_sync(pen_dev);
}
if (CHK_BIT(cur_event, BIT_TOUCH_KEY | BIT_TOUCH)
|| CHK_BIT(pre_event, BIT_TOUCH_KEY | BIT_TOUCH)) {
input_sync(dev);
}
if (!pre_event && !cur_event)
GTP_DEBUG("Additional Int Pulse.");
else
pre_event = cur_event;
return 0;
}
#ifdef CONFIG_GTP_WITH_STYLUS
struct input_dev *pen_dev;
void gt1x_pen_init(void)
{
s32 ret = 0;
pen_dev = input_allocate_device();
if (pen_dev == NULL) {
GTP_ERROR("Failed to allocate input device for pen/stylus.");
return;
}
pen_dev->evbit[0] = BIT_MASK(EV_SYN) |
BIT_MASK(EV_KEY) |
BIT_MASK(EV_ABS);
pen_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
set_bit(BTN_TOOL_PEN, pen_dev->keybit);
set_bit(INPUT_PROP_DIRECT, pen_dev->propbit);
#ifdef CONFIG_GTP_HAVE_STYLUS_KEY
input_set_capability(pen_dev, EV_KEY, BTN_STYLUS);
input_set_capability(pen_dev, EV_KEY, BTN_STYLUS2);
#endif
input_set_abs_params(pen_dev,
ABS_MT_POSITION_X, 0, gt1x_abs_x_max, 0, 0);
input_set_abs_params(pen_dev,
ABS_MT_POSITION_Y, 0, gt1x_abs_y_max, 0, 0);
input_set_abs_params(pen_dev, ABS_MT_PRESSURE, 0, 255, 0, 0);
input_set_abs_params(pen_dev, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0);
input_set_abs_params(pen_dev, ABS_MT_TRACKING_ID, 0, 255, 0, 0);
pen_dev->name = "goodix-pen";
pen_dev->phys = "input/ts";
pen_dev->id.bustype = BUS_I2C;
ret = input_register_device(pen_dev);
if (ret) {
GTP_ERROR("Register %s input device failed", pen_dev->name);
return;
}
}
void gt1x_pen_down(s32 x, s32 y, s32 size, s32 id)
{
input_report_key(pen_dev, BTN_TOOL_PEN, 1);
#ifdef CONFIG_GTP_CHANGE_X2Y
GTP_SWAP(x, y);
#endif
#ifdef CONFIG_GTP_ICS_SLOT_REPORT
input_mt_slot(pen_dev, id);
input_report_abs(pen_dev, ABS_MT_PRESSURE, size);
input_report_abs(pen_dev, ABS_MT_TOUCH_MAJOR, size);
input_report_abs(pen_dev, ABS_MT_TRACKING_ID, id);
input_report_abs(pen_dev, ABS_MT_POSITION_X, x);
input_report_abs(pen_dev, ABS_MT_POSITION_Y, y);
#else
input_report_key(pen_dev, BTN_TOUCH, 1);
if ((!size) && (!id)) {
/* for virtual button */
input_report_abs(pen_dev, ABS_MT_PRESSURE, 100);
input_report_abs(pen_dev, ABS_MT_TOUCH_MAJOR, 100);
} else {
input_report_abs(pen_dev, ABS_MT_PRESSURE, size);
input_report_abs(pen_dev, ABS_MT_TOUCH_MAJOR, size);
input_report_abs(pen_dev, ABS_MT_TRACKING_ID, id);
}
input_report_abs(pen_dev, ABS_MT_POSITION_X, x);
input_report_abs(pen_dev, ABS_MT_POSITION_Y, y);
input_mt_sync(pen_dev);
#endif
}
void gt1x_pen_up(s32 id)
{
input_report_key(pen_dev, BTN_TOOL_PEN, 0);
#ifdef CONFIG_GTP_ICS_SLOT_REPORT
input_mt_slot(pen_dev, id);
input_report_abs(pen_dev, ABS_MT_TRACKING_ID, -1);
#else
input_report_key(pen_dev, BTN_TOUCH, 0);
input_mt_sync(pen_dev);
#endif
}
#endif
/**
* PROXIMITY
*/
#ifdef CONFIG_GTP_PROXIMITY
#define GTP_REG_PROXIMITY_VALID 0x814E
#define GTP_REG_PROXIMITY_ENABLE 0x8049
u8 gt1x_proximity_flag;
u8 gt1x_proximity_detect = 1; /*0-->close ; 1--> far away*/
static struct hwmsen_object obj_ps;
s32 gt1x_ps_operate(void *self, u32 command, void *buff_in, s32 size_in,
void *buff_out, s32 size_out, s32 *actualout)
{
s32 err = 0;
s32 value;
hwm_sensor_data *sensor_data;
GTP_INFO("psensor operator cmd:%d", command);
switch (command) {
case SENSOR_DELAY:
if ((buff_in == NULL) || (size_in < sizeof(int))) {
GTP_ERROR("Set delay parameter error!");
err = -EINVAL;
}
break;
case SENSOR_ENABLE:
if ((buff_in == NULL) || (size_in < sizeof(int))) {
GTP_ERROR("Enable sensor parameter error!");
err = -EINVAL;
} else {
value = *(int *)buff_in;
err = gt1x_enable_ps(value);
}
break;
case SENSOR_GET_DATA:
if ((buff_out == NULL) ||
(size_out < sizeof(hwm_sensor_data))) {
GTP_ERROR("Get sensor data parameter error!");
err = -EINVAL;
} else {
sensor_data = (hwm_sensor_data *) buff_out;
sensor_data->values[0] = gt1x_get_ps_value();
sensor_data->value_divide = 1;
sensor_data->status = SENSOR_STATUS_ACCURACY_MEDIUM;
}
break;
default:
GTP_ERROR("ps operate no this parameter %d!\n", command);
err = -1;
break;
}
return err;
}
void gt1x_ps_init(void)
{
s32 err = 0;
/*obj_ps.self = cm3623_obj;*/
obj_ps.polling = 0; /*0--interrupt mode;1--polling mode;*/
obj_ps.sensor_operate = gt1x_ps_operate;
err = hwmsen_attach(ID_PROXIMITY, &obj_ps);
if (err)
GTP_ERROR("hwmsen attach fail, return:%d.", err);
}
void gt1x_report_ps(u8 state)
{
s32 ret = -1;
hwm_sensor_data sensor_data;
/*get raw data*/
GTP_DEBUG("P-sensor state:%s", state ? "AWAY" : "NEAR");
/*map and store data to hwm_sensor_data*/
sensor_data.values[0] = state;
sensor_data.value_divide = 1;
sensor_data.status = SENSOR_STATUS_ACCURACY_MEDIUM;
/*report to the up-layer*/
ret = hwmsen_get_interrupt_data(ID_PROXIMITY, &sensor_data);
if (ret)
GTP_ERROR("Call hwmsen_get_interrupt_data fail = %d\n", ret);
}
static s32 gt1x_get_ps_value(void)
{
return gt1x_proximity_detect;
}
static s32 gt1x_enable_ps(s32 enable)
{
u8 state;
s32 ret = -1;
GTP_INFO("TPD proximity function to be %s.", enable ? "on" : "off");
state = enable ? 1 : 0;
ret = gt1x_i2c_write(GTP_REG_PROXIMITY_ENABLE, &state, 1);
if (ret)
GTP_ERROR("TPD %s proximity cmd failed.",
state ? "enable" : "disable");
if (enable) {
if (!ret) {
gt1x_proximity_flag = 1;
gt1x_proximity_detect = 1;
}
} else {
gt1x_proximity_flag = 0;
}
GTP_INFO("TPD proximity function %s %s.",
state ? "enable" : "disable", ret ? "fail" : "success");
return ret;
}
int gt1x_prox_event_handler(u8 *data)
{
u8 proximity_status = 0;
if (gt1x_proximity_flag) {
GTP_DEBUG("REG INDEX[0x814E]:0x%02X\n", data[0]);
proximity_status = (data[0] & 0x60) ? 0 : 1;
if (proximity_status != gt1x_proximity_detect) {
gt1x_report_ps(proximity_status);
gt1x_proximity_detect = proximity_status;
}
if (proximity_status == 0)
return 1;
else
return 0;
}
return -1;
}
#endif /*CONFIG_GTP_PROXIMITY */
/**
* ESD PROTECT
*/
#ifdef CONFIG_GTP_ESD_PROTECT
static int esd_work_cycle = 200;
static struct delayed_work esd_check_work;
static int esd_running;
struct mutex esd_lock;
static void gt1x_esd_check_func(struct work_struct *);
void gt1x_init_esd_protect(void)
{
/*HZ: clock ticks in 1 second generated by system*/
esd_work_cycle = 2 * HZ;
GTP_DEBUG("Clock ticks for an esd cycle: %d", esd_work_cycle);
INIT_DELAYED_WORK(&esd_check_work, gt1x_esd_check_func);
mutex_init(&esd_lock);
}
void gt1x_deinit_esd_protect(void)
{
gt1x_esd_switch(SWITCH_OFF);
}
s32 gt1x_init_ext_watchdog(void)
{
s32 ret;
u8 value = 0xAA;
GTP_DEBUG("Init external watchdog.");
ret = gt1x_send_cmd(GTP_CMD_ESD, 0);
ret |= gt1x_i2c_write(GTP_REG_ESD_CHECK, &value, 1);
return ret;
}
void gt1x_esd_switch(s32 on)
{
mutex_lock(&esd_lock);
if (on == SWITCH_ON) { /* switch on esd check */
if (!esd_running) {
esd_running = 1;
GTP_INFO("Esd protector started!");
queue_delayed_work(gt1x_workqueue,
&esd_check_work,
esd_work_cycle);
}
} else { /* switch off esd check */
if (esd_running) {
esd_running = 0;
GTP_INFO("Esd protector stopped!");
cancel_delayed_work(&esd_check_work);
}
}
mutex_unlock(&esd_lock);
}
static void gt1x_esd_check_func(struct work_struct *work)
{
s32 i = 0;
s32 ret = -1;
u8 esd_buf[4] = { 0 };
if (!esd_running) {
GTP_INFO("Esd protector suspended!");
return;
}
for (i = 0; i < 3; i++) {
ret = gt1x_i2c_read(GTP_REG_CMD, esd_buf, 4);
GTP_DEBUG("[Esd]0x8040 = 0x%02X, 0x8043 = 0x%02X",
esd_buf[0], esd_buf[3]);
if (!ret && esd_buf[0] != 0xAA && esd_buf[3] == 0xAA)
break;
msleep(50);
}
if (i < 3) {
/* IC works normally, Write 0x8040 0xAA, feed the watchdog */
gt1x_send_cmd(GTP_CMD_ESD, 0);
} else {
if (esd_running) {
GTP_INFO("IC works abnormally! Process reset guitar.");
memset(esd_buf, 0x01, sizeof(esd_buf));
gt1x_i2c_write(0x4226, esd_buf, sizeof(esd_buf));
msleep(50);
gt1x_power_reset();
} else {
GTP_INFO("Esd protector suspended, no need reset!");
}
}
mutex_lock(&esd_lock);
if (esd_running)
queue_delayed_work(gt1x_workqueue,
&esd_check_work, esd_work_cycle);
else
GTP_INFO("Esd protector suspended!");
mutex_unlock(&esd_lock);
}
#endif
/**
* CHARGER SWITCH
*/
#ifdef CONFIG_GTP_CHARGER_SWITCH
u8 gt1x_config_charger[GTP_CONFIG_MAX_LENGTH] = { 0 };
static struct delayed_work charger_switch_work;
static int charger_work_cycle = 200;
static spinlock_t charger_lock;
static int charger_running;
static void gt1x_charger_work_func(struct work_struct *);
void gt1x_init_charger(void)
{
/*HZ: clock ticks in 1 second generated by system*/
charger_work_cycle = 2 * HZ;
GTP_DEBUG("Clock ticks for an charger cycle: %d", charger_work_cycle);
INIT_DELAYED_WORK(&charger_switch_work, gt1x_charger_work_func);
spin_lock_init(&charger_lock);
}
/**
* gt1x_charger_switch - switch states of charging work thread
*
* @on: SWITCH_ON - start work thread, SWITCH_OFF: stop .
*
*/
void gt1x_charger_switch(s32 on)
{
spin_lock(&charger_lock);
if (on == SWITCH_ON) {
if (!charger_running) {
charger_running = 1;
spin_unlock(&charger_lock);
GTP_INFO("Charger checker started!");
queue_delayed_work(gt1x_workqueue,
&charger_switch_work,
charger_work_cycle);
} else {
spin_unlock(&charger_lock);
}
} else {
if (charger_running) {
charger_running = 0;
spin_unlock(&charger_lock);
cancel_delayed_work(&charger_switch_work);
GTP_INFO("Charger checker stopped!");
} else {
spin_unlock(&charger_lock);
}
}
}
/**
* gt1x_charger_config - check and update charging status configuration
* @dir_update
* 0: check before send charging status configuration
* 1: directly send charging status configuration
*
*/
void gt1x_charger_config(s32 dir_update)
{
static u8 chr_pluggedin;
if (gt1x_get_charger_status()) {
if (!chr_pluggedin || dir_update) {
GTP_INFO("Charger Plugin.");
if (gt1x_send_cfg(gt1x_config_charger,
gt1x_cfg_length))
GTP_ERROR("Send config Plugin failed!");
if (gt1x_send_cmd(GTP_CMD_CHARGER_ON, 0))
GTP_ERROR("Update status Plugin failed!");
chr_pluggedin = 1;
}
} else {
if (chr_pluggedin || dir_update) {
GTP_INFO("Charger Plugout.");
if (gt1x_send_cfg(gt1x_config, gt1x_cfg_length))
GTP_INFO("Send config Plugout failed!");
if (gt1x_send_cmd(GTP_CMD_CHARGER_OFF, 0))
GTP_ERROR("Update status Plugout failed!");
chr_pluggedin = 0;
}
}
}
static void gt1x_charger_work_func(struct work_struct *work)
{
if (!charger_running) {
GTP_INFO("Charger checker suspended!");
return;
}
gt1x_charger_config(0);
GTP_DEBUG("Charger check done!");
if (charger_running)
queue_delayed_work(gt1x_workqueue,
&charger_switch_work, charger_work_cycle);
}
#endif
s32 gt1x_init(void)
{
s32 ret = -1;
s32 retry = 0;
u8 reg_val[1];
gt1x_power_switch(SWITCH_ON);
/* select i2c address */
gt1x_select_addr();
msleep(20);
addr_selected = 1;
while (retry++ < 5) {
gt1x_init_failed = 0;
/* get chip type */
ret = gt1x_get_chip_type();
if (ret != 0) {
GTP_ERROR("GTP get chip type failed!");
continue;
}
/* reset ic */
ret = gt1x_reset_guitar();
if (ret != 0) {
GTP_ERROR("GTP reset guitar failed!");
continue;
} else {
tpd_load_status = 1;
check_flag = true;
wake_up(&init_waiter);
}
ret = gt1x_i2c_read_dbl_check(0x41E4, reg_val, 1);
if (ret != 0) {
continue;
} else if (reg_val[0] != 0xBE) {
GTP_ERROR("Check 0x41E4 failed.");
gt1x_init_failed = 1;
break;
}
/* read version information */
ret = gt1x_read_version(&gt1x_version);
if (ret != 0) {
GTP_ERROR("GTP get verision failed!");
gt1x_init_failed = 1;
continue;
}
/* init and send configs */
ret = gt1x_init_panel();
if (ret != 0) {
GTP_ERROR("GTP init panel failed.");
continue;
} else {
break;
}
}
/* if the initialization fails, set default setting */
ret |= gt1x_init_failed;
if (ret) {
GTP_INFO("Init failed, use default setting");
gt1x_abs_x_max = tpd_dts_data.tpd_resolution[0];
gt1x_abs_y_max = tpd_dts_data.tpd_resolution[1];
gt1x_int_type = GTP_INT_TRIGGER;
gt1x_wakeup_level = GTP_WAKEUP_LEVEL;
}
gt1x_workqueue = create_singlethread_workqueue("gt1x_workthread");
if (gt1x_workqueue == NULL)
GTP_ERROR("create workqueue failed!");
/* init auxiliary node and functions */
gt1x_init_debug_node();
#if defined(CONFIG_GTP_GESTURE_WAKEUP) || defined(CONFIG_GTP_HOTKNOT)
gt1x_init_node();
#endif
#ifdef CONFIG_GTP_PROXIMITY
gt1x_ps_init();
#endif
#ifdef CONFIG_GTP_CHARGER_SWITCH
gt1x_charger_config(1);
gt1x_init_charger();
gt1x_charger_switch(SWITCH_ON);
#endif
#ifdef CONFIG_GTP_WITH_STYLUS
gt1x_pen_init();
#endif
return ret;
}
void gt1x_deinit(void)
{
#ifdef CONFIG_GTP_ESD_PROTECT
gt1x_deinit_esd_protect();
#endif
#ifdef CONFIG_GTP_CHARGER_SWITCH
gt1x_charger_switch(SWITCH_OFF);
#endif
if (gt1x_workqueue)
destroy_workqueue(gt1x_workqueue);
}