kernel_samsung_a34x-permissive/drivers/net/ethernet/stmicro/stmmac/dwmac-sun8i.c

1268 lines
33 KiB
C
Raw Normal View History

/*
* dwmac-sun8i.c - Allwinner sun8i DWMAC specific glue layer
*
* Copyright (C) 2017 Corentin Labbe <clabbe.montjoie@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/mdio-mux.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/phy.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/regmap.h>
#include <linux/stmmac.h>
#include "stmmac.h"
#include "stmmac_platform.h"
/* General notes on dwmac-sun8i:
* Locking: no locking is necessary in this file because all necessary locking
* is done in the "stmmac files"
*/
/* struct emac_variant - Describe dwmac-sun8i hardware variant
* @default_syscon_value: The default value of the EMAC register in syscon
* This value is used for disabling properly EMAC
* and used as a good starting value in case of the
* boot process(uboot) leave some stuff.
* @syscon_field reg_field for the syscon's gmac register
* @soc_has_internal_phy: Does the MAC embed an internal PHY
* @support_mii: Does the MAC handle MII
* @support_rmii: Does the MAC handle RMII
* @support_rgmii: Does the MAC handle RGMII
*
* @rx_delay_max: Maximum raw value for RX delay chain
* @tx_delay_max: Maximum raw value for TX delay chain
* These two also indicate the bitmask for
* the RX and TX delay chain registers. A
* value of zero indicates this is not supported.
*/
struct emac_variant {
u32 default_syscon_value;
const struct reg_field *syscon_field;
bool soc_has_internal_phy;
bool support_mii;
bool support_rmii;
bool support_rgmii;
u8 rx_delay_max;
u8 tx_delay_max;
};
/* struct sunxi_priv_data - hold all sunxi private data
* @tx_clk: reference to MAC TX clock
* @ephy_clk: reference to the optional EPHY clock for the internal PHY
* @regulator: reference to the optional regulator
* @rst_ephy: reference to the optional EPHY reset for the internal PHY
* @variant: reference to the current board variant
* @regmap: regmap for using the syscon
* @internal_phy_powered: Does the internal PHY is enabled
* @use_internal_phy: Is the internal PHY selected for use
* @mux_handle: Internal pointer used by mdio-mux lib
*/
struct sunxi_priv_data {
struct clk *tx_clk;
struct clk *ephy_clk;
struct regulator *regulator;
struct reset_control *rst_ephy;
const struct emac_variant *variant;
struct regmap_field *regmap_field;
bool internal_phy_powered;
bool use_internal_phy;
void *mux_handle;
};
/* EMAC clock register @ 0x30 in the "system control" address range */
static const struct reg_field sun8i_syscon_reg_field = {
.reg = 0x30,
.lsb = 0,
.msb = 31,
};
/* EMAC clock register @ 0x164 in the CCU address range */
static const struct reg_field sun8i_ccu_reg_field = {
.reg = 0x164,
.lsb = 0,
.msb = 31,
};
static const struct emac_variant emac_variant_h3 = {
.default_syscon_value = 0x58000,
.syscon_field = &sun8i_syscon_reg_field,
.soc_has_internal_phy = true,
.support_mii = true,
.support_rmii = true,
.support_rgmii = true,
.rx_delay_max = 31,
.tx_delay_max = 7,
};
static const struct emac_variant emac_variant_v3s = {
.default_syscon_value = 0x38000,
.syscon_field = &sun8i_syscon_reg_field,
.soc_has_internal_phy = true,
.support_mii = true
};
static const struct emac_variant emac_variant_a83t = {
.default_syscon_value = 0,
.syscon_field = &sun8i_syscon_reg_field,
.soc_has_internal_phy = false,
.support_mii = true,
.support_rgmii = true,
.rx_delay_max = 31,
.tx_delay_max = 7,
};
static const struct emac_variant emac_variant_r40 = {
.default_syscon_value = 0,
.syscon_field = &sun8i_ccu_reg_field,
.support_mii = true,
.support_rgmii = true,
.rx_delay_max = 7,
};
static const struct emac_variant emac_variant_a64 = {
.default_syscon_value = 0,
.syscon_field = &sun8i_syscon_reg_field,
.soc_has_internal_phy = false,
.support_mii = true,
.support_rmii = true,
.support_rgmii = true,
.rx_delay_max = 31,
.tx_delay_max = 7,
};
#define EMAC_BASIC_CTL0 0x00
#define EMAC_BASIC_CTL1 0x04
#define EMAC_INT_STA 0x08
#define EMAC_INT_EN 0x0C
#define EMAC_TX_CTL0 0x10
#define EMAC_TX_CTL1 0x14
#define EMAC_TX_FLOW_CTL 0x1C
#define EMAC_TX_DESC_LIST 0x20
#define EMAC_RX_CTL0 0x24
#define EMAC_RX_CTL1 0x28
#define EMAC_RX_DESC_LIST 0x34
#define EMAC_RX_FRM_FLT 0x38
#define EMAC_MDIO_CMD 0x48
#define EMAC_MDIO_DATA 0x4C
#define EMAC_MACADDR_HI(reg) (0x50 + (reg) * 8)
#define EMAC_MACADDR_LO(reg) (0x54 + (reg) * 8)
#define EMAC_TX_DMA_STA 0xB0
#define EMAC_TX_CUR_DESC 0xB4
#define EMAC_TX_CUR_BUF 0xB8
#define EMAC_RX_DMA_STA 0xC0
#define EMAC_RX_CUR_DESC 0xC4
#define EMAC_RX_CUR_BUF 0xC8
/* Use in EMAC_BASIC_CTL0 */
#define EMAC_DUPLEX_FULL BIT(0)
#define EMAC_LOOPBACK BIT(1)
#define EMAC_SPEED_1000 0
#define EMAC_SPEED_100 (0x03 << 2)
#define EMAC_SPEED_10 (0x02 << 2)
/* Use in EMAC_BASIC_CTL1 */
#define EMAC_BURSTLEN_SHIFT 24
/* Used in EMAC_RX_FRM_FLT */
#define EMAC_FRM_FLT_RXALL BIT(0)
#define EMAC_FRM_FLT_CTL BIT(13)
#define EMAC_FRM_FLT_MULTICAST BIT(16)
/* Used in RX_CTL1*/
#define EMAC_RX_MD BIT(1)
#define EMAC_RX_TH_MASK GENMASK(4, 5)
#define EMAC_RX_TH_32 0
#define EMAC_RX_TH_64 (0x1 << 4)
#define EMAC_RX_TH_96 (0x2 << 4)
#define EMAC_RX_TH_128 (0x3 << 4)
#define EMAC_RX_DMA_EN BIT(30)
#define EMAC_RX_DMA_START BIT(31)
/* Used in TX_CTL1*/
#define EMAC_TX_MD BIT(1)
#define EMAC_TX_NEXT_FRM BIT(2)
#define EMAC_TX_TH_MASK GENMASK(8, 10)
#define EMAC_TX_TH_64 0
#define EMAC_TX_TH_128 (0x1 << 8)
#define EMAC_TX_TH_192 (0x2 << 8)
#define EMAC_TX_TH_256 (0x3 << 8)
#define EMAC_TX_DMA_EN BIT(30)
#define EMAC_TX_DMA_START BIT(31)
/* Used in RX_CTL0 */
#define EMAC_RX_RECEIVER_EN BIT(31)
#define EMAC_RX_DO_CRC BIT(27)
#define EMAC_RX_FLOW_CTL_EN BIT(16)
/* Used in TX_CTL0 */
#define EMAC_TX_TRANSMITTER_EN BIT(31)
/* Used in EMAC_TX_FLOW_CTL */
#define EMAC_TX_FLOW_CTL_EN BIT(0)
/* Used in EMAC_INT_STA */
#define EMAC_TX_INT BIT(0)
#define EMAC_TX_DMA_STOP_INT BIT(1)
#define EMAC_TX_BUF_UA_INT BIT(2)
#define EMAC_TX_TIMEOUT_INT BIT(3)
#define EMAC_TX_UNDERFLOW_INT BIT(4)
#define EMAC_TX_EARLY_INT BIT(5)
#define EMAC_RX_INT BIT(8)
#define EMAC_RX_BUF_UA_INT BIT(9)
#define EMAC_RX_DMA_STOP_INT BIT(10)
#define EMAC_RX_TIMEOUT_INT BIT(11)
#define EMAC_RX_OVERFLOW_INT BIT(12)
#define EMAC_RX_EARLY_INT BIT(13)
#define EMAC_RGMII_STA_INT BIT(16)
#define MAC_ADDR_TYPE_DST BIT(31)
/* H3 specific bits for EPHY */
#define H3_EPHY_ADDR_SHIFT 20
#define H3_EPHY_CLK_SEL BIT(18) /* 1: 24MHz, 0: 25MHz */
#define H3_EPHY_LED_POL BIT(17) /* 1: active low, 0: active high */
#define H3_EPHY_SHUTDOWN BIT(16) /* 1: shutdown, 0: power up */
#define H3_EPHY_SELECT BIT(15) /* 1: internal PHY, 0: external PHY */
#define H3_EPHY_MUX_MASK (H3_EPHY_SHUTDOWN | H3_EPHY_SELECT)
#define DWMAC_SUN8I_MDIO_MUX_INTERNAL_ID 1
#define DWMAC_SUN8I_MDIO_MUX_EXTERNAL_ID 2
/* H3/A64 specific bits */
#define SYSCON_RMII_EN BIT(13) /* 1: enable RMII (overrides EPIT) */
/* Generic system control EMAC_CLK bits */
#define SYSCON_ETXDC_SHIFT 10
#define SYSCON_ERXDC_SHIFT 5
/* EMAC PHY Interface Type */
#define SYSCON_EPIT BIT(2) /* 1: RGMII, 0: MII */
#define SYSCON_ETCS_MASK GENMASK(1, 0)
#define SYSCON_ETCS_MII 0x0
#define SYSCON_ETCS_EXT_GMII 0x1
#define SYSCON_ETCS_INT_GMII 0x2
/* sun8i_dwmac_dma_reset() - reset the EMAC
* Called from stmmac via stmmac_dma_ops->reset
*/
static int sun8i_dwmac_dma_reset(void __iomem *ioaddr)
{
writel(0, ioaddr + EMAC_RX_CTL1);
writel(0, ioaddr + EMAC_TX_CTL1);
writel(0, ioaddr + EMAC_RX_FRM_FLT);
writel(0, ioaddr + EMAC_RX_DESC_LIST);
writel(0, ioaddr + EMAC_TX_DESC_LIST);
writel(0, ioaddr + EMAC_INT_EN);
writel(0x1FFFFFF, ioaddr + EMAC_INT_STA);
return 0;
}
/* sun8i_dwmac_dma_init() - initialize the EMAC
* Called from stmmac via stmmac_dma_ops->init
*/
static void sun8i_dwmac_dma_init(void __iomem *ioaddr,
struct stmmac_dma_cfg *dma_cfg, int atds)
{
writel(EMAC_RX_INT | EMAC_TX_INT, ioaddr + EMAC_INT_EN);
writel(0x1FFFFFF, ioaddr + EMAC_INT_STA);
}
static void sun8i_dwmac_dma_init_rx(void __iomem *ioaddr,
struct stmmac_dma_cfg *dma_cfg,
u32 dma_rx_phy, u32 chan)
{
/* Write RX descriptors address */
writel(dma_rx_phy, ioaddr + EMAC_RX_DESC_LIST);
}
static void sun8i_dwmac_dma_init_tx(void __iomem *ioaddr,
struct stmmac_dma_cfg *dma_cfg,
u32 dma_tx_phy, u32 chan)
{
/* Write TX descriptors address */
writel(dma_tx_phy, ioaddr + EMAC_TX_DESC_LIST);
}
/* sun8i_dwmac_dump_regs() - Dump EMAC address space
* Called from stmmac_dma_ops->dump_regs
* Used for ethtool
*/
static void sun8i_dwmac_dump_regs(void __iomem *ioaddr, u32 *reg_space)
{
int i;
for (i = 0; i < 0xC8; i += 4) {
if (i == 0x32 || i == 0x3C)
continue;
reg_space[i / 4] = readl(ioaddr + i);
}
}
/* sun8i_dwmac_dump_mac_regs() - Dump EMAC address space
* Called from stmmac_ops->dump_regs
* Used for ethtool
*/
static void sun8i_dwmac_dump_mac_regs(struct mac_device_info *hw,
u32 *reg_space)
{
int i;
void __iomem *ioaddr = hw->pcsr;
for (i = 0; i < 0xC8; i += 4) {
if (i == 0x32 || i == 0x3C)
continue;
reg_space[i / 4] = readl(ioaddr + i);
}
}
static void sun8i_dwmac_enable_dma_irq(void __iomem *ioaddr, u32 chan)
{
writel(EMAC_RX_INT | EMAC_TX_INT, ioaddr + EMAC_INT_EN);
}
static void sun8i_dwmac_disable_dma_irq(void __iomem *ioaddr, u32 chan)
{
writel(0, ioaddr + EMAC_INT_EN);
}
static void sun8i_dwmac_dma_start_tx(void __iomem *ioaddr, u32 chan)
{
u32 v;
v = readl(ioaddr + EMAC_TX_CTL1);
v |= EMAC_TX_DMA_START;
v |= EMAC_TX_DMA_EN;
writel(v, ioaddr + EMAC_TX_CTL1);
}
static void sun8i_dwmac_enable_dma_transmission(void __iomem *ioaddr)
{
u32 v;
v = readl(ioaddr + EMAC_TX_CTL1);
v |= EMAC_TX_DMA_START;
v |= EMAC_TX_DMA_EN;
writel(v, ioaddr + EMAC_TX_CTL1);
}
static void sun8i_dwmac_dma_stop_tx(void __iomem *ioaddr, u32 chan)
{
u32 v;
v = readl(ioaddr + EMAC_TX_CTL1);
v &= ~EMAC_TX_DMA_EN;
writel(v, ioaddr + EMAC_TX_CTL1);
}
static void sun8i_dwmac_dma_start_rx(void __iomem *ioaddr, u32 chan)
{
u32 v;
v = readl(ioaddr + EMAC_RX_CTL1);
v |= EMAC_RX_DMA_START;
v |= EMAC_RX_DMA_EN;
writel(v, ioaddr + EMAC_RX_CTL1);
}
static void sun8i_dwmac_dma_stop_rx(void __iomem *ioaddr, u32 chan)
{
u32 v;
v = readl(ioaddr + EMAC_RX_CTL1);
v &= ~EMAC_RX_DMA_EN;
writel(v, ioaddr + EMAC_RX_CTL1);
}
static int sun8i_dwmac_dma_interrupt(void __iomem *ioaddr,
struct stmmac_extra_stats *x, u32 chan)
{
u32 v;
int ret = 0;
v = readl(ioaddr + EMAC_INT_STA);
if (v & EMAC_TX_INT) {
ret |= handle_tx;
x->tx_normal_irq_n++;
}
if (v & EMAC_TX_DMA_STOP_INT)
x->tx_process_stopped_irq++;
if (v & EMAC_TX_BUF_UA_INT)
x->tx_process_stopped_irq++;
if (v & EMAC_TX_TIMEOUT_INT)
ret |= tx_hard_error;
if (v & EMAC_TX_UNDERFLOW_INT) {
ret |= tx_hard_error;
x->tx_undeflow_irq++;
}
if (v & EMAC_TX_EARLY_INT)
x->tx_early_irq++;
if (v & EMAC_RX_INT) {
ret |= handle_rx;
x->rx_normal_irq_n++;
}
if (v & EMAC_RX_BUF_UA_INT)
x->rx_buf_unav_irq++;
if (v & EMAC_RX_DMA_STOP_INT)
x->rx_process_stopped_irq++;
if (v & EMAC_RX_TIMEOUT_INT)
ret |= tx_hard_error;
if (v & EMAC_RX_OVERFLOW_INT) {
ret |= tx_hard_error;
x->rx_overflow_irq++;
}
if (v & EMAC_RX_EARLY_INT)
x->rx_early_irq++;
if (v & EMAC_RGMII_STA_INT)
x->irq_rgmii_n++;
writel(v, ioaddr + EMAC_INT_STA);
return ret;
}
static void sun8i_dwmac_dma_operation_mode_rx(void __iomem *ioaddr, int mode,
u32 channel, int fifosz, u8 qmode)
{
u32 v;
v = readl(ioaddr + EMAC_RX_CTL1);
if (mode == SF_DMA_MODE) {
v |= EMAC_RX_MD;
} else {
v &= ~EMAC_RX_MD;
v &= ~EMAC_RX_TH_MASK;
if (mode < 32)
v |= EMAC_RX_TH_32;
else if (mode < 64)
v |= EMAC_RX_TH_64;
else if (mode < 96)
v |= EMAC_RX_TH_96;
else if (mode < 128)
v |= EMAC_RX_TH_128;
}
writel(v, ioaddr + EMAC_RX_CTL1);
}
static void sun8i_dwmac_dma_operation_mode_tx(void __iomem *ioaddr, int mode,
u32 channel, int fifosz, u8 qmode)
{
u32 v;
v = readl(ioaddr + EMAC_TX_CTL1);
if (mode == SF_DMA_MODE) {
v |= EMAC_TX_MD;
/* Undocumented bit (called TX_NEXT_FRM in BSP), the original
* comment is
* "Operating on second frame increase the performance
* especially when transmit store-and-forward is used."
*/
v |= EMAC_TX_NEXT_FRM;
} else {
v &= ~EMAC_TX_MD;
v &= ~EMAC_TX_TH_MASK;
if (mode < 64)
v |= EMAC_TX_TH_64;
else if (mode < 128)
v |= EMAC_TX_TH_128;
else if (mode < 192)
v |= EMAC_TX_TH_192;
else if (mode < 256)
v |= EMAC_TX_TH_256;
}
writel(v, ioaddr + EMAC_TX_CTL1);
}
static const struct stmmac_dma_ops sun8i_dwmac_dma_ops = {
.reset = sun8i_dwmac_dma_reset,
.init = sun8i_dwmac_dma_init,
.init_rx_chan = sun8i_dwmac_dma_init_rx,
.init_tx_chan = sun8i_dwmac_dma_init_tx,
.dump_regs = sun8i_dwmac_dump_regs,
.dma_rx_mode = sun8i_dwmac_dma_operation_mode_rx,
.dma_tx_mode = sun8i_dwmac_dma_operation_mode_tx,
.enable_dma_transmission = sun8i_dwmac_enable_dma_transmission,
.enable_dma_irq = sun8i_dwmac_enable_dma_irq,
.disable_dma_irq = sun8i_dwmac_disable_dma_irq,
.start_tx = sun8i_dwmac_dma_start_tx,
.stop_tx = sun8i_dwmac_dma_stop_tx,
.start_rx = sun8i_dwmac_dma_start_rx,
.stop_rx = sun8i_dwmac_dma_stop_rx,
.dma_interrupt = sun8i_dwmac_dma_interrupt,
};
static int sun8i_dwmac_power_internal_phy(struct stmmac_priv *priv);
static int sun8i_dwmac_init(struct platform_device *pdev, void *priv)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct sunxi_priv_data *gmac = priv;
int ret;
if (gmac->regulator) {
ret = regulator_enable(gmac->regulator);
if (ret) {
dev_err(&pdev->dev, "Fail to enable regulator\n");
return ret;
}
}
ret = clk_prepare_enable(gmac->tx_clk);
if (ret) {
dev_err(&pdev->dev, "Could not enable AHB clock\n");
goto err_disable_regulator;
}
if (gmac->use_internal_phy) {
ret = sun8i_dwmac_power_internal_phy(netdev_priv(ndev));
if (ret)
goto err_disable_clk;
}
return 0;
err_disable_clk:
clk_disable_unprepare(gmac->tx_clk);
err_disable_regulator:
if (gmac->regulator)
regulator_disable(gmac->regulator);
return ret;
}
static void sun8i_dwmac_core_init(struct mac_device_info *hw,
struct net_device *dev)
{
void __iomem *ioaddr = hw->pcsr;
u32 v;
v = (8 << EMAC_BURSTLEN_SHIFT); /* burst len */
writel(v, ioaddr + EMAC_BASIC_CTL1);
}
static void sun8i_dwmac_set_mac(void __iomem *ioaddr, bool enable)
{
u32 t, r;
t = readl(ioaddr + EMAC_TX_CTL0);
r = readl(ioaddr + EMAC_RX_CTL0);
if (enable) {
t |= EMAC_TX_TRANSMITTER_EN;
r |= EMAC_RX_RECEIVER_EN;
} else {
t &= ~EMAC_TX_TRANSMITTER_EN;
r &= ~EMAC_RX_RECEIVER_EN;
}
writel(t, ioaddr + EMAC_TX_CTL0);
writel(r, ioaddr + EMAC_RX_CTL0);
}
/* Set MAC address at slot reg_n
* All slot > 0 need to be enabled with MAC_ADDR_TYPE_DST
* If addr is NULL, clear the slot
*/
static void sun8i_dwmac_set_umac_addr(struct mac_device_info *hw,
unsigned char *addr,
unsigned int reg_n)
{
void __iomem *ioaddr = hw->pcsr;
u32 v;
if (!addr) {
writel(0, ioaddr + EMAC_MACADDR_HI(reg_n));
return;
}
stmmac_set_mac_addr(ioaddr, addr, EMAC_MACADDR_HI(reg_n),
EMAC_MACADDR_LO(reg_n));
if (reg_n > 0) {
v = readl(ioaddr + EMAC_MACADDR_HI(reg_n));
v |= MAC_ADDR_TYPE_DST;
writel(v, ioaddr + EMAC_MACADDR_HI(reg_n));
}
}
static void sun8i_dwmac_get_umac_addr(struct mac_device_info *hw,
unsigned char *addr,
unsigned int reg_n)
{
void __iomem *ioaddr = hw->pcsr;
stmmac_get_mac_addr(ioaddr, addr, EMAC_MACADDR_HI(reg_n),
EMAC_MACADDR_LO(reg_n));
}
/* caution this function must return non 0 to work */
static int sun8i_dwmac_rx_ipc_enable(struct mac_device_info *hw)
{
void __iomem *ioaddr = hw->pcsr;
u32 v;
v = readl(ioaddr + EMAC_RX_CTL0);
v |= EMAC_RX_DO_CRC;
writel(v, ioaddr + EMAC_RX_CTL0);
return 1;
}
static void sun8i_dwmac_set_filter(struct mac_device_info *hw,
struct net_device *dev)
{
void __iomem *ioaddr = hw->pcsr;
u32 v;
int i = 1;
struct netdev_hw_addr *ha;
int macaddrs = netdev_uc_count(dev) + netdev_mc_count(dev) + 1;
v = EMAC_FRM_FLT_CTL;
if (dev->flags & IFF_PROMISC) {
v = EMAC_FRM_FLT_RXALL;
} else if (dev->flags & IFF_ALLMULTI) {
v |= EMAC_FRM_FLT_MULTICAST;
} else if (macaddrs <= hw->unicast_filter_entries) {
if (!netdev_mc_empty(dev)) {
netdev_for_each_mc_addr(ha, dev) {
sun8i_dwmac_set_umac_addr(hw, ha->addr, i);
i++;
}
}
if (!netdev_uc_empty(dev)) {
netdev_for_each_uc_addr(ha, dev) {
sun8i_dwmac_set_umac_addr(hw, ha->addr, i);
i++;
}
}
} else {
netdev_info(dev, "Too many address, switching to promiscuous\n");
v = EMAC_FRM_FLT_RXALL;
}
/* Disable unused address filter slots */
while (i < hw->unicast_filter_entries)
sun8i_dwmac_set_umac_addr(hw, NULL, i++);
writel(v, ioaddr + EMAC_RX_FRM_FLT);
}
static void sun8i_dwmac_flow_ctrl(struct mac_device_info *hw,
unsigned int duplex, unsigned int fc,
unsigned int pause_time, u32 tx_cnt)
{
void __iomem *ioaddr = hw->pcsr;
u32 v;
v = readl(ioaddr + EMAC_RX_CTL0);
if (fc == FLOW_AUTO)
v |= EMAC_RX_FLOW_CTL_EN;
else
v &= ~EMAC_RX_FLOW_CTL_EN;
writel(v, ioaddr + EMAC_RX_CTL0);
v = readl(ioaddr + EMAC_TX_FLOW_CTL);
if (fc == FLOW_AUTO)
v |= EMAC_TX_FLOW_CTL_EN;
else
v &= ~EMAC_TX_FLOW_CTL_EN;
writel(v, ioaddr + EMAC_TX_FLOW_CTL);
}
static int sun8i_dwmac_reset(struct stmmac_priv *priv)
{
u32 v;
int err;
v = readl(priv->ioaddr + EMAC_BASIC_CTL1);
writel(v | 0x01, priv->ioaddr + EMAC_BASIC_CTL1);
/* The timeout was previoulsy set to 10ms, but some board (OrangePI0)
* need more if no cable plugged. 100ms seems OK
*/
err = readl_poll_timeout(priv->ioaddr + EMAC_BASIC_CTL1, v,
!(v & 0x01), 100, 100000);
if (err) {
dev_err(priv->device, "EMAC reset timeout\n");
return -EFAULT;
}
return 0;
}
/* Search in mdio-mux node for internal PHY node and get its clk/reset */
static int get_ephy_nodes(struct stmmac_priv *priv)
{
struct sunxi_priv_data *gmac = priv->plat->bsp_priv;
struct device_node *mdio_mux, *iphynode;
struct device_node *mdio_internal;
int ret;
mdio_mux = of_get_child_by_name(priv->device->of_node, "mdio-mux");
if (!mdio_mux) {
dev_err(priv->device, "Cannot get mdio-mux node\n");
return -ENODEV;
}
mdio_internal = of_get_compatible_child(mdio_mux,
"allwinner,sun8i-h3-mdio-internal");
of_node_put(mdio_mux);
if (!mdio_internal) {
dev_err(priv->device, "Cannot get internal_mdio node\n");
return -ENODEV;
}
/* Seek for internal PHY */
for_each_child_of_node(mdio_internal, iphynode) {
gmac->ephy_clk = of_clk_get(iphynode, 0);
if (IS_ERR(gmac->ephy_clk))
continue;
gmac->rst_ephy = of_reset_control_get_exclusive(iphynode, NULL);
if (IS_ERR(gmac->rst_ephy)) {
ret = PTR_ERR(gmac->rst_ephy);
if (ret == -EPROBE_DEFER) {
of_node_put(iphynode);
of_node_put(mdio_internal);
return ret;
}
continue;
}
dev_info(priv->device, "Found internal PHY node\n");
of_node_put(iphynode);
of_node_put(mdio_internal);
return 0;
}
of_node_put(mdio_internal);
return -ENODEV;
}
static int sun8i_dwmac_power_internal_phy(struct stmmac_priv *priv)
{
struct sunxi_priv_data *gmac = priv->plat->bsp_priv;
int ret;
if (gmac->internal_phy_powered) {
dev_warn(priv->device, "Internal PHY already powered\n");
return 0;
}
dev_info(priv->device, "Powering internal PHY\n");
ret = clk_prepare_enable(gmac->ephy_clk);
if (ret) {
dev_err(priv->device, "Cannot enable internal PHY\n");
return ret;
}
/* Make sure the EPHY is properly reseted, as U-Boot may leave
* it at deasserted state, and thus it may fail to reset EMAC.
*/
reset_control_assert(gmac->rst_ephy);
ret = reset_control_deassert(gmac->rst_ephy);
if (ret) {
dev_err(priv->device, "Cannot deassert internal phy\n");
clk_disable_unprepare(gmac->ephy_clk);
return ret;
}
gmac->internal_phy_powered = true;
return 0;
}
static int sun8i_dwmac_unpower_internal_phy(struct sunxi_priv_data *gmac)
{
if (!gmac->internal_phy_powered)
return 0;
clk_disable_unprepare(gmac->ephy_clk);
reset_control_assert(gmac->rst_ephy);
gmac->internal_phy_powered = false;
return 0;
}
/* MDIO multiplexing switch function
* This function is called by the mdio-mux layer when it thinks the mdio bus
* multiplexer needs to switch.
* 'current_child' is the current value of the mux register
* 'desired_child' is the value of the 'reg' property of the target child MDIO
* node.
* The first time this function is called, current_child == -1.
* If current_child == desired_child, then the mux is already set to the
* correct bus.
*/
static int mdio_mux_syscon_switch_fn(int current_child, int desired_child,
void *data)
{
struct stmmac_priv *priv = data;
struct sunxi_priv_data *gmac = priv->plat->bsp_priv;
u32 reg, val;
int ret = 0;
if (current_child ^ desired_child) {
regmap_field_read(gmac->regmap_field, &reg);
switch (desired_child) {
case DWMAC_SUN8I_MDIO_MUX_INTERNAL_ID:
dev_info(priv->device, "Switch mux to internal PHY");
val = (reg & ~H3_EPHY_MUX_MASK) | H3_EPHY_SELECT;
gmac->use_internal_phy = true;
break;
case DWMAC_SUN8I_MDIO_MUX_EXTERNAL_ID:
dev_info(priv->device, "Switch mux to external PHY");
val = (reg & ~H3_EPHY_MUX_MASK) | H3_EPHY_SHUTDOWN;
gmac->use_internal_phy = false;
break;
default:
dev_err(priv->device, "Invalid child ID %x\n",
desired_child);
return -EINVAL;
}
regmap_field_write(gmac->regmap_field, val);
if (gmac->use_internal_phy) {
ret = sun8i_dwmac_power_internal_phy(priv);
if (ret)
return ret;
} else {
sun8i_dwmac_unpower_internal_phy(gmac);
}
/* After changing syscon value, the MAC need reset or it will
* use the last value (and so the last PHY set).
*/
ret = sun8i_dwmac_reset(priv);
}
return ret;
}
static int sun8i_dwmac_register_mdio_mux(struct stmmac_priv *priv)
{
int ret;
struct device_node *mdio_mux;
struct sunxi_priv_data *gmac = priv->plat->bsp_priv;
mdio_mux = of_get_child_by_name(priv->device->of_node, "mdio-mux");
if (!mdio_mux)
return -ENODEV;
ret = mdio_mux_init(priv->device, mdio_mux, mdio_mux_syscon_switch_fn,
&gmac->mux_handle, priv, priv->mii);
return ret;
}
static int sun8i_dwmac_set_syscon(struct stmmac_priv *priv)
{
struct sunxi_priv_data *gmac = priv->plat->bsp_priv;
struct device_node *node = priv->device->of_node;
int ret;
u32 reg, val;
regmap_field_read(gmac->regmap_field, &val);
reg = gmac->variant->default_syscon_value;
if (reg != val)
dev_warn(priv->device,
"Current syscon value is not the default %x (expect %x)\n",
val, reg);
if (gmac->variant->soc_has_internal_phy) {
if (of_property_read_bool(node, "allwinner,leds-active-low"))
reg |= H3_EPHY_LED_POL;
else
reg &= ~H3_EPHY_LED_POL;
/* Force EPHY xtal frequency to 24MHz. */
reg |= H3_EPHY_CLK_SEL;
ret = of_mdio_parse_addr(priv->device, priv->plat->phy_node);
if (ret < 0) {
dev_err(priv->device, "Could not parse MDIO addr\n");
return ret;
}
/* of_mdio_parse_addr returns a valid (0 ~ 31) PHY
* address. No need to mask it again.
*/
reg |= 1 << H3_EPHY_ADDR_SHIFT;
} else {
/* For SoCs without internal PHY the PHY selection bit should be
* set to 0 (external PHY).
*/
reg &= ~H3_EPHY_SELECT;
}
if (!of_property_read_u32(node, "allwinner,tx-delay-ps", &val)) {
if (val % 100) {
dev_err(priv->device, "tx-delay must be a multiple of 100\n");
return -EINVAL;
}
val /= 100;
dev_dbg(priv->device, "set tx-delay to %x\n", val);
if (val <= gmac->variant->tx_delay_max) {
reg &= ~(gmac->variant->tx_delay_max <<
SYSCON_ETXDC_SHIFT);
reg |= (val << SYSCON_ETXDC_SHIFT);
} else {
dev_err(priv->device, "Invalid TX clock delay: %d\n",
val);
return -EINVAL;
}
}
if (!of_property_read_u32(node, "allwinner,rx-delay-ps", &val)) {
if (val % 100) {
dev_err(priv->device, "rx-delay must be a multiple of 100\n");
return -EINVAL;
}
val /= 100;
dev_dbg(priv->device, "set rx-delay to %x\n", val);
if (val <= gmac->variant->rx_delay_max) {
reg &= ~(gmac->variant->rx_delay_max <<
SYSCON_ERXDC_SHIFT);
reg |= (val << SYSCON_ERXDC_SHIFT);
} else {
dev_err(priv->device, "Invalid RX clock delay: %d\n",
val);
return -EINVAL;
}
}
/* Clear interface mode bits */
reg &= ~(SYSCON_ETCS_MASK | SYSCON_EPIT);
if (gmac->variant->support_rmii)
reg &= ~SYSCON_RMII_EN;
switch (priv->plat->interface) {
case PHY_INTERFACE_MODE_MII:
/* default */
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
reg |= SYSCON_EPIT | SYSCON_ETCS_INT_GMII;
break;
case PHY_INTERFACE_MODE_RMII:
reg |= SYSCON_RMII_EN | SYSCON_ETCS_EXT_GMII;
break;
default:
dev_err(priv->device, "Unsupported interface mode: %s",
phy_modes(priv->plat->interface));
return -EINVAL;
}
regmap_field_write(gmac->regmap_field, reg);
return 0;
}
static void sun8i_dwmac_unset_syscon(struct sunxi_priv_data *gmac)
{
u32 reg = gmac->variant->default_syscon_value;
regmap_field_write(gmac->regmap_field, reg);
}
static void sun8i_dwmac_exit(struct platform_device *pdev, void *priv)
{
struct sunxi_priv_data *gmac = priv;
if (gmac->variant->soc_has_internal_phy) {
if (gmac->internal_phy_powered)
sun8i_dwmac_unpower_internal_phy(gmac);
}
sun8i_dwmac_unset_syscon(gmac);
clk_disable_unprepare(gmac->tx_clk);
if (gmac->regulator)
regulator_disable(gmac->regulator);
}
static const struct stmmac_ops sun8i_dwmac_ops = {
.core_init = sun8i_dwmac_core_init,
.set_mac = sun8i_dwmac_set_mac,
.dump_regs = sun8i_dwmac_dump_mac_regs,
.rx_ipc = sun8i_dwmac_rx_ipc_enable,
.set_filter = sun8i_dwmac_set_filter,
.flow_ctrl = sun8i_dwmac_flow_ctrl,
.set_umac_addr = sun8i_dwmac_set_umac_addr,
.get_umac_addr = sun8i_dwmac_get_umac_addr,
};
static struct mac_device_info *sun8i_dwmac_setup(void *ppriv)
{
struct mac_device_info *mac;
struct stmmac_priv *priv = ppriv;
int ret;
mac = devm_kzalloc(priv->device, sizeof(*mac), GFP_KERNEL);
if (!mac)
return NULL;
ret = sun8i_dwmac_set_syscon(priv);
if (ret)
return NULL;
mac->pcsr = priv->ioaddr;
mac->mac = &sun8i_dwmac_ops;
mac->dma = &sun8i_dwmac_dma_ops;
/* The loopback bit seems to be re-set when link change
* Simply mask it each time
* Speed 10/100/1000 are set in BIT(2)/BIT(3)
*/
mac->link.speed_mask = GENMASK(3, 2) | EMAC_LOOPBACK;
mac->link.speed10 = EMAC_SPEED_10;
mac->link.speed100 = EMAC_SPEED_100;
mac->link.speed1000 = EMAC_SPEED_1000;
mac->link.duplex = EMAC_DUPLEX_FULL;
mac->mii.addr = EMAC_MDIO_CMD;
mac->mii.data = EMAC_MDIO_DATA;
mac->mii.reg_shift = 4;
mac->mii.reg_mask = GENMASK(8, 4);
mac->mii.addr_shift = 12;
mac->mii.addr_mask = GENMASK(16, 12);
mac->mii.clk_csr_shift = 20;
mac->mii.clk_csr_mask = GENMASK(22, 20);
mac->unicast_filter_entries = 8;
/* Synopsys Id is not available */
priv->synopsys_id = 0;
return mac;
}
static struct regmap *sun8i_dwmac_get_syscon_from_dev(struct device_node *node)
{
struct device_node *syscon_node;
struct platform_device *syscon_pdev;
struct regmap *regmap = NULL;
syscon_node = of_parse_phandle(node, "syscon", 0);
if (!syscon_node)
return ERR_PTR(-ENODEV);
syscon_pdev = of_find_device_by_node(syscon_node);
if (!syscon_pdev) {
/* platform device might not be probed yet */
regmap = ERR_PTR(-EPROBE_DEFER);
goto out_put_node;
}
/* If no regmap is found then the other device driver is at fault */
regmap = dev_get_regmap(&syscon_pdev->dev, NULL);
if (!regmap)
regmap = ERR_PTR(-EINVAL);
platform_device_put(syscon_pdev);
out_put_node:
of_node_put(syscon_node);
return regmap;
}
static int sun8i_dwmac_probe(struct platform_device *pdev)
{
struct plat_stmmacenet_data *plat_dat;
struct stmmac_resources stmmac_res;
struct sunxi_priv_data *gmac;
struct device *dev = &pdev->dev;
int ret;
struct stmmac_priv *priv;
struct net_device *ndev;
struct regmap *regmap;
ret = stmmac_get_platform_resources(pdev, &stmmac_res);
if (ret)
return ret;
plat_dat = stmmac_probe_config_dt(pdev, &stmmac_res.mac);
if (IS_ERR(plat_dat))
return PTR_ERR(plat_dat);
gmac = devm_kzalloc(dev, sizeof(*gmac), GFP_KERNEL);
if (!gmac)
return -ENOMEM;
gmac->variant = of_device_get_match_data(&pdev->dev);
if (!gmac->variant) {
dev_err(&pdev->dev, "Missing dwmac-sun8i variant\n");
return -EINVAL;
}
gmac->tx_clk = devm_clk_get(dev, "stmmaceth");
if (IS_ERR(gmac->tx_clk)) {
dev_err(dev, "Could not get TX clock\n");
return PTR_ERR(gmac->tx_clk);
}
/* Optional regulator for PHY */
gmac->regulator = devm_regulator_get_optional(dev, "phy");
if (IS_ERR(gmac->regulator)) {
if (PTR_ERR(gmac->regulator) == -EPROBE_DEFER)
return -EPROBE_DEFER;
dev_info(dev, "No regulator found\n");
gmac->regulator = NULL;
}
/* The "GMAC clock control" register might be located in the
* CCU address range (on the R40), or the system control address
* range (on most other sun8i and later SoCs).
*
* The former controls most if not all clocks in the SoC. The
* latter has an SoC identification register, and on some SoCs,
* controls to map device specific SRAM to either the intended
* peripheral, or the CPU address space.
*
* In either case, there should be a coordinated and restricted
* method of accessing the register needed here. This is done by
* having the device export a custom regmap, instead of a generic
* syscon, which grants all access to all registers.
*
* To support old device trees, we fall back to using the syscon
* interface if possible.
*/
regmap = sun8i_dwmac_get_syscon_from_dev(pdev->dev.of_node);
if (IS_ERR(regmap))
regmap = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"syscon");
if (IS_ERR(regmap)) {
ret = PTR_ERR(regmap);
dev_err(&pdev->dev, "Unable to map syscon: %d\n", ret);
return ret;
}
gmac->regmap_field = devm_regmap_field_alloc(dev, regmap,
*gmac->variant->syscon_field);
if (IS_ERR(gmac->regmap_field)) {
ret = PTR_ERR(gmac->regmap_field);
dev_err(dev, "Unable to map syscon register: %d\n", ret);
return ret;
}
plat_dat->interface = of_get_phy_mode(dev->of_node);
/* platform data specifying hardware features and callbacks.
* hardware features were copied from Allwinner drivers.
*/
plat_dat->rx_coe = STMMAC_RX_COE_TYPE2;
plat_dat->tx_coe = 1;
plat_dat->has_sun8i = true;
plat_dat->bsp_priv = gmac;
plat_dat->init = sun8i_dwmac_init;
plat_dat->exit = sun8i_dwmac_exit;
plat_dat->setup = sun8i_dwmac_setup;
plat_dat->tx_fifo_size = 4096;
plat_dat->rx_fifo_size = 16384;
ret = sun8i_dwmac_init(pdev, plat_dat->bsp_priv);
if (ret)
return ret;
ret = stmmac_dvr_probe(&pdev->dev, plat_dat, &stmmac_res);
if (ret)
goto dwmac_exit;
ndev = dev_get_drvdata(&pdev->dev);
priv = netdev_priv(ndev);
/* The mux must be registered after parent MDIO
* so after stmmac_dvr_probe()
*/
if (gmac->variant->soc_has_internal_phy) {
ret = get_ephy_nodes(priv);
if (ret)
goto dwmac_exit;
ret = sun8i_dwmac_register_mdio_mux(priv);
if (ret) {
dev_err(&pdev->dev, "Failed to register mux\n");
goto dwmac_mux;
}
} else {
ret = sun8i_dwmac_reset(priv);
if (ret)
goto dwmac_exit;
}
return ret;
dwmac_mux:
reset_control_put(gmac->rst_ephy);
clk_put(gmac->ephy_clk);
sun8i_dwmac_unset_syscon(gmac);
dwmac_exit:
stmmac_pltfr_remove(pdev);
return ret;
}
static int sun8i_dwmac_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct stmmac_priv *priv = netdev_priv(ndev);
struct sunxi_priv_data *gmac = priv->plat->bsp_priv;
if (gmac->variant->soc_has_internal_phy) {
mdio_mux_uninit(gmac->mux_handle);
sun8i_dwmac_unpower_internal_phy(gmac);
reset_control_put(gmac->rst_ephy);
clk_put(gmac->ephy_clk);
}
stmmac_pltfr_remove(pdev);
return 0;
}
static const struct of_device_id sun8i_dwmac_match[] = {
{ .compatible = "allwinner,sun8i-h3-emac",
.data = &emac_variant_h3 },
{ .compatible = "allwinner,sun8i-v3s-emac",
.data = &emac_variant_v3s },
{ .compatible = "allwinner,sun8i-a83t-emac",
.data = &emac_variant_a83t },
{ .compatible = "allwinner,sun8i-r40-gmac",
.data = &emac_variant_r40 },
{ .compatible = "allwinner,sun50i-a64-emac",
.data = &emac_variant_a64 },
{ }
};
MODULE_DEVICE_TABLE(of, sun8i_dwmac_match);
static struct platform_driver sun8i_dwmac_driver = {
.probe = sun8i_dwmac_probe,
.remove = sun8i_dwmac_remove,
.driver = {
.name = "dwmac-sun8i",
.pm = &stmmac_pltfr_pm_ops,
.of_match_table = sun8i_dwmac_match,
},
};
module_platform_driver(sun8i_dwmac_driver);
MODULE_AUTHOR("Corentin Labbe <clabbe.montjoie@gmail.com>");
MODULE_DESCRIPTION("Allwinner sun8i DWMAC specific glue layer");
MODULE_LICENSE("GPL");