kernel_samsung_a34x-permissive/drivers/net/ethernet/qlogic/qlge/qlge_dbg.c

2025 lines
61 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/slab.h>
#include "qlge.h"
/* Read a NIC register from the alternate function. */
static u32 ql_read_other_func_reg(struct ql_adapter *qdev,
u32 reg)
{
u32 register_to_read;
u32 reg_val;
unsigned int status = 0;
register_to_read = MPI_NIC_REG_BLOCK
| MPI_NIC_READ
| (qdev->alt_func << MPI_NIC_FUNCTION_SHIFT)
| reg;
status = ql_read_mpi_reg(qdev, register_to_read, &reg_val);
if (status != 0)
return 0xffffffff;
return reg_val;
}
/* Write a NIC register from the alternate function. */
static int ql_write_other_func_reg(struct ql_adapter *qdev,
u32 reg, u32 reg_val)
{
u32 register_to_read;
int status = 0;
register_to_read = MPI_NIC_REG_BLOCK
| MPI_NIC_READ
| (qdev->alt_func << MPI_NIC_FUNCTION_SHIFT)
| reg;
status = ql_write_mpi_reg(qdev, register_to_read, reg_val);
return status;
}
static int ql_wait_other_func_reg_rdy(struct ql_adapter *qdev, u32 reg,
u32 bit, u32 err_bit)
{
u32 temp;
int count = 10;
while (count) {
temp = ql_read_other_func_reg(qdev, reg);
/* check for errors */
if (temp & err_bit)
return -1;
else if (temp & bit)
return 0;
mdelay(10);
count--;
}
return -1;
}
static int ql_read_other_func_serdes_reg(struct ql_adapter *qdev, u32 reg,
u32 *data)
{
int status;
/* wait for reg to come ready */
status = ql_wait_other_func_reg_rdy(qdev, XG_SERDES_ADDR / 4,
XG_SERDES_ADDR_RDY, 0);
if (status)
goto exit;
/* set up for reg read */
ql_write_other_func_reg(qdev, XG_SERDES_ADDR/4, reg | PROC_ADDR_R);
/* wait for reg to come ready */
status = ql_wait_other_func_reg_rdy(qdev, XG_SERDES_ADDR / 4,
XG_SERDES_ADDR_RDY, 0);
if (status)
goto exit;
/* get the data */
*data = ql_read_other_func_reg(qdev, (XG_SERDES_DATA / 4));
exit:
return status;
}
/* Read out the SERDES registers */
static int ql_read_serdes_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
{
int status;
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev, XG_SERDES_ADDR, XG_SERDES_ADDR_RDY, 0);
if (status)
goto exit;
/* set up for reg read */
ql_write32(qdev, XG_SERDES_ADDR, reg | PROC_ADDR_R);
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev, XG_SERDES_ADDR, XG_SERDES_ADDR_RDY, 0);
if (status)
goto exit;
/* get the data */
*data = ql_read32(qdev, XG_SERDES_DATA);
exit:
return status;
}
static void ql_get_both_serdes(struct ql_adapter *qdev, u32 addr,
u32 *direct_ptr, u32 *indirect_ptr,
unsigned int direct_valid, unsigned int indirect_valid)
{
unsigned int status;
status = 1;
if (direct_valid)
status = ql_read_serdes_reg(qdev, addr, direct_ptr);
/* Dead fill any failures or invalids. */
if (status)
*direct_ptr = 0xDEADBEEF;
status = 1;
if (indirect_valid)
status = ql_read_other_func_serdes_reg(
qdev, addr, indirect_ptr);
/* Dead fill any failures or invalids. */
if (status)
*indirect_ptr = 0xDEADBEEF;
}
static int ql_get_serdes_regs(struct ql_adapter *qdev,
struct ql_mpi_coredump *mpi_coredump)
{
int status;
unsigned int xfi_direct_valid, xfi_indirect_valid, xaui_direct_valid;
unsigned int xaui_indirect_valid, i;
u32 *direct_ptr, temp;
u32 *indirect_ptr;
xfi_direct_valid = xfi_indirect_valid = 0;
xaui_direct_valid = xaui_indirect_valid = 1;
/* The XAUI needs to be read out per port */
status = ql_read_other_func_serdes_reg(qdev,
XG_SERDES_XAUI_HSS_PCS_START, &temp);
if (status)
temp = XG_SERDES_ADDR_XAUI_PWR_DOWN;
if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) ==
XG_SERDES_ADDR_XAUI_PWR_DOWN)
xaui_indirect_valid = 0;
status = ql_read_serdes_reg(qdev, XG_SERDES_XAUI_HSS_PCS_START, &temp);
if (status)
temp = XG_SERDES_ADDR_XAUI_PWR_DOWN;
if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) ==
XG_SERDES_ADDR_XAUI_PWR_DOWN)
xaui_direct_valid = 0;
/*
* XFI register is shared so only need to read one
* functions and then check the bits.
*/
status = ql_read_serdes_reg(qdev, XG_SERDES_ADDR_STS, &temp);
if (status)
temp = 0;
if ((temp & XG_SERDES_ADDR_XFI1_PWR_UP) ==
XG_SERDES_ADDR_XFI1_PWR_UP) {
/* now see if i'm NIC 1 or NIC 2 */
if (qdev->func & 1)
/* I'm NIC 2, so the indirect (NIC1) xfi is up. */
xfi_indirect_valid = 1;
else
xfi_direct_valid = 1;
}
if ((temp & XG_SERDES_ADDR_XFI2_PWR_UP) ==
XG_SERDES_ADDR_XFI2_PWR_UP) {
/* now see if i'm NIC 1 or NIC 2 */
if (qdev->func & 1)
/* I'm NIC 2, so the indirect (NIC1) xfi is up. */
xfi_direct_valid = 1;
else
xfi_indirect_valid = 1;
}
/* Get XAUI_AN register block. */
if (qdev->func & 1) {
/* Function 2 is direct */
direct_ptr = mpi_coredump->serdes2_xaui_an;
indirect_ptr = mpi_coredump->serdes_xaui_an;
} else {
/* Function 1 is direct */
direct_ptr = mpi_coredump->serdes_xaui_an;
indirect_ptr = mpi_coredump->serdes2_xaui_an;
}
for (i = 0; i <= 0x000000034; i += 4, direct_ptr++, indirect_ptr++)
ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
xaui_direct_valid, xaui_indirect_valid);
/* Get XAUI_HSS_PCS register block. */
if (qdev->func & 1) {
direct_ptr =
mpi_coredump->serdes2_xaui_hss_pcs;
indirect_ptr =
mpi_coredump->serdes_xaui_hss_pcs;
} else {
direct_ptr =
mpi_coredump->serdes_xaui_hss_pcs;
indirect_ptr =
mpi_coredump->serdes2_xaui_hss_pcs;
}
for (i = 0x800; i <= 0x880; i += 4, direct_ptr++, indirect_ptr++)
ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
xaui_direct_valid, xaui_indirect_valid);
/* Get XAUI_XFI_AN register block. */
if (qdev->func & 1) {
direct_ptr = mpi_coredump->serdes2_xfi_an;
indirect_ptr = mpi_coredump->serdes_xfi_an;
} else {
direct_ptr = mpi_coredump->serdes_xfi_an;
indirect_ptr = mpi_coredump->serdes2_xfi_an;
}
for (i = 0x1000; i <= 0x1034; i += 4, direct_ptr++, indirect_ptr++)
ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
xfi_direct_valid, xfi_indirect_valid);
/* Get XAUI_XFI_TRAIN register block. */
if (qdev->func & 1) {
direct_ptr = mpi_coredump->serdes2_xfi_train;
indirect_ptr =
mpi_coredump->serdes_xfi_train;
} else {
direct_ptr = mpi_coredump->serdes_xfi_train;
indirect_ptr =
mpi_coredump->serdes2_xfi_train;
}
for (i = 0x1050; i <= 0x107c; i += 4, direct_ptr++, indirect_ptr++)
ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
xfi_direct_valid, xfi_indirect_valid);
/* Get XAUI_XFI_HSS_PCS register block. */
if (qdev->func & 1) {
direct_ptr =
mpi_coredump->serdes2_xfi_hss_pcs;
indirect_ptr =
mpi_coredump->serdes_xfi_hss_pcs;
} else {
direct_ptr =
mpi_coredump->serdes_xfi_hss_pcs;
indirect_ptr =
mpi_coredump->serdes2_xfi_hss_pcs;
}
for (i = 0x1800; i <= 0x1838; i += 4, direct_ptr++, indirect_ptr++)
ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
xfi_direct_valid, xfi_indirect_valid);
/* Get XAUI_XFI_HSS_TX register block. */
if (qdev->func & 1) {
direct_ptr =
mpi_coredump->serdes2_xfi_hss_tx;
indirect_ptr =
mpi_coredump->serdes_xfi_hss_tx;
} else {
direct_ptr = mpi_coredump->serdes_xfi_hss_tx;
indirect_ptr =
mpi_coredump->serdes2_xfi_hss_tx;
}
for (i = 0x1c00; i <= 0x1c1f; i++, direct_ptr++, indirect_ptr++)
ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
xfi_direct_valid, xfi_indirect_valid);
/* Get XAUI_XFI_HSS_RX register block. */
if (qdev->func & 1) {
direct_ptr =
mpi_coredump->serdes2_xfi_hss_rx;
indirect_ptr =
mpi_coredump->serdes_xfi_hss_rx;
} else {
direct_ptr = mpi_coredump->serdes_xfi_hss_rx;
indirect_ptr =
mpi_coredump->serdes2_xfi_hss_rx;
}
for (i = 0x1c40; i <= 0x1c5f; i++, direct_ptr++, indirect_ptr++)
ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
xfi_direct_valid, xfi_indirect_valid);
/* Get XAUI_XFI_HSS_PLL register block. */
if (qdev->func & 1) {
direct_ptr =
mpi_coredump->serdes2_xfi_hss_pll;
indirect_ptr =
mpi_coredump->serdes_xfi_hss_pll;
} else {
direct_ptr =
mpi_coredump->serdes_xfi_hss_pll;
indirect_ptr =
mpi_coredump->serdes2_xfi_hss_pll;
}
for (i = 0x1e00; i <= 0x1e1f; i++, direct_ptr++, indirect_ptr++)
ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
xfi_direct_valid, xfi_indirect_valid);
return 0;
}
static int ql_read_other_func_xgmac_reg(struct ql_adapter *qdev, u32 reg,
u32 *data)
{
int status = 0;
/* wait for reg to come ready */
status = ql_wait_other_func_reg_rdy(qdev, XGMAC_ADDR / 4,
XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
if (status)
goto exit;
/* set up for reg read */
ql_write_other_func_reg(qdev, XGMAC_ADDR / 4, reg | XGMAC_ADDR_R);
/* wait for reg to come ready */
status = ql_wait_other_func_reg_rdy(qdev, XGMAC_ADDR / 4,
XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
if (status)
goto exit;
/* get the data */
*data = ql_read_other_func_reg(qdev, XGMAC_DATA / 4);
exit:
return status;
}
/* Read the 400 xgmac control/statistics registers
* skipping unused locations.
*/
static int ql_get_xgmac_regs(struct ql_adapter *qdev, u32 *buf,
unsigned int other_function)
{
int status = 0;
int i;
for (i = PAUSE_SRC_LO; i < XGMAC_REGISTER_END; i += 4, buf++) {
/* We're reading 400 xgmac registers, but we filter out
* serveral locations that are non-responsive to reads.
*/
if ((i == 0x00000114) ||
(i == 0x00000118) ||
(i == 0x0000013c) ||
(i == 0x00000140) ||
(i > 0x00000150 && i < 0x000001fc) ||
(i > 0x00000278 && i < 0x000002a0) ||
(i > 0x000002c0 && i < 0x000002cf) ||
(i > 0x000002dc && i < 0x000002f0) ||
(i > 0x000003c8 && i < 0x00000400) ||
(i > 0x00000400 && i < 0x00000410) ||
(i > 0x00000410 && i < 0x00000420) ||
(i > 0x00000420 && i < 0x00000430) ||
(i > 0x00000430 && i < 0x00000440) ||
(i > 0x00000440 && i < 0x00000450) ||
(i > 0x00000450 && i < 0x00000500) ||
(i > 0x0000054c && i < 0x00000568) ||
(i > 0x000005c8 && i < 0x00000600)) {
if (other_function)
status =
ql_read_other_func_xgmac_reg(qdev, i, buf);
else
status = ql_read_xgmac_reg(qdev, i, buf);
if (status)
*buf = 0xdeadbeef;
break;
}
}
return status;
}
static int ql_get_ets_regs(struct ql_adapter *qdev, u32 *buf)
{
int status = 0;
int i;
for (i = 0; i < 8; i++, buf++) {
ql_write32(qdev, NIC_ETS, i << 29 | 0x08000000);
*buf = ql_read32(qdev, NIC_ETS);
}
for (i = 0; i < 2; i++, buf++) {
ql_write32(qdev, CNA_ETS, i << 29 | 0x08000000);
*buf = ql_read32(qdev, CNA_ETS);
}
return status;
}
static void ql_get_intr_states(struct ql_adapter *qdev, u32 *buf)
{
int i;
for (i = 0; i < qdev->rx_ring_count; i++, buf++) {
ql_write32(qdev, INTR_EN,
qdev->intr_context[i].intr_read_mask);
*buf = ql_read32(qdev, INTR_EN);
}
}
static int ql_get_cam_entries(struct ql_adapter *qdev, u32 *buf)
{
int i, status;
u32 value[3];
status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
if (status)
return status;
for (i = 0; i < 16; i++) {
status = ql_get_mac_addr_reg(qdev,
MAC_ADDR_TYPE_CAM_MAC, i, value);
if (status) {
netif_err(qdev, drv, qdev->ndev,
"Failed read of mac index register\n");
goto err;
}
*buf++ = value[0]; /* lower MAC address */
*buf++ = value[1]; /* upper MAC address */
*buf++ = value[2]; /* output */
}
for (i = 0; i < 32; i++) {
status = ql_get_mac_addr_reg(qdev,
MAC_ADDR_TYPE_MULTI_MAC, i, value);
if (status) {
netif_err(qdev, drv, qdev->ndev,
"Failed read of mac index register\n");
goto err;
}
*buf++ = value[0]; /* lower Mcast address */
*buf++ = value[1]; /* upper Mcast address */
}
err:
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
return status;
}
static int ql_get_routing_entries(struct ql_adapter *qdev, u32 *buf)
{
int status;
u32 value, i;
status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
if (status)
return status;
for (i = 0; i < 16; i++) {
status = ql_get_routing_reg(qdev, i, &value);
if (status) {
netif_err(qdev, drv, qdev->ndev,
"Failed read of routing index register\n");
goto err;
} else {
*buf++ = value;
}
}
err:
ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
return status;
}
/* Read the MPI Processor shadow registers */
static int ql_get_mpi_shadow_regs(struct ql_adapter *qdev, u32 *buf)
{
u32 i;
int status;
for (i = 0; i < MPI_CORE_SH_REGS_CNT; i++, buf++) {
status = ql_write_mpi_reg(qdev, RISC_124,
(SHADOW_OFFSET | i << SHADOW_REG_SHIFT));
if (status)
goto end;
status = ql_read_mpi_reg(qdev, RISC_127, buf);
if (status)
goto end;
}
end:
return status;
}
/* Read the MPI Processor core registers */
static int ql_get_mpi_regs(struct ql_adapter *qdev, u32 *buf,
u32 offset, u32 count)
{
int i, status = 0;
for (i = 0; i < count; i++, buf++) {
status = ql_read_mpi_reg(qdev, offset + i, buf);
if (status)
return status;
}
return status;
}
/* Read the ASIC probe dump */
static unsigned int *ql_get_probe(struct ql_adapter *qdev, u32 clock,
u32 valid, u32 *buf)
{
u32 module, mux_sel, probe, lo_val, hi_val;
for (module = 0; module < PRB_MX_ADDR_MAX_MODS; module++) {
if (!((valid >> module) & 1))
continue;
for (mux_sel = 0; mux_sel < PRB_MX_ADDR_MAX_MUX; mux_sel++) {
probe = clock
| PRB_MX_ADDR_ARE
| mux_sel
| (module << PRB_MX_ADDR_MOD_SEL_SHIFT);
ql_write32(qdev, PRB_MX_ADDR, probe);
lo_val = ql_read32(qdev, PRB_MX_DATA);
if (mux_sel == 0) {
*buf = probe;
buf++;
}
probe |= PRB_MX_ADDR_UP;
ql_write32(qdev, PRB_MX_ADDR, probe);
hi_val = ql_read32(qdev, PRB_MX_DATA);
*buf = lo_val;
buf++;
*buf = hi_val;
buf++;
}
}
return buf;
}
static int ql_get_probe_dump(struct ql_adapter *qdev, unsigned int *buf)
{
/* First we have to enable the probe mux */
ql_write_mpi_reg(qdev, MPI_TEST_FUNC_PRB_CTL, MPI_TEST_FUNC_PRB_EN);
buf = ql_get_probe(qdev, PRB_MX_ADDR_SYS_CLOCK,
PRB_MX_ADDR_VALID_SYS_MOD, buf);
buf = ql_get_probe(qdev, PRB_MX_ADDR_PCI_CLOCK,
PRB_MX_ADDR_VALID_PCI_MOD, buf);
buf = ql_get_probe(qdev, PRB_MX_ADDR_XGM_CLOCK,
PRB_MX_ADDR_VALID_XGM_MOD, buf);
buf = ql_get_probe(qdev, PRB_MX_ADDR_FC_CLOCK,
PRB_MX_ADDR_VALID_FC_MOD, buf);
return 0;
}
/* Read out the routing index registers */
static int ql_get_routing_index_registers(struct ql_adapter *qdev, u32 *buf)
{
int status;
u32 type, index, index_max;
u32 result_index;
u32 result_data;
u32 val;
status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
if (status)
return status;
for (type = 0; type < 4; type++) {
if (type < 2)
index_max = 8;
else
index_max = 16;
for (index = 0; index < index_max; index++) {
val = RT_IDX_RS
| (type << RT_IDX_TYPE_SHIFT)
| (index << RT_IDX_IDX_SHIFT);
ql_write32(qdev, RT_IDX, val);
result_index = 0;
while ((result_index & RT_IDX_MR) == 0)
result_index = ql_read32(qdev, RT_IDX);
result_data = ql_read32(qdev, RT_DATA);
*buf = type;
buf++;
*buf = index;
buf++;
*buf = result_index;
buf++;
*buf = result_data;
buf++;
}
}
ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
return status;
}
/* Read out the MAC protocol registers */
static void ql_get_mac_protocol_registers(struct ql_adapter *qdev, u32 *buf)
{
u32 result_index, result_data;
u32 type;
u32 index;
u32 offset;
u32 val;
u32 initial_val = MAC_ADDR_RS;
u32 max_index;
u32 max_offset;
for (type = 0; type < MAC_ADDR_TYPE_COUNT; type++) {
switch (type) {
case 0: /* CAM */
initial_val |= MAC_ADDR_ADR;
max_index = MAC_ADDR_MAX_CAM_ENTRIES;
max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
break;
case 1: /* Multicast MAC Address */
max_index = MAC_ADDR_MAX_CAM_WCOUNT;
max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
break;
case 2: /* VLAN filter mask */
case 3: /* MC filter mask */
max_index = MAC_ADDR_MAX_CAM_WCOUNT;
max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
break;
case 4: /* FC MAC addresses */
max_index = MAC_ADDR_MAX_FC_MAC_ENTRIES;
max_offset = MAC_ADDR_MAX_FC_MAC_WCOUNT;
break;
case 5: /* Mgmt MAC addresses */
max_index = MAC_ADDR_MAX_MGMT_MAC_ENTRIES;
max_offset = MAC_ADDR_MAX_MGMT_MAC_WCOUNT;
break;
case 6: /* Mgmt VLAN addresses */
max_index = MAC_ADDR_MAX_MGMT_VLAN_ENTRIES;
max_offset = MAC_ADDR_MAX_MGMT_VLAN_WCOUNT;
break;
case 7: /* Mgmt IPv4 address */
max_index = MAC_ADDR_MAX_MGMT_V4_ENTRIES;
max_offset = MAC_ADDR_MAX_MGMT_V4_WCOUNT;
break;
case 8: /* Mgmt IPv6 address */
max_index = MAC_ADDR_MAX_MGMT_V6_ENTRIES;
max_offset = MAC_ADDR_MAX_MGMT_V6_WCOUNT;
break;
case 9: /* Mgmt TCP/UDP Dest port */
max_index = MAC_ADDR_MAX_MGMT_TU_DP_ENTRIES;
max_offset = MAC_ADDR_MAX_MGMT_TU_DP_WCOUNT;
break;
default:
pr_err("Bad type!!! 0x%08x\n", type);
max_index = 0;
max_offset = 0;
break;
}
for (index = 0; index < max_index; index++) {
for (offset = 0; offset < max_offset; offset++) {
val = initial_val
| (type << MAC_ADDR_TYPE_SHIFT)
| (index << MAC_ADDR_IDX_SHIFT)
| (offset);
ql_write32(qdev, MAC_ADDR_IDX, val);
result_index = 0;
while ((result_index & MAC_ADDR_MR) == 0) {
result_index = ql_read32(qdev,
MAC_ADDR_IDX);
}
result_data = ql_read32(qdev, MAC_ADDR_DATA);
*buf = result_index;
buf++;
*buf = result_data;
buf++;
}
}
}
}
static void ql_get_sem_registers(struct ql_adapter *qdev, u32 *buf)
{
u32 func_num, reg, reg_val;
int status;
for (func_num = 0; func_num < MAX_SEMAPHORE_FUNCTIONS ; func_num++) {
reg = MPI_NIC_REG_BLOCK
| (func_num << MPI_NIC_FUNCTION_SHIFT)
| (SEM / 4);
status = ql_read_mpi_reg(qdev, reg, &reg_val);
*buf = reg_val;
/* if the read failed then dead fill the element. */
if (!status)
*buf = 0xdeadbeef;
buf++;
}
}
/* Create a coredump segment header */
static void ql_build_coredump_seg_header(
struct mpi_coredump_segment_header *seg_hdr,
u32 seg_number, u32 seg_size, u8 *desc)
{
memset(seg_hdr, 0, sizeof(struct mpi_coredump_segment_header));
seg_hdr->cookie = MPI_COREDUMP_COOKIE;
seg_hdr->segNum = seg_number;
seg_hdr->segSize = seg_size;
strncpy(seg_hdr->description, desc, (sizeof(seg_hdr->description)) - 1);
}
/*
* This function should be called when a coredump / probedump
* is to be extracted from the HBA. It is assumed there is a
* qdev structure that contains the base address of the register
* space for this function as well as a coredump structure that
* will contain the dump.
*/
int ql_core_dump(struct ql_adapter *qdev, struct ql_mpi_coredump *mpi_coredump)
{
int status;
int i;
if (!mpi_coredump) {
netif_err(qdev, drv, qdev->ndev, "No memory allocated\n");
return -EINVAL;
}
/* Try to get the spinlock, but dont worry if
* it isn't available. If the firmware died it
* might be holding the sem.
*/
ql_sem_spinlock(qdev, SEM_PROC_REG_MASK);
status = ql_pause_mpi_risc(qdev);
if (status) {
netif_err(qdev, drv, qdev->ndev,
"Failed RISC pause. Status = 0x%.08x\n", status);
goto err;
}
/* Insert the global header */
memset(&(mpi_coredump->mpi_global_header), 0,
sizeof(struct mpi_coredump_global_header));
mpi_coredump->mpi_global_header.cookie = MPI_COREDUMP_COOKIE;
mpi_coredump->mpi_global_header.headerSize =
sizeof(struct mpi_coredump_global_header);
mpi_coredump->mpi_global_header.imageSize =
sizeof(struct ql_mpi_coredump);
strncpy(mpi_coredump->mpi_global_header.idString, "MPI Coredump",
sizeof(mpi_coredump->mpi_global_header.idString));
/* Get generic NIC reg dump */
ql_build_coredump_seg_header(&mpi_coredump->nic_regs_seg_hdr,
NIC1_CONTROL_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->nic_regs), "NIC1 Registers");
ql_build_coredump_seg_header(&mpi_coredump->nic2_regs_seg_hdr,
NIC2_CONTROL_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->nic2_regs), "NIC2 Registers");
/* Get XGMac registers. (Segment 18, Rev C. step 21) */
ql_build_coredump_seg_header(&mpi_coredump->xgmac1_seg_hdr,
NIC1_XGMAC_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->xgmac1), "NIC1 XGMac Registers");
ql_build_coredump_seg_header(&mpi_coredump->xgmac2_seg_hdr,
NIC2_XGMAC_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->xgmac2), "NIC2 XGMac Registers");
if (qdev->func & 1) {
/* Odd means our function is NIC 2 */
for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
mpi_coredump->nic2_regs[i] =
ql_read32(qdev, i * sizeof(u32));
for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
mpi_coredump->nic_regs[i] =
ql_read_other_func_reg(qdev, (i * sizeof(u32)) / 4);
ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac2[0], 0);
ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac1[0], 1);
} else {
/* Even means our function is NIC 1 */
for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
mpi_coredump->nic_regs[i] =
ql_read32(qdev, i * sizeof(u32));
for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
mpi_coredump->nic2_regs[i] =
ql_read_other_func_reg(qdev, (i * sizeof(u32)) / 4);
ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac1[0], 0);
ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac2[0], 1);
}
/* Rev C. Step 20a */
ql_build_coredump_seg_header(&mpi_coredump->xaui_an_hdr,
XAUI_AN_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes_xaui_an),
"XAUI AN Registers");
/* Rev C. Step 20b */
ql_build_coredump_seg_header(&mpi_coredump->xaui_hss_pcs_hdr,
XAUI_HSS_PCS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes_xaui_hss_pcs),
"XAUI HSS PCS Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi_an_hdr, XFI_AN_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes_xfi_an),
"XFI AN Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi_train_hdr,
XFI_TRAIN_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes_xfi_train),
"XFI TRAIN Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_pcs_hdr,
XFI_HSS_PCS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes_xfi_hss_pcs),
"XFI HSS PCS Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_tx_hdr,
XFI_HSS_TX_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes_xfi_hss_tx),
"XFI HSS TX Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_rx_hdr,
XFI_HSS_RX_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes_xfi_hss_rx),
"XFI HSS RX Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_pll_hdr,
XFI_HSS_PLL_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes_xfi_hss_pll),
"XFI HSS PLL Registers");
ql_build_coredump_seg_header(&mpi_coredump->xaui2_an_hdr,
XAUI2_AN_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes2_xaui_an),
"XAUI2 AN Registers");
ql_build_coredump_seg_header(&mpi_coredump->xaui2_hss_pcs_hdr,
XAUI2_HSS_PCS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes2_xaui_hss_pcs),
"XAUI2 HSS PCS Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi2_an_hdr,
XFI2_AN_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes2_xfi_an),
"XFI2 AN Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi2_train_hdr,
XFI2_TRAIN_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes2_xfi_train),
"XFI2 TRAIN Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_pcs_hdr,
XFI2_HSS_PCS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes2_xfi_hss_pcs),
"XFI2 HSS PCS Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_tx_hdr,
XFI2_HSS_TX_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes2_xfi_hss_tx),
"XFI2 HSS TX Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_rx_hdr,
XFI2_HSS_RX_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes2_xfi_hss_rx),
"XFI2 HSS RX Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_pll_hdr,
XFI2_HSS_PLL_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes2_xfi_hss_pll),
"XFI2 HSS PLL Registers");
status = ql_get_serdes_regs(qdev, mpi_coredump);
if (status) {
netif_err(qdev, drv, qdev->ndev,
"Failed Dump of Serdes Registers. Status = 0x%.08x\n",
status);
goto err;
}
ql_build_coredump_seg_header(&mpi_coredump->core_regs_seg_hdr,
CORE_SEG_NUM,
sizeof(mpi_coredump->core_regs_seg_hdr) +
sizeof(mpi_coredump->mpi_core_regs) +
sizeof(mpi_coredump->mpi_core_sh_regs),
"Core Registers");
/* Get the MPI Core Registers */
status = ql_get_mpi_regs(qdev, &mpi_coredump->mpi_core_regs[0],
MPI_CORE_REGS_ADDR, MPI_CORE_REGS_CNT);
if (status)
goto err;
/* Get the 16 MPI shadow registers */
status = ql_get_mpi_shadow_regs(qdev,
&mpi_coredump->mpi_core_sh_regs[0]);
if (status)
goto err;
/* Get the Test Logic Registers */
ql_build_coredump_seg_header(&mpi_coredump->test_logic_regs_seg_hdr,
TEST_LOGIC_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->test_logic_regs),
"Test Logic Regs");
status = ql_get_mpi_regs(qdev, &mpi_coredump->test_logic_regs[0],
TEST_REGS_ADDR, TEST_REGS_CNT);
if (status)
goto err;
/* Get the RMII Registers */
ql_build_coredump_seg_header(&mpi_coredump->rmii_regs_seg_hdr,
RMII_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->rmii_regs),
"RMII Registers");
status = ql_get_mpi_regs(qdev, &mpi_coredump->rmii_regs[0],
RMII_REGS_ADDR, RMII_REGS_CNT);
if (status)
goto err;
/* Get the FCMAC1 Registers */
ql_build_coredump_seg_header(&mpi_coredump->fcmac1_regs_seg_hdr,
FCMAC1_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->fcmac1_regs),
"FCMAC1 Registers");
status = ql_get_mpi_regs(qdev, &mpi_coredump->fcmac1_regs[0],
FCMAC1_REGS_ADDR, FCMAC_REGS_CNT);
if (status)
goto err;
/* Get the FCMAC2 Registers */
ql_build_coredump_seg_header(&mpi_coredump->fcmac2_regs_seg_hdr,
FCMAC2_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->fcmac2_regs),
"FCMAC2 Registers");
status = ql_get_mpi_regs(qdev, &mpi_coredump->fcmac2_regs[0],
FCMAC2_REGS_ADDR, FCMAC_REGS_CNT);
if (status)
goto err;
/* Get the FC1 MBX Registers */
ql_build_coredump_seg_header(&mpi_coredump->fc1_mbx_regs_seg_hdr,
FC1_MBOX_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->fc1_mbx_regs),
"FC1 MBox Regs");
status = ql_get_mpi_regs(qdev, &mpi_coredump->fc1_mbx_regs[0],
FC1_MBX_REGS_ADDR, FC_MBX_REGS_CNT);
if (status)
goto err;
/* Get the IDE Registers */
ql_build_coredump_seg_header(&mpi_coredump->ide_regs_seg_hdr,
IDE_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->ide_regs),
"IDE Registers");
status = ql_get_mpi_regs(qdev, &mpi_coredump->ide_regs[0],
IDE_REGS_ADDR, IDE_REGS_CNT);
if (status)
goto err;
/* Get the NIC1 MBX Registers */
ql_build_coredump_seg_header(&mpi_coredump->nic1_mbx_regs_seg_hdr,
NIC1_MBOX_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->nic1_mbx_regs),
"NIC1 MBox Regs");
status = ql_get_mpi_regs(qdev, &mpi_coredump->nic1_mbx_regs[0],
NIC1_MBX_REGS_ADDR, NIC_MBX_REGS_CNT);
if (status)
goto err;
/* Get the SMBus Registers */
ql_build_coredump_seg_header(&mpi_coredump->smbus_regs_seg_hdr,
SMBUS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->smbus_regs),
"SMBus Registers");
status = ql_get_mpi_regs(qdev, &mpi_coredump->smbus_regs[0],
SMBUS_REGS_ADDR, SMBUS_REGS_CNT);
if (status)
goto err;
/* Get the FC2 MBX Registers */
ql_build_coredump_seg_header(&mpi_coredump->fc2_mbx_regs_seg_hdr,
FC2_MBOX_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->fc2_mbx_regs),
"FC2 MBox Regs");
status = ql_get_mpi_regs(qdev, &mpi_coredump->fc2_mbx_regs[0],
FC2_MBX_REGS_ADDR, FC_MBX_REGS_CNT);
if (status)
goto err;
/* Get the NIC2 MBX Registers */
ql_build_coredump_seg_header(&mpi_coredump->nic2_mbx_regs_seg_hdr,
NIC2_MBOX_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->nic2_mbx_regs),
"NIC2 MBox Regs");
status = ql_get_mpi_regs(qdev, &mpi_coredump->nic2_mbx_regs[0],
NIC2_MBX_REGS_ADDR, NIC_MBX_REGS_CNT);
if (status)
goto err;
/* Get the I2C Registers */
ql_build_coredump_seg_header(&mpi_coredump->i2c_regs_seg_hdr,
I2C_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->i2c_regs),
"I2C Registers");
status = ql_get_mpi_regs(qdev, &mpi_coredump->i2c_regs[0],
I2C_REGS_ADDR, I2C_REGS_CNT);
if (status)
goto err;
/* Get the MEMC Registers */
ql_build_coredump_seg_header(&mpi_coredump->memc_regs_seg_hdr,
MEMC_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->memc_regs),
"MEMC Registers");
status = ql_get_mpi_regs(qdev, &mpi_coredump->memc_regs[0],
MEMC_REGS_ADDR, MEMC_REGS_CNT);
if (status)
goto err;
/* Get the PBus Registers */
ql_build_coredump_seg_header(&mpi_coredump->pbus_regs_seg_hdr,
PBUS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->pbus_regs),
"PBUS Registers");
status = ql_get_mpi_regs(qdev, &mpi_coredump->pbus_regs[0],
PBUS_REGS_ADDR, PBUS_REGS_CNT);
if (status)
goto err;
/* Get the MDE Registers */
ql_build_coredump_seg_header(&mpi_coredump->mde_regs_seg_hdr,
MDE_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->mde_regs),
"MDE Registers");
status = ql_get_mpi_regs(qdev, &mpi_coredump->mde_regs[0],
MDE_REGS_ADDR, MDE_REGS_CNT);
if (status)
goto err;
ql_build_coredump_seg_header(&mpi_coredump->misc_nic_seg_hdr,
MISC_NIC_INFO_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->misc_nic_info),
"MISC NIC INFO");
mpi_coredump->misc_nic_info.rx_ring_count = qdev->rx_ring_count;
mpi_coredump->misc_nic_info.tx_ring_count = qdev->tx_ring_count;
mpi_coredump->misc_nic_info.intr_count = qdev->intr_count;
mpi_coredump->misc_nic_info.function = qdev->func;
/* Segment 31 */
/* Get indexed register values. */
ql_build_coredump_seg_header(&mpi_coredump->intr_states_seg_hdr,
INTR_STATES_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->intr_states),
"INTR States");
ql_get_intr_states(qdev, &mpi_coredump->intr_states[0]);
ql_build_coredump_seg_header(&mpi_coredump->cam_entries_seg_hdr,
CAM_ENTRIES_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->cam_entries),
"CAM Entries");
status = ql_get_cam_entries(qdev, &mpi_coredump->cam_entries[0]);
if (status)
goto err;
ql_build_coredump_seg_header(&mpi_coredump->nic_routing_words_seg_hdr,
ROUTING_WORDS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->nic_routing_words),
"Routing Words");
status = ql_get_routing_entries(qdev,
&mpi_coredump->nic_routing_words[0]);
if (status)
goto err;
/* Segment 34 (Rev C. step 23) */
ql_build_coredump_seg_header(&mpi_coredump->ets_seg_hdr,
ETS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->ets),
"ETS Registers");
status = ql_get_ets_regs(qdev, &mpi_coredump->ets[0]);
if (status)
goto err;
ql_build_coredump_seg_header(&mpi_coredump->probe_dump_seg_hdr,
PROBE_DUMP_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->probe_dump),
"Probe Dump");
ql_get_probe_dump(qdev, &mpi_coredump->probe_dump[0]);
ql_build_coredump_seg_header(&mpi_coredump->routing_reg_seg_hdr,
ROUTING_INDEX_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->routing_regs),
"Routing Regs");
status = ql_get_routing_index_registers(qdev,
&mpi_coredump->routing_regs[0]);
if (status)
goto err;
ql_build_coredump_seg_header(&mpi_coredump->mac_prot_reg_seg_hdr,
MAC_PROTOCOL_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->mac_prot_regs),
"MAC Prot Regs");
ql_get_mac_protocol_registers(qdev, &mpi_coredump->mac_prot_regs[0]);
/* Get the semaphore registers for all 5 functions */
ql_build_coredump_seg_header(&mpi_coredump->sem_regs_seg_hdr,
SEM_REGS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->sem_regs), "Sem Registers");
ql_get_sem_registers(qdev, &mpi_coredump->sem_regs[0]);
/* Prevent the mpi restarting while we dump the memory.*/
ql_write_mpi_reg(qdev, MPI_TEST_FUNC_RST_STS, MPI_TEST_FUNC_RST_FRC);
/* clear the pause */
status = ql_unpause_mpi_risc(qdev);
if (status) {
netif_err(qdev, drv, qdev->ndev,
"Failed RISC unpause. Status = 0x%.08x\n", status);
goto err;
}
/* Reset the RISC so we can dump RAM */
status = ql_hard_reset_mpi_risc(qdev);
if (status) {
netif_err(qdev, drv, qdev->ndev,
"Failed RISC reset. Status = 0x%.08x\n", status);
goto err;
}
ql_build_coredump_seg_header(&mpi_coredump->code_ram_seg_hdr,
WCS_RAM_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->code_ram),
"WCS RAM");
status = ql_dump_risc_ram_area(qdev, &mpi_coredump->code_ram[0],
CODE_RAM_ADDR, CODE_RAM_CNT);
if (status) {
netif_err(qdev, drv, qdev->ndev,
"Failed Dump of CODE RAM. Status = 0x%.08x\n",
status);
goto err;
}
/* Insert the segment header */
ql_build_coredump_seg_header(&mpi_coredump->memc_ram_seg_hdr,
MEMC_RAM_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->memc_ram),
"MEMC RAM");
status = ql_dump_risc_ram_area(qdev, &mpi_coredump->memc_ram[0],
MEMC_RAM_ADDR, MEMC_RAM_CNT);
if (status) {
netif_err(qdev, drv, qdev->ndev,
"Failed Dump of MEMC RAM. Status = 0x%.08x\n",
status);
goto err;
}
err:
ql_sem_unlock(qdev, SEM_PROC_REG_MASK); /* does flush too */
return status;
}
static void ql_get_core_dump(struct ql_adapter *qdev)
{
if (!ql_own_firmware(qdev)) {
netif_err(qdev, drv, qdev->ndev, "Don't own firmware!\n");
return;
}
if (!netif_running(qdev->ndev)) {
netif_err(qdev, ifup, qdev->ndev,
"Force Coredump can only be done from interface that is up\n");
return;
}
ql_queue_fw_error(qdev);
}
static void ql_gen_reg_dump(struct ql_adapter *qdev,
struct ql_reg_dump *mpi_coredump)
{
int i, status;
memset(&(mpi_coredump->mpi_global_header), 0,
sizeof(struct mpi_coredump_global_header));
mpi_coredump->mpi_global_header.cookie = MPI_COREDUMP_COOKIE;
mpi_coredump->mpi_global_header.headerSize =
sizeof(struct mpi_coredump_global_header);
mpi_coredump->mpi_global_header.imageSize =
sizeof(struct ql_reg_dump);
strncpy(mpi_coredump->mpi_global_header.idString, "MPI Coredump",
sizeof(mpi_coredump->mpi_global_header.idString));
/* segment 16 */
ql_build_coredump_seg_header(&mpi_coredump->misc_nic_seg_hdr,
MISC_NIC_INFO_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->misc_nic_info),
"MISC NIC INFO");
mpi_coredump->misc_nic_info.rx_ring_count = qdev->rx_ring_count;
mpi_coredump->misc_nic_info.tx_ring_count = qdev->tx_ring_count;
mpi_coredump->misc_nic_info.intr_count = qdev->intr_count;
mpi_coredump->misc_nic_info.function = qdev->func;
/* Segment 16, Rev C. Step 18 */
ql_build_coredump_seg_header(&mpi_coredump->nic_regs_seg_hdr,
NIC1_CONTROL_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->nic_regs),
"NIC Registers");
/* Get generic reg dump */
for (i = 0; i < 64; i++)
mpi_coredump->nic_regs[i] = ql_read32(qdev, i * sizeof(u32));
/* Segment 31 */
/* Get indexed register values. */
ql_build_coredump_seg_header(&mpi_coredump->intr_states_seg_hdr,
INTR_STATES_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->intr_states),
"INTR States");
ql_get_intr_states(qdev, &mpi_coredump->intr_states[0]);
ql_build_coredump_seg_header(&mpi_coredump->cam_entries_seg_hdr,
CAM_ENTRIES_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->cam_entries),
"CAM Entries");
status = ql_get_cam_entries(qdev, &mpi_coredump->cam_entries[0]);
if (status)
return;
ql_build_coredump_seg_header(&mpi_coredump->nic_routing_words_seg_hdr,
ROUTING_WORDS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->nic_routing_words),
"Routing Words");
status = ql_get_routing_entries(qdev,
&mpi_coredump->nic_routing_words[0]);
if (status)
return;
/* Segment 34 (Rev C. step 23) */
ql_build_coredump_seg_header(&mpi_coredump->ets_seg_hdr,
ETS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->ets),
"ETS Registers");
status = ql_get_ets_regs(qdev, &mpi_coredump->ets[0]);
if (status)
return;
}
void ql_get_dump(struct ql_adapter *qdev, void *buff)
{
/*
* If the dump has already been taken and is stored
* in our internal buffer and if force dump is set then
* just start the spool to dump it to the log file
* and also, take a snapshot of the general regs to
* to the user's buffer or else take complete dump
* to the user's buffer if force is not set.
*/
if (!test_bit(QL_FRC_COREDUMP, &qdev->flags)) {
if (!ql_core_dump(qdev, buff))
ql_soft_reset_mpi_risc(qdev);
else
netif_err(qdev, drv, qdev->ndev, "coredump failed!\n");
} else {
ql_gen_reg_dump(qdev, buff);
ql_get_core_dump(qdev);
}
}
/* Coredump to messages log file using separate worker thread */
void ql_mpi_core_to_log(struct work_struct *work)
{
struct ql_adapter *qdev =
container_of(work, struct ql_adapter, mpi_core_to_log.work);
u32 *tmp, count;
int i;
count = sizeof(struct ql_mpi_coredump) / sizeof(u32);
tmp = (u32 *)qdev->mpi_coredump;
netif_printk(qdev, drv, KERN_DEBUG, qdev->ndev,
"Core is dumping to log file!\n");
for (i = 0; i < count; i += 8) {
pr_err("%.08x: %.08x %.08x %.08x %.08x %.08x "
"%.08x %.08x %.08x\n", i,
tmp[i + 0],
tmp[i + 1],
tmp[i + 2],
tmp[i + 3],
tmp[i + 4],
tmp[i + 5],
tmp[i + 6],
tmp[i + 7]);
msleep(5);
}
}
#ifdef QL_REG_DUMP
static void ql_dump_intr_states(struct ql_adapter *qdev)
{
int i;
u32 value;
for (i = 0; i < qdev->intr_count; i++) {
ql_write32(qdev, INTR_EN, qdev->intr_context[i].intr_read_mask);
value = ql_read32(qdev, INTR_EN);
pr_err("%s: Interrupt %d is %s\n",
qdev->ndev->name, i,
(value & INTR_EN_EN ? "enabled" : "disabled"));
}
}
#define DUMP_XGMAC(qdev, reg) \
do { \
u32 data; \
ql_read_xgmac_reg(qdev, reg, &data); \
pr_err("%s: %s = 0x%.08x\n", qdev->ndev->name, #reg, data); \
} while (0)
void ql_dump_xgmac_control_regs(struct ql_adapter *qdev)
{
if (ql_sem_spinlock(qdev, qdev->xg_sem_mask)) {
pr_err("%s: Couldn't get xgmac sem\n", __func__);
return;
}
DUMP_XGMAC(qdev, PAUSE_SRC_LO);
DUMP_XGMAC(qdev, PAUSE_SRC_HI);
DUMP_XGMAC(qdev, GLOBAL_CFG);
DUMP_XGMAC(qdev, TX_CFG);
DUMP_XGMAC(qdev, RX_CFG);
DUMP_XGMAC(qdev, FLOW_CTL);
DUMP_XGMAC(qdev, PAUSE_OPCODE);
DUMP_XGMAC(qdev, PAUSE_TIMER);
DUMP_XGMAC(qdev, PAUSE_FRM_DEST_LO);
DUMP_XGMAC(qdev, PAUSE_FRM_DEST_HI);
DUMP_XGMAC(qdev, MAC_TX_PARAMS);
DUMP_XGMAC(qdev, MAC_RX_PARAMS);
DUMP_XGMAC(qdev, MAC_SYS_INT);
DUMP_XGMAC(qdev, MAC_SYS_INT_MASK);
DUMP_XGMAC(qdev, MAC_MGMT_INT);
DUMP_XGMAC(qdev, MAC_MGMT_IN_MASK);
DUMP_XGMAC(qdev, EXT_ARB_MODE);
ql_sem_unlock(qdev, qdev->xg_sem_mask);
}
static void ql_dump_ets_regs(struct ql_adapter *qdev)
{
}
static void ql_dump_cam_entries(struct ql_adapter *qdev)
{
int i;
u32 value[3];
i = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
if (i)
return;
for (i = 0; i < 4; i++) {
if (ql_get_mac_addr_reg(qdev, MAC_ADDR_TYPE_CAM_MAC, i, value)) {
pr_err("%s: Failed read of mac index register\n",
__func__);
return;
} else {
if (value[0])
pr_err("%s: CAM index %d CAM Lookup Lower = 0x%.08x:%.08x, Output = 0x%.08x\n",
qdev->ndev->name, i, value[1], value[0],
value[2]);
}
}
for (i = 0; i < 32; i++) {
if (ql_get_mac_addr_reg
(qdev, MAC_ADDR_TYPE_MULTI_MAC, i, value)) {
pr_err("%s: Failed read of mac index register\n",
__func__);
return;
} else {
if (value[0])
pr_err("%s: MCAST index %d CAM Lookup Lower = 0x%.08x:%.08x\n",
qdev->ndev->name, i, value[1], value[0]);
}
}
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
}
void ql_dump_routing_entries(struct ql_adapter *qdev)
{
int i;
u32 value;
i = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
if (i)
return;
for (i = 0; i < 16; i++) {
value = 0;
if (ql_get_routing_reg(qdev, i, &value)) {
pr_err("%s: Failed read of routing index register\n",
__func__);
return;
} else {
if (value)
pr_err("%s: Routing Mask %d = 0x%.08x\n",
qdev->ndev->name, i, value);
}
}
ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
}
#define DUMP_REG(qdev, reg) \
pr_err("%-32s= 0x%x\n", #reg, ql_read32(qdev, reg))
void ql_dump_regs(struct ql_adapter *qdev)
{
pr_err("reg dump for function #%d\n", qdev->func);
DUMP_REG(qdev, SYS);
DUMP_REG(qdev, RST_FO);
DUMP_REG(qdev, FSC);
DUMP_REG(qdev, CSR);
DUMP_REG(qdev, ICB_RID);
DUMP_REG(qdev, ICB_L);
DUMP_REG(qdev, ICB_H);
DUMP_REG(qdev, CFG);
DUMP_REG(qdev, BIOS_ADDR);
DUMP_REG(qdev, STS);
DUMP_REG(qdev, INTR_EN);
DUMP_REG(qdev, INTR_MASK);
DUMP_REG(qdev, ISR1);
DUMP_REG(qdev, ISR2);
DUMP_REG(qdev, ISR3);
DUMP_REG(qdev, ISR4);
DUMP_REG(qdev, REV_ID);
DUMP_REG(qdev, FRC_ECC_ERR);
DUMP_REG(qdev, ERR_STS);
DUMP_REG(qdev, RAM_DBG_ADDR);
DUMP_REG(qdev, RAM_DBG_DATA);
DUMP_REG(qdev, ECC_ERR_CNT);
DUMP_REG(qdev, SEM);
DUMP_REG(qdev, GPIO_1);
DUMP_REG(qdev, GPIO_2);
DUMP_REG(qdev, GPIO_3);
DUMP_REG(qdev, XGMAC_ADDR);
DUMP_REG(qdev, XGMAC_DATA);
DUMP_REG(qdev, NIC_ETS);
DUMP_REG(qdev, CNA_ETS);
DUMP_REG(qdev, FLASH_ADDR);
DUMP_REG(qdev, FLASH_DATA);
DUMP_REG(qdev, CQ_STOP);
DUMP_REG(qdev, PAGE_TBL_RID);
DUMP_REG(qdev, WQ_PAGE_TBL_LO);
DUMP_REG(qdev, WQ_PAGE_TBL_HI);
DUMP_REG(qdev, CQ_PAGE_TBL_LO);
DUMP_REG(qdev, CQ_PAGE_TBL_HI);
DUMP_REG(qdev, COS_DFLT_CQ1);
DUMP_REG(qdev, COS_DFLT_CQ2);
DUMP_REG(qdev, SPLT_HDR);
DUMP_REG(qdev, FC_PAUSE_THRES);
DUMP_REG(qdev, NIC_PAUSE_THRES);
DUMP_REG(qdev, FC_ETHERTYPE);
DUMP_REG(qdev, FC_RCV_CFG);
DUMP_REG(qdev, NIC_RCV_CFG);
DUMP_REG(qdev, FC_COS_TAGS);
DUMP_REG(qdev, NIC_COS_TAGS);
DUMP_REG(qdev, MGMT_RCV_CFG);
DUMP_REG(qdev, XG_SERDES_ADDR);
DUMP_REG(qdev, XG_SERDES_DATA);
DUMP_REG(qdev, PRB_MX_ADDR);
DUMP_REG(qdev, PRB_MX_DATA);
ql_dump_intr_states(qdev);
ql_dump_xgmac_control_regs(qdev);
ql_dump_ets_regs(qdev);
ql_dump_cam_entries(qdev);
ql_dump_routing_entries(qdev);
}
#endif
#ifdef QL_STAT_DUMP
#define DUMP_STAT(qdev, stat) \
pr_err("%s = %ld\n", #stat, (unsigned long)qdev->nic_stats.stat)
void ql_dump_stat(struct ql_adapter *qdev)
{
pr_err("%s: Enter\n", __func__);
DUMP_STAT(qdev, tx_pkts);
DUMP_STAT(qdev, tx_bytes);
DUMP_STAT(qdev, tx_mcast_pkts);
DUMP_STAT(qdev, tx_bcast_pkts);
DUMP_STAT(qdev, tx_ucast_pkts);
DUMP_STAT(qdev, tx_ctl_pkts);
DUMP_STAT(qdev, tx_pause_pkts);
DUMP_STAT(qdev, tx_64_pkt);
DUMP_STAT(qdev, tx_65_to_127_pkt);
DUMP_STAT(qdev, tx_128_to_255_pkt);
DUMP_STAT(qdev, tx_256_511_pkt);
DUMP_STAT(qdev, tx_512_to_1023_pkt);
DUMP_STAT(qdev, tx_1024_to_1518_pkt);
DUMP_STAT(qdev, tx_1519_to_max_pkt);
DUMP_STAT(qdev, tx_undersize_pkt);
DUMP_STAT(qdev, tx_oversize_pkt);
DUMP_STAT(qdev, rx_bytes);
DUMP_STAT(qdev, rx_bytes_ok);
DUMP_STAT(qdev, rx_pkts);
DUMP_STAT(qdev, rx_pkts_ok);
DUMP_STAT(qdev, rx_bcast_pkts);
DUMP_STAT(qdev, rx_mcast_pkts);
DUMP_STAT(qdev, rx_ucast_pkts);
DUMP_STAT(qdev, rx_undersize_pkts);
DUMP_STAT(qdev, rx_oversize_pkts);
DUMP_STAT(qdev, rx_jabber_pkts);
DUMP_STAT(qdev, rx_undersize_fcerr_pkts);
DUMP_STAT(qdev, rx_drop_events);
DUMP_STAT(qdev, rx_fcerr_pkts);
DUMP_STAT(qdev, rx_align_err);
DUMP_STAT(qdev, rx_symbol_err);
DUMP_STAT(qdev, rx_mac_err);
DUMP_STAT(qdev, rx_ctl_pkts);
DUMP_STAT(qdev, rx_pause_pkts);
DUMP_STAT(qdev, rx_64_pkts);
DUMP_STAT(qdev, rx_65_to_127_pkts);
DUMP_STAT(qdev, rx_128_255_pkts);
DUMP_STAT(qdev, rx_256_511_pkts);
DUMP_STAT(qdev, rx_512_to_1023_pkts);
DUMP_STAT(qdev, rx_1024_to_1518_pkts);
DUMP_STAT(qdev, rx_1519_to_max_pkts);
DUMP_STAT(qdev, rx_len_err_pkts);
};
#endif
#ifdef QL_DEV_DUMP
#define DUMP_QDEV_FIELD(qdev, type, field) \
pr_err("qdev->%-24s = " type "\n", #field, qdev->field)
#define DUMP_QDEV_DMA_FIELD(qdev, field) \
pr_err("qdev->%-24s = %llx\n", #field, (unsigned long long)qdev->field)
#define DUMP_QDEV_ARRAY(qdev, type, array, index, field) \
pr_err("%s[%d].%s = " type "\n", \
#array, index, #field, qdev->array[index].field);
void ql_dump_qdev(struct ql_adapter *qdev)
{
int i;
DUMP_QDEV_FIELD(qdev, "%lx", flags);
DUMP_QDEV_FIELD(qdev, "%p", vlgrp);
DUMP_QDEV_FIELD(qdev, "%p", pdev);
DUMP_QDEV_FIELD(qdev, "%p", ndev);
DUMP_QDEV_FIELD(qdev, "%d", chip_rev_id);
DUMP_QDEV_FIELD(qdev, "%p", reg_base);
DUMP_QDEV_FIELD(qdev, "%p", doorbell_area);
DUMP_QDEV_FIELD(qdev, "%d", doorbell_area_size);
DUMP_QDEV_FIELD(qdev, "%x", msg_enable);
DUMP_QDEV_FIELD(qdev, "%p", rx_ring_shadow_reg_area);
DUMP_QDEV_DMA_FIELD(qdev, rx_ring_shadow_reg_dma);
DUMP_QDEV_FIELD(qdev, "%p", tx_ring_shadow_reg_area);
DUMP_QDEV_DMA_FIELD(qdev, tx_ring_shadow_reg_dma);
DUMP_QDEV_FIELD(qdev, "%d", intr_count);
if (qdev->msi_x_entry)
for (i = 0; i < qdev->intr_count; i++) {
DUMP_QDEV_ARRAY(qdev, "%d", msi_x_entry, i, vector);
DUMP_QDEV_ARRAY(qdev, "%d", msi_x_entry, i, entry);
}
for (i = 0; i < qdev->intr_count; i++) {
DUMP_QDEV_ARRAY(qdev, "%p", intr_context, i, qdev);
DUMP_QDEV_ARRAY(qdev, "%d", intr_context, i, intr);
DUMP_QDEV_ARRAY(qdev, "%d", intr_context, i, hooked);
DUMP_QDEV_ARRAY(qdev, "0x%08x", intr_context, i, intr_en_mask);
DUMP_QDEV_ARRAY(qdev, "0x%08x", intr_context, i, intr_dis_mask);
DUMP_QDEV_ARRAY(qdev, "0x%08x", intr_context, i, intr_read_mask);
}
DUMP_QDEV_FIELD(qdev, "%d", tx_ring_count);
DUMP_QDEV_FIELD(qdev, "%d", rx_ring_count);
DUMP_QDEV_FIELD(qdev, "%d", ring_mem_size);
DUMP_QDEV_FIELD(qdev, "%p", ring_mem);
DUMP_QDEV_FIELD(qdev, "%d", intr_count);
DUMP_QDEV_FIELD(qdev, "%p", tx_ring);
DUMP_QDEV_FIELD(qdev, "%d", rss_ring_count);
DUMP_QDEV_FIELD(qdev, "%p", rx_ring);
DUMP_QDEV_FIELD(qdev, "%d", default_rx_queue);
DUMP_QDEV_FIELD(qdev, "0x%08x", xg_sem_mask);
DUMP_QDEV_FIELD(qdev, "0x%08x", port_link_up);
DUMP_QDEV_FIELD(qdev, "0x%08x", port_init);
}
#endif
#ifdef QL_CB_DUMP
void ql_dump_wqicb(struct wqicb *wqicb)
{
pr_err("Dumping wqicb stuff...\n");
pr_err("wqicb->len = 0x%x\n", le16_to_cpu(wqicb->len));
pr_err("wqicb->flags = %x\n", le16_to_cpu(wqicb->flags));
pr_err("wqicb->cq_id_rss = %d\n",
le16_to_cpu(wqicb->cq_id_rss));
pr_err("wqicb->rid = 0x%x\n", le16_to_cpu(wqicb->rid));
pr_err("wqicb->wq_addr = 0x%llx\n",
(unsigned long long) le64_to_cpu(wqicb->addr));
pr_err("wqicb->wq_cnsmr_idx_addr = 0x%llx\n",
(unsigned long long) le64_to_cpu(wqicb->cnsmr_idx_addr));
}
void ql_dump_tx_ring(struct tx_ring *tx_ring)
{
if (tx_ring == NULL)
return;
pr_err("===================== Dumping tx_ring %d ===============\n",
tx_ring->wq_id);
pr_err("tx_ring->base = %p\n", tx_ring->wq_base);
pr_err("tx_ring->base_dma = 0x%llx\n",
(unsigned long long) tx_ring->wq_base_dma);
pr_err("tx_ring->cnsmr_idx_sh_reg, addr = 0x%p, value = %d\n",
tx_ring->cnsmr_idx_sh_reg,
tx_ring->cnsmr_idx_sh_reg
? ql_read_sh_reg(tx_ring->cnsmr_idx_sh_reg) : 0);
pr_err("tx_ring->size = %d\n", tx_ring->wq_size);
pr_err("tx_ring->len = %d\n", tx_ring->wq_len);
pr_err("tx_ring->prod_idx_db_reg = %p\n", tx_ring->prod_idx_db_reg);
pr_err("tx_ring->valid_db_reg = %p\n", tx_ring->valid_db_reg);
pr_err("tx_ring->prod_idx = %d\n", tx_ring->prod_idx);
pr_err("tx_ring->cq_id = %d\n", tx_ring->cq_id);
pr_err("tx_ring->wq_id = %d\n", tx_ring->wq_id);
pr_err("tx_ring->q = %p\n", tx_ring->q);
pr_err("tx_ring->tx_count = %d\n", atomic_read(&tx_ring->tx_count));
}
void ql_dump_ricb(struct ricb *ricb)
{
int i;
pr_err("===================== Dumping ricb ===============\n");
pr_err("Dumping ricb stuff...\n");
pr_err("ricb->base_cq = %d\n", ricb->base_cq & 0x1f);
pr_err("ricb->flags = %s%s%s%s%s%s%s%s%s\n",
ricb->base_cq & RSS_L4K ? "RSS_L4K " : "",
ricb->flags & RSS_L6K ? "RSS_L6K " : "",
ricb->flags & RSS_LI ? "RSS_LI " : "",
ricb->flags & RSS_LB ? "RSS_LB " : "",
ricb->flags & RSS_LM ? "RSS_LM " : "",
ricb->flags & RSS_RI4 ? "RSS_RI4 " : "",
ricb->flags & RSS_RT4 ? "RSS_RT4 " : "",
ricb->flags & RSS_RI6 ? "RSS_RI6 " : "",
ricb->flags & RSS_RT6 ? "RSS_RT6 " : "");
pr_err("ricb->mask = 0x%.04x\n", le16_to_cpu(ricb->mask));
for (i = 0; i < 16; i++)
pr_err("ricb->hash_cq_id[%d] = 0x%.08x\n", i,
le32_to_cpu(ricb->hash_cq_id[i]));
for (i = 0; i < 10; i++)
pr_err("ricb->ipv6_hash_key[%d] = 0x%.08x\n", i,
le32_to_cpu(ricb->ipv6_hash_key[i]));
for (i = 0; i < 4; i++)
pr_err("ricb->ipv4_hash_key[%d] = 0x%.08x\n", i,
le32_to_cpu(ricb->ipv4_hash_key[i]));
}
void ql_dump_cqicb(struct cqicb *cqicb)
{
pr_err("Dumping cqicb stuff...\n");
pr_err("cqicb->msix_vect = %d\n", cqicb->msix_vect);
pr_err("cqicb->flags = %x\n", cqicb->flags);
pr_err("cqicb->len = %d\n", le16_to_cpu(cqicb->len));
pr_err("cqicb->addr = 0x%llx\n",
(unsigned long long) le64_to_cpu(cqicb->addr));
pr_err("cqicb->prod_idx_addr = 0x%llx\n",
(unsigned long long) le64_to_cpu(cqicb->prod_idx_addr));
pr_err("cqicb->pkt_delay = 0x%.04x\n",
le16_to_cpu(cqicb->pkt_delay));
pr_err("cqicb->irq_delay = 0x%.04x\n",
le16_to_cpu(cqicb->irq_delay));
pr_err("cqicb->lbq_addr = 0x%llx\n",
(unsigned long long) le64_to_cpu(cqicb->lbq_addr));
pr_err("cqicb->lbq_buf_size = 0x%.04x\n",
le16_to_cpu(cqicb->lbq_buf_size));
pr_err("cqicb->lbq_len = 0x%.04x\n",
le16_to_cpu(cqicb->lbq_len));
pr_err("cqicb->sbq_addr = 0x%llx\n",
(unsigned long long) le64_to_cpu(cqicb->sbq_addr));
pr_err("cqicb->sbq_buf_size = 0x%.04x\n",
le16_to_cpu(cqicb->sbq_buf_size));
pr_err("cqicb->sbq_len = 0x%.04x\n",
le16_to_cpu(cqicb->sbq_len));
}
void ql_dump_rx_ring(struct rx_ring *rx_ring)
{
if (rx_ring == NULL)
return;
pr_err("===================== Dumping rx_ring %d ===============\n",
rx_ring->cq_id);
pr_err("Dumping rx_ring %d, type = %s%s%s\n",
rx_ring->cq_id, rx_ring->type == DEFAULT_Q ? "DEFAULT" : "",
rx_ring->type == TX_Q ? "OUTBOUND COMPLETIONS" : "",
rx_ring->type == RX_Q ? "INBOUND_COMPLETIONS" : "");
pr_err("rx_ring->cqicb = %p\n", &rx_ring->cqicb);
pr_err("rx_ring->cq_base = %p\n", rx_ring->cq_base);
pr_err("rx_ring->cq_base_dma = %llx\n",
(unsigned long long) rx_ring->cq_base_dma);
pr_err("rx_ring->cq_size = %d\n", rx_ring->cq_size);
pr_err("rx_ring->cq_len = %d\n", rx_ring->cq_len);
pr_err("rx_ring->prod_idx_sh_reg, addr = 0x%p, value = %d\n",
rx_ring->prod_idx_sh_reg,
rx_ring->prod_idx_sh_reg
? ql_read_sh_reg(rx_ring->prod_idx_sh_reg) : 0);
pr_err("rx_ring->prod_idx_sh_reg_dma = %llx\n",
(unsigned long long) rx_ring->prod_idx_sh_reg_dma);
pr_err("rx_ring->cnsmr_idx_db_reg = %p\n",
rx_ring->cnsmr_idx_db_reg);
pr_err("rx_ring->cnsmr_idx = %d\n", rx_ring->cnsmr_idx);
pr_err("rx_ring->curr_entry = %p\n", rx_ring->curr_entry);
pr_err("rx_ring->valid_db_reg = %p\n", rx_ring->valid_db_reg);
pr_err("rx_ring->lbq_base = %p\n", rx_ring->lbq_base);
pr_err("rx_ring->lbq_base_dma = %llx\n",
(unsigned long long) rx_ring->lbq_base_dma);
pr_err("rx_ring->lbq_base_indirect = %p\n",
rx_ring->lbq_base_indirect);
pr_err("rx_ring->lbq_base_indirect_dma = %llx\n",
(unsigned long long) rx_ring->lbq_base_indirect_dma);
pr_err("rx_ring->lbq = %p\n", rx_ring->lbq);
pr_err("rx_ring->lbq_len = %d\n", rx_ring->lbq_len);
pr_err("rx_ring->lbq_size = %d\n", rx_ring->lbq_size);
pr_err("rx_ring->lbq_prod_idx_db_reg = %p\n",
rx_ring->lbq_prod_idx_db_reg);
pr_err("rx_ring->lbq_prod_idx = %d\n", rx_ring->lbq_prod_idx);
pr_err("rx_ring->lbq_curr_idx = %d\n", rx_ring->lbq_curr_idx);
pr_err("rx_ring->lbq_clean_idx = %d\n", rx_ring->lbq_clean_idx);
pr_err("rx_ring->lbq_free_cnt = %d\n", rx_ring->lbq_free_cnt);
pr_err("rx_ring->lbq_buf_size = %d\n", rx_ring->lbq_buf_size);
pr_err("rx_ring->sbq_base = %p\n", rx_ring->sbq_base);
pr_err("rx_ring->sbq_base_dma = %llx\n",
(unsigned long long) rx_ring->sbq_base_dma);
pr_err("rx_ring->sbq_base_indirect = %p\n",
rx_ring->sbq_base_indirect);
pr_err("rx_ring->sbq_base_indirect_dma = %llx\n",
(unsigned long long) rx_ring->sbq_base_indirect_dma);
pr_err("rx_ring->sbq = %p\n", rx_ring->sbq);
pr_err("rx_ring->sbq_len = %d\n", rx_ring->sbq_len);
pr_err("rx_ring->sbq_size = %d\n", rx_ring->sbq_size);
pr_err("rx_ring->sbq_prod_idx_db_reg addr = %p\n",
rx_ring->sbq_prod_idx_db_reg);
pr_err("rx_ring->sbq_prod_idx = %d\n", rx_ring->sbq_prod_idx);
pr_err("rx_ring->sbq_curr_idx = %d\n", rx_ring->sbq_curr_idx);
pr_err("rx_ring->sbq_clean_idx = %d\n", rx_ring->sbq_clean_idx);
pr_err("rx_ring->sbq_free_cnt = %d\n", rx_ring->sbq_free_cnt);
pr_err("rx_ring->sbq_buf_size = %d\n", rx_ring->sbq_buf_size);
pr_err("rx_ring->cq_id = %d\n", rx_ring->cq_id);
pr_err("rx_ring->irq = %d\n", rx_ring->irq);
pr_err("rx_ring->cpu = %d\n", rx_ring->cpu);
pr_err("rx_ring->qdev = %p\n", rx_ring->qdev);
}
void ql_dump_hw_cb(struct ql_adapter *qdev, int size, u32 bit, u16 q_id)
{
void *ptr;
pr_err("%s: Enter\n", __func__);
ptr = kmalloc(size, GFP_ATOMIC);
if (ptr == NULL)
return;
if (ql_write_cfg(qdev, ptr, size, bit, q_id)) {
pr_err("%s: Failed to upload control block!\n", __func__);
goto fail_it;
}
switch (bit) {
case CFG_DRQ:
ql_dump_wqicb((struct wqicb *)ptr);
break;
case CFG_DCQ:
ql_dump_cqicb((struct cqicb *)ptr);
break;
case CFG_DR:
ql_dump_ricb((struct ricb *)ptr);
break;
default:
pr_err("%s: Invalid bit value = %x\n", __func__, bit);
break;
}
fail_it:
kfree(ptr);
}
#endif
#ifdef QL_OB_DUMP
void ql_dump_tx_desc(struct tx_buf_desc *tbd)
{
pr_err("tbd->addr = 0x%llx\n",
le64_to_cpu((u64) tbd->addr));
pr_err("tbd->len = %d\n",
le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
pr_err("tbd->flags = %s %s\n",
tbd->len & TX_DESC_C ? "C" : ".",
tbd->len & TX_DESC_E ? "E" : ".");
tbd++;
pr_err("tbd->addr = 0x%llx\n",
le64_to_cpu((u64) tbd->addr));
pr_err("tbd->len = %d\n",
le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
pr_err("tbd->flags = %s %s\n",
tbd->len & TX_DESC_C ? "C" : ".",
tbd->len & TX_DESC_E ? "E" : ".");
tbd++;
pr_err("tbd->addr = 0x%llx\n",
le64_to_cpu((u64) tbd->addr));
pr_err("tbd->len = %d\n",
le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
pr_err("tbd->flags = %s %s\n",
tbd->len & TX_DESC_C ? "C" : ".",
tbd->len & TX_DESC_E ? "E" : ".");
}
void ql_dump_ob_mac_iocb(struct ob_mac_iocb_req *ob_mac_iocb)
{
struct ob_mac_tso_iocb_req *ob_mac_tso_iocb =
(struct ob_mac_tso_iocb_req *)ob_mac_iocb;
struct tx_buf_desc *tbd;
u16 frame_len;
pr_err("%s\n", __func__);
pr_err("opcode = %s\n",
(ob_mac_iocb->opcode == OPCODE_OB_MAC_IOCB) ? "MAC" : "TSO");
pr_err("flags1 = %s %s %s %s %s\n",
ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_OI ? "OI" : "",
ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_I ? "I" : "",
ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_D ? "D" : "",
ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP4 ? "IP4" : "",
ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP6 ? "IP6" : "");
pr_err("flags2 = %s %s %s\n",
ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_LSO ? "LSO" : "",
ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_UC ? "UC" : "",
ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_TC ? "TC" : "");
pr_err("flags3 = %s %s %s\n",
ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_IC ? "IC" : "",
ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_DFP ? "DFP" : "",
ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_V ? "V" : "");
pr_err("tid = %x\n", ob_mac_iocb->tid);
pr_err("txq_idx = %d\n", ob_mac_iocb->txq_idx);
pr_err("vlan_tci = %x\n", ob_mac_tso_iocb->vlan_tci);
if (ob_mac_iocb->opcode == OPCODE_OB_MAC_TSO_IOCB) {
pr_err("frame_len = %d\n",
le32_to_cpu(ob_mac_tso_iocb->frame_len));
pr_err("mss = %d\n",
le16_to_cpu(ob_mac_tso_iocb->mss));
pr_err("prot_hdr_len = %d\n",
le16_to_cpu(ob_mac_tso_iocb->total_hdrs_len));
pr_err("hdr_offset = 0x%.04x\n",
le16_to_cpu(ob_mac_tso_iocb->net_trans_offset));
frame_len = le32_to_cpu(ob_mac_tso_iocb->frame_len);
} else {
pr_err("frame_len = %d\n",
le16_to_cpu(ob_mac_iocb->frame_len));
frame_len = le16_to_cpu(ob_mac_iocb->frame_len);
}
tbd = &ob_mac_iocb->tbd[0];
ql_dump_tx_desc(tbd);
}
void ql_dump_ob_mac_rsp(struct ob_mac_iocb_rsp *ob_mac_rsp)
{
pr_err("%s\n", __func__);
pr_err("opcode = %d\n", ob_mac_rsp->opcode);
pr_err("flags = %s %s %s %s %s %s %s\n",
ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_OI ? "OI" : ".",
ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_I ? "I" : ".",
ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_E ? "E" : ".",
ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_S ? "S" : ".",
ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_L ? "L" : ".",
ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_P ? "P" : ".",
ob_mac_rsp->flags2 & OB_MAC_IOCB_RSP_B ? "B" : ".");
pr_err("tid = %x\n", ob_mac_rsp->tid);
}
#endif
#ifdef QL_IB_DUMP
void ql_dump_ib_mac_rsp(struct ib_mac_iocb_rsp *ib_mac_rsp)
{
pr_err("%s\n", __func__);
pr_err("opcode = 0x%x\n", ib_mac_rsp->opcode);
pr_err("flags1 = %s%s%s%s%s%s\n",
ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_OI ? "OI " : "",
ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_I ? "I " : "",
ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_TE ? "TE " : "",
ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU ? "NU " : "",
ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_IE ? "IE " : "",
ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_B ? "B " : "");
if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK)
pr_err("%s%s%s Multicast\n",
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
pr_err("flags2 = %s%s%s%s%s\n",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) ? "P " : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? "V " : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) ? "U " : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ? "T " : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_FO) ? "FO " : "");
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK)
pr_err("%s%s%s%s%s error\n",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
IB_MAC_IOCB_RSP_ERR_OVERSIZE ? "oversize" : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
IB_MAC_IOCB_RSP_ERR_UNDERSIZE ? "undersize" : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
IB_MAC_IOCB_RSP_ERR_PREAMBLE ? "preamble" : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
IB_MAC_IOCB_RSP_ERR_FRAME_LEN ? "frame length" : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
IB_MAC_IOCB_RSP_ERR_CRC ? "CRC" : "");
pr_err("flags3 = %s%s\n",
ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS ? "DS " : "",
ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL ? "DL " : "");
if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
pr_err("RSS flags = %s%s%s%s\n",
((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
IB_MAC_IOCB_RSP_M_IPV4) ? "IPv4 RSS" : "",
((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
IB_MAC_IOCB_RSP_M_IPV6) ? "IPv6 RSS " : "",
((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
IB_MAC_IOCB_RSP_M_TCP_V4) ? "TCP/IPv4 RSS" : "",
((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
IB_MAC_IOCB_RSP_M_TCP_V6) ? "TCP/IPv6 RSS" : "");
pr_err("data_len = %d\n",
le32_to_cpu(ib_mac_rsp->data_len));
pr_err("data_addr = 0x%llx\n",
(unsigned long long) le64_to_cpu(ib_mac_rsp->data_addr));
if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
pr_err("rss = %x\n",
le32_to_cpu(ib_mac_rsp->rss));
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)
pr_err("vlan_id = %x\n",
le16_to_cpu(ib_mac_rsp->vlan_id));
pr_err("flags4 = %s%s%s\n",
ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV ? "HV " : "",
ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS ? "HS " : "",
ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HL ? "HL " : "");
if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
pr_err("hdr length = %d\n",
le32_to_cpu(ib_mac_rsp->hdr_len));
pr_err("hdr addr = 0x%llx\n",
(unsigned long long) le64_to_cpu(ib_mac_rsp->hdr_addr));
}
}
#endif
#ifdef QL_ALL_DUMP
void ql_dump_all(struct ql_adapter *qdev)
{
int i;
QL_DUMP_REGS(qdev);
QL_DUMP_QDEV(qdev);
for (i = 0; i < qdev->tx_ring_count; i++) {
QL_DUMP_TX_RING(&qdev->tx_ring[i]);
QL_DUMP_WQICB((struct wqicb *)&qdev->tx_ring[i]);
}
for (i = 0; i < qdev->rx_ring_count; i++) {
QL_DUMP_RX_RING(&qdev->rx_ring[i]);
QL_DUMP_CQICB((struct cqicb *)&qdev->rx_ring[i]);
}
}
#endif