kernel_samsung_a34x-permissive/drivers/net/wireless/mediatek/mt76/mt76x0/eeprom.c

446 lines
11 KiB
C
Raw Normal View History

/*
* Copyright (C) 2014 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2015 Jakub Kicinski <kubakici@wp.pl>
* Copyright (C) 2018 Stanislaw Gruszka <stf_xl@wp.pl>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/of.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/etherdevice.h>
#include <asm/unaligned.h>
#include "mt76x0.h"
#include "eeprom.h"
static bool
field_valid(u8 val)
{
return val != 0xff;
}
static s8
field_validate(u8 val)
{
if (!field_valid(val))
return 0;
return val;
}
static inline int
sign_extend(u32 val, unsigned int size)
{
bool sign = val & BIT(size - 1);
val &= BIT(size - 1) - 1;
return sign ? val : -val;
}
static int
mt76x0_efuse_read(struct mt76x0_dev *dev, u16 addr, u8 *data,
enum mt76x0_eeprom_access_modes mode)
{
u32 val;
int i;
val = mt76_rr(dev, MT_EFUSE_CTRL);
val &= ~(MT_EFUSE_CTRL_AIN |
MT_EFUSE_CTRL_MODE);
val |= FIELD_PREP(MT_EFUSE_CTRL_AIN, addr & ~0xf) |
FIELD_PREP(MT_EFUSE_CTRL_MODE, mode) |
MT_EFUSE_CTRL_KICK;
mt76_wr(dev, MT_EFUSE_CTRL, val);
if (!mt76_poll(dev, MT_EFUSE_CTRL, MT_EFUSE_CTRL_KICK, 0, 1000))
return -ETIMEDOUT;
val = mt76_rr(dev, MT_EFUSE_CTRL);
if ((val & MT_EFUSE_CTRL_AOUT) == MT_EFUSE_CTRL_AOUT) {
/* Parts of eeprom not in the usage map (0x80-0xc0,0xf0)
* will not return valid data but it's ok.
*/
memset(data, 0xff, 16);
return 0;
}
for (i = 0; i < 4; i++) {
val = mt76_rr(dev, MT_EFUSE_DATA(i));
put_unaligned_le32(val, data + 4 * i);
}
return 0;
}
#define MT_MAP_READS DIV_ROUND_UP(MT_EFUSE_USAGE_MAP_SIZE, 16)
static int
mt76x0_efuse_physical_size_check(struct mt76x0_dev *dev)
{
u8 data[MT_MAP_READS * 16];
int ret, i;
u32 start = 0, end = 0, cnt_free;
for (i = 0; i < MT_MAP_READS; i++) {
ret = mt76x0_efuse_read(dev, MT_EE_USAGE_MAP_START + i * 16,
data + i * 16, MT_EE_PHYSICAL_READ);
if (ret)
return ret;
}
for (i = 0; i < MT_EFUSE_USAGE_MAP_SIZE; i++)
if (!data[i]) {
if (!start)
start = MT_EE_USAGE_MAP_START + i;
end = MT_EE_USAGE_MAP_START + i;
}
cnt_free = end - start + 1;
if (MT_EFUSE_USAGE_MAP_SIZE - cnt_free < 5) {
dev_err(dev->mt76.dev, "Error: your device needs default EEPROM file and this driver doesn't support it!\n");
return -EINVAL;
}
return 0;
}
static void
mt76x0_set_chip_cap(struct mt76x0_dev *dev, u8 *eeprom)
{
enum mt76x2_board_type { BOARD_TYPE_2GHZ = 1, BOARD_TYPE_5GHZ = 2 };
u16 nic_conf0 = get_unaligned_le16(eeprom + MT_EE_NIC_CONF_0);
u16 nic_conf1 = get_unaligned_le16(eeprom + MT_EE_NIC_CONF_1);
dev_dbg(dev->mt76.dev, "NIC_CONF0: %04x NIC_CONF1: %04x\n", nic_conf0, nic_conf1);
switch (FIELD_GET(MT_EE_NIC_CONF_0_BOARD_TYPE, nic_conf0)) {
case BOARD_TYPE_5GHZ:
dev->ee->has_5ghz = true;
break;
case BOARD_TYPE_2GHZ:
dev->ee->has_2ghz = true;
break;
default:
dev->ee->has_2ghz = true;
dev->ee->has_5ghz = true;
break;
}
dev_dbg(dev->mt76.dev, "Has 2GHZ %d 5GHZ %d\n", dev->ee->has_2ghz, dev->ee->has_5ghz);
if (!field_valid(nic_conf1 & 0xff))
nic_conf1 &= 0xff00;
if (nic_conf1 & MT_EE_NIC_CONF_1_HW_RF_CTRL)
dev_err(dev->mt76.dev,
"Error: this driver does not support HW RF ctrl\n");
if (!field_valid(nic_conf0 >> 8))
return;
if (FIELD_GET(MT_EE_NIC_CONF_0_RX_PATH, nic_conf0) > 1 ||
FIELD_GET(MT_EE_NIC_CONF_0_TX_PATH, nic_conf0) > 1)
dev_err(dev->mt76.dev,
"Error: device has more than 1 RX/TX stream!\n");
dev->ee->pa_type = FIELD_GET(MT_EE_NIC_CONF_0_PA_TYPE, nic_conf0);
dev_dbg(dev->mt76.dev, "PA Type %d\n", dev->ee->pa_type);
}
static int
mt76x0_set_macaddr(struct mt76x0_dev *dev, const u8 *eeprom)
{
const void *src = eeprom + MT_EE_MAC_ADDR;
ether_addr_copy(dev->macaddr, src);
if (!is_valid_ether_addr(dev->macaddr)) {
eth_random_addr(dev->macaddr);
dev_info(dev->mt76.dev,
"Invalid MAC address, using random address %pM\n",
dev->macaddr);
}
mt76_wr(dev, MT_MAC_ADDR_DW0, get_unaligned_le32(dev->macaddr));
mt76_wr(dev, MT_MAC_ADDR_DW1, get_unaligned_le16(dev->macaddr + 4) |
FIELD_PREP(MT_MAC_ADDR_DW1_U2ME_MASK, 0xff));
return 0;
}
static void
mt76x0_set_temp_offset(struct mt76x0_dev *dev, u8 *eeprom)
{
u8 temp = eeprom[MT_EE_TEMP_OFFSET];
if (field_valid(temp))
dev->ee->temp_off = sign_extend(temp, 8);
else
dev->ee->temp_off = -10;
}
static void
mt76x0_set_country_reg(struct mt76x0_dev *dev, u8 *eeprom)
{
/* Note: - region 31 is not valid for mt76x0 (see rtmp_init.c)
* - comments in rtmp_def.h are incorrect (see rt_channel.c)
*/
static const struct reg_channel_bounds chan_bounds[] = {
/* EEPROM country regions 0 - 7 */
{ 1, 11 }, { 1, 13 }, { 10, 2 }, { 10, 4 },
{ 14, 1 }, { 1, 14 }, { 3, 7 }, { 5, 9 },
/* EEPROM country regions 32 - 33 */
{ 1, 11 }, { 1, 14 }
};
u8 val = eeprom[MT_EE_COUNTRY_REGION_2GHZ];
int idx = -1;
dev_dbg(dev->mt76.dev, "REG 2GHZ %u REG 5GHZ %u\n", val, eeprom[MT_EE_COUNTRY_REGION_5GHZ]);
if (val < 8)
idx = val;
if (val > 31 && val < 33)
idx = val - 32 + 8;
if (idx != -1)
dev_info(dev->mt76.dev,
"EEPROM country region %02hhx (channels %hhd-%hhd)\n",
val, chan_bounds[idx].start,
chan_bounds[idx].start + chan_bounds[idx].num - 1);
else
idx = 5; /* channels 1 - 14 */
dev->ee->reg = chan_bounds[idx];
/* TODO: country region 33 is special - phy should be set to B-mode
* before entering channel 14 (see sta/connect.c)
*/
}
static void
mt76x0_set_rf_freq_off(struct mt76x0_dev *dev, u8 *eeprom)
{
u8 comp;
dev->ee->rf_freq_off = field_validate(eeprom[MT_EE_FREQ_OFFSET]);
comp = field_validate(eeprom[MT_EE_FREQ_OFFSET_COMPENSATION]);
if (comp & BIT(7))
dev->ee->rf_freq_off -= comp & 0x7f;
else
dev->ee->rf_freq_off += comp;
}
static void
mt76x0_set_lna_gain(struct mt76x0_dev *dev, u8 *eeprom)
{
u8 gain;
dev->ee->lna_gain_2ghz = eeprom[MT_EE_LNA_GAIN_2GHZ];
dev->ee->lna_gain_5ghz[0] = eeprom[MT_EE_LNA_GAIN_5GHZ_0];
gain = eeprom[MT_EE_LNA_GAIN_5GHZ_1];
if (gain == 0xff || gain == 0)
dev->ee->lna_gain_5ghz[1] = dev->ee->lna_gain_5ghz[0];
else
dev->ee->lna_gain_5ghz[1] = gain;
gain = eeprom[MT_EE_LNA_GAIN_5GHZ_2];
if (gain == 0xff || gain == 0)
dev->ee->lna_gain_5ghz[2] = dev->ee->lna_gain_5ghz[0];
else
dev->ee->lna_gain_5ghz[2] = gain;
}
static void
mt76x0_set_rssi_offset(struct mt76x0_dev *dev, u8 *eeprom)
{
int i;
s8 *rssi_offset = dev->ee->rssi_offset_2ghz;
for (i = 0; i < 2; i++) {
rssi_offset[i] = eeprom[MT_EE_RSSI_OFFSET + i];
if (rssi_offset[i] < -10 || rssi_offset[i] > 10) {
dev_warn(dev->mt76.dev,
"Warning: EEPROM RSSI is invalid %02hhx\n",
rssi_offset[i]);
rssi_offset[i] = 0;
}
}
rssi_offset = dev->ee->rssi_offset_5ghz;
for (i = 0; i < 3; i++) {
rssi_offset[i] = eeprom[MT_EE_RSSI_OFFSET_5GHZ + i];
if (rssi_offset[i] < -10 || rssi_offset[i] > 10) {
dev_warn(dev->mt76.dev,
"Warning: EEPROM RSSI is invalid %02hhx\n",
rssi_offset[i]);
rssi_offset[i] = 0;
}
}
}
static u32
calc_bw40_power_rate(u32 value, int delta)
{
u32 ret = 0;
int i, tmp;
for (i = 0; i < 4; i++) {
tmp = s6_to_int((value >> i*8) & 0xff) + delta;
ret |= (u32)(int_to_s6(tmp)) << i*8;
}
return ret;
}
static s8
get_delta(u8 val)
{
s8 ret;
if (!field_valid(val) || !(val & BIT(7)))
return 0;
ret = val & 0x1f;
if (ret > 8)
ret = 8;
if (val & BIT(6))
ret = -ret;
return ret;
}
static void
mt76x0_set_tx_power_per_rate(struct mt76x0_dev *dev, u8 *eeprom)
{
s8 bw40_delta_2g, bw40_delta_5g;
u32 val;
int i;
bw40_delta_2g = get_delta(eeprom[MT_EE_TX_POWER_DELTA_BW40]);
bw40_delta_5g = get_delta(eeprom[MT_EE_TX_POWER_DELTA_BW40 + 1]);
for (i = 0; i < 5; i++) {
val = get_unaligned_le32(eeprom + MT_EE_TX_POWER_BYRATE(i));
/* Skip last 16 bits. */
if (i == 4)
val &= 0x0000ffff;
dev->ee->tx_pwr_cfg_2g[i][0] = val;
dev->ee->tx_pwr_cfg_2g[i][1] = calc_bw40_power_rate(val, bw40_delta_2g);
}
/* Reading per rate tx power for 5 GHz band is a bit more complex. Note
* we mix 16 bit and 32 bit reads and sometimes do shifts.
*/
val = get_unaligned_le16(eeprom + 0x120);
val <<= 16;
dev->ee->tx_pwr_cfg_5g[0][0] = val;
dev->ee->tx_pwr_cfg_5g[0][1] = calc_bw40_power_rate(val, bw40_delta_5g);
val = get_unaligned_le32(eeprom + 0x122);
dev->ee->tx_pwr_cfg_5g[1][0] = val;
dev->ee->tx_pwr_cfg_5g[1][1] = calc_bw40_power_rate(val, bw40_delta_5g);
val = get_unaligned_le16(eeprom + 0x126);
dev->ee->tx_pwr_cfg_5g[2][0] = val;
dev->ee->tx_pwr_cfg_5g[2][1] = calc_bw40_power_rate(val, bw40_delta_5g);
val = get_unaligned_le16(eeprom + 0xec);
val <<= 16;
dev->ee->tx_pwr_cfg_5g[3][0] = val;
dev->ee->tx_pwr_cfg_5g[3][1] = calc_bw40_power_rate(val, bw40_delta_5g);
val = get_unaligned_le16(eeprom + 0xee);
dev->ee->tx_pwr_cfg_5g[4][0] = val;
dev->ee->tx_pwr_cfg_5g[4][1] = calc_bw40_power_rate(val, bw40_delta_5g);
}
static void
mt76x0_set_tx_power_per_chan(struct mt76x0_dev *dev, u8 *eeprom)
{
int i;
u8 tx_pwr;
for (i = 0; i < 14; i++) {
tx_pwr = eeprom[MT_EE_TX_POWER_OFFSET_2GHZ + i];
if (tx_pwr <= 0x3f && tx_pwr > 0)
dev->ee->tx_pwr_per_chan[i] = tx_pwr;
else
dev->ee->tx_pwr_per_chan[i] = 5;
}
for (i = 0; i < 40; i++) {
tx_pwr = eeprom[MT_EE_TX_POWER_OFFSET_5GHZ + i];
if (tx_pwr <= 0x3f && tx_pwr > 0)
dev->ee->tx_pwr_per_chan[14 + i] = tx_pwr;
else
dev->ee->tx_pwr_per_chan[14 + i] = 5;
}
dev->ee->tx_pwr_per_chan[54] = dev->ee->tx_pwr_per_chan[22];
dev->ee->tx_pwr_per_chan[55] = dev->ee->tx_pwr_per_chan[28];
dev->ee->tx_pwr_per_chan[56] = dev->ee->tx_pwr_per_chan[34];
dev->ee->tx_pwr_per_chan[57] = dev->ee->tx_pwr_per_chan[44];
}
int
mt76x0_eeprom_init(struct mt76x0_dev *dev)
{
u8 *eeprom;
int i, ret;
ret = mt76x0_efuse_physical_size_check(dev);
if (ret)
return ret;
dev->ee = devm_kzalloc(dev->mt76.dev, sizeof(*dev->ee), GFP_KERNEL);
if (!dev->ee)
return -ENOMEM;
eeprom = kmalloc(MT76X0_EEPROM_SIZE, GFP_KERNEL);
if (!eeprom)
return -ENOMEM;
for (i = 0; i + 16 <= MT76X0_EEPROM_SIZE; i += 16) {
ret = mt76x0_efuse_read(dev, i, eeprom + i, MT_EE_READ);
if (ret)
goto out;
}
if (eeprom[MT_EE_VERSION_EE] > MT76X0U_EE_MAX_VER)
dev_warn(dev->mt76.dev,
"Warning: unsupported EEPROM version %02hhx\n",
eeprom[MT_EE_VERSION_EE]);
dev_info(dev->mt76.dev, "EEPROM ver:%02hhx fae:%02hhx\n",
eeprom[MT_EE_VERSION_EE], eeprom[MT_EE_VERSION_FAE]);
mt76x0_set_macaddr(dev, eeprom);
mt76x0_set_chip_cap(dev, eeprom);
mt76x0_set_country_reg(dev, eeprom);
mt76x0_set_rf_freq_off(dev, eeprom);
mt76x0_set_temp_offset(dev, eeprom);
mt76x0_set_lna_gain(dev, eeprom);
mt76x0_set_rssi_offset(dev, eeprom);
dev->chainmask = 0x0101;
mt76x0_set_tx_power_per_rate(dev, eeprom);
mt76x0_set_tx_power_per_chan(dev, eeprom);
out:
kfree(eeprom);
return ret;
}