kernel_samsung_a34x-permissive/drivers/net/wireless/ralink/rt2x00/rt2x00dev.c

1638 lines
41 KiB
C
Raw Normal View History

/*
Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
Module: rt2x00lib
Abstract: rt2x00 generic device routines.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/log2.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include "rt2x00.h"
#include "rt2x00lib.h"
/*
* Utility functions.
*/
u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
struct ieee80211_vif *vif)
{
/*
* When in STA mode, bssidx is always 0 otherwise local_address[5]
* contains the bss number, see BSS_ID_MASK comments for details.
*/
if (rt2x00dev->intf_sta_count)
return 0;
return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
}
EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
/*
* Radio control handlers.
*/
int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
{
int status;
/*
* Don't enable the radio twice.
* And check if the hardware button has been disabled.
*/
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
return 0;
/*
* Initialize all data queues.
*/
rt2x00queue_init_queues(rt2x00dev);
/*
* Enable radio.
*/
status =
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
if (status)
return status;
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
rt2x00leds_led_radio(rt2x00dev, true);
rt2x00led_led_activity(rt2x00dev, true);
set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
/*
* Enable queues.
*/
rt2x00queue_start_queues(rt2x00dev);
rt2x00link_start_tuner(rt2x00dev);
/*
* Start watchdog monitoring.
*/
rt2x00link_start_watchdog(rt2x00dev);
return 0;
}
void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
{
if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
return;
/*
* Stop watchdog monitoring.
*/
rt2x00link_stop_watchdog(rt2x00dev);
/*
* Stop all queues
*/
rt2x00link_stop_tuner(rt2x00dev);
rt2x00queue_stop_queues(rt2x00dev);
rt2x00queue_flush_queues(rt2x00dev, true);
/*
* Disable radio.
*/
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
rt2x00led_led_activity(rt2x00dev, false);
rt2x00leds_led_radio(rt2x00dev, false);
}
static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct rt2x00_dev *rt2x00dev = data;
struct rt2x00_intf *intf = vif_to_intf(vif);
/*
* It is possible the radio was disabled while the work had been
* scheduled. If that happens we should return here immediately,
* note that in the spinlock protected area above the delayed_flags
* have been cleared correctly.
*/
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
return;
if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
mutex_lock(&intf->beacon_skb_mutex);
rt2x00queue_update_beacon(rt2x00dev, vif);
mutex_unlock(&intf->beacon_skb_mutex);
}
}
static void rt2x00lib_intf_scheduled(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, intf_work);
/*
* Iterate over each interface and perform the
* requested configurations.
*/
ieee80211_iterate_active_interfaces(rt2x00dev->hw,
IEEE80211_IFACE_ITER_RESUME_ALL,
rt2x00lib_intf_scheduled_iter,
rt2x00dev);
}
static void rt2x00lib_autowakeup(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, autowakeup_work.work);
if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
return;
if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
}
/*
* Interrupt context handlers.
*/
static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct ieee80211_tx_control control = {};
struct rt2x00_dev *rt2x00dev = data;
struct sk_buff *skb;
/*
* Only AP mode interfaces do broad- and multicast buffering
*/
if (vif->type != NL80211_IFTYPE_AP)
return;
/*
* Send out buffered broad- and multicast frames
*/
skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
while (skb) {
rt2x00mac_tx(rt2x00dev->hw, &control, skb);
skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
}
}
static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct rt2x00_dev *rt2x00dev = data;
if (vif->type != NL80211_IFTYPE_AP &&
vif->type != NL80211_IFTYPE_ADHOC &&
vif->type != NL80211_IFTYPE_MESH_POINT &&
vif->type != NL80211_IFTYPE_WDS)
return;
/*
* Update the beacon without locking. This is safe on PCI devices
* as they only update the beacon periodically here. This should
* never be called for USB devices.
*/
WARN_ON(rt2x00_is_usb(rt2x00dev));
rt2x00queue_update_beacon(rt2x00dev, vif);
}
void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
{
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
return;
/* send buffered bc/mc frames out for every bssid */
ieee80211_iterate_active_interfaces_atomic(
rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
rt2x00lib_bc_buffer_iter, rt2x00dev);
/*
* Devices with pre tbtt interrupt don't need to update the beacon
* here as they will fetch the next beacon directly prior to
* transmission.
*/
if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
return;
/* fetch next beacon */
ieee80211_iterate_active_interfaces_atomic(
rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
rt2x00lib_beaconupdate_iter, rt2x00dev);
}
EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
{
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
return;
/* fetch next beacon */
ieee80211_iterate_active_interfaces_atomic(
rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
rt2x00lib_beaconupdate_iter, rt2x00dev);
}
EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
void rt2x00lib_dmastart(struct queue_entry *entry)
{
set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
rt2x00queue_index_inc(entry, Q_INDEX);
}
EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
void rt2x00lib_dmadone(struct queue_entry *entry)
{
set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
}
EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct ieee80211_bar *bar = (void *) entry->skb->data;
struct rt2x00_bar_list_entry *bar_entry;
int ret;
if (likely(!ieee80211_is_back_req(bar->frame_control)))
return 0;
/*
* Unlike all other frames, the status report for BARs does
* not directly come from the hardware as it is incapable of
* matching a BA to a previously send BAR. The hardware will
* report all BARs as if they weren't acked at all.
*
* Instead the RX-path will scan for incoming BAs and set the
* block_acked flag if it sees one that was likely caused by
* a BAR from us.
*
* Remove remaining BARs here and return their status for
* TX done processing.
*/
ret = 0;
rcu_read_lock();
list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
if (bar_entry->entry != entry)
continue;
spin_lock_bh(&rt2x00dev->bar_list_lock);
/* Return whether this BAR was blockacked or not */
ret = bar_entry->block_acked;
/* Remove the BAR from our checklist */
list_del_rcu(&bar_entry->list);
spin_unlock_bh(&rt2x00dev->bar_list_lock);
kfree_rcu(bar_entry, head);
break;
}
rcu_read_unlock();
return ret;
}
static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev,
struct ieee80211_tx_info *tx_info,
struct skb_frame_desc *skbdesc,
struct txdone_entry_desc *txdesc,
bool success)
{
u8 rate_idx, rate_flags, retry_rates;
int i;
rate_idx = skbdesc->tx_rate_idx;
rate_flags = skbdesc->tx_rate_flags;
retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
(txdesc->retry + 1) : 1;
/*
* Initialize TX status
*/
memset(&tx_info->status, 0, sizeof(tx_info->status));
tx_info->status.ack_signal = 0;
/*
* Frame was send with retries, hardware tried
* different rates to send out the frame, at each
* retry it lowered the rate 1 step except when the
* lowest rate was used.
*/
for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
tx_info->status.rates[i].idx = rate_idx - i;
tx_info->status.rates[i].flags = rate_flags;
if (rate_idx - i == 0) {
/*
* The lowest rate (index 0) was used until the
* number of max retries was reached.
*/
tx_info->status.rates[i].count = retry_rates - i;
i++;
break;
}
tx_info->status.rates[i].count = 1;
}
if (i < (IEEE80211_TX_MAX_RATES - 1))
tx_info->status.rates[i].idx = -1; /* terminate */
if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags))
tx_info->flags |= IEEE80211_TX_CTL_NO_ACK;
if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
if (success)
tx_info->flags |= IEEE80211_TX_STAT_ACK;
else
rt2x00dev->low_level_stats.dot11ACKFailureCount++;
}
/*
* Every single frame has it's own tx status, hence report
* every frame as ampdu of size 1.
*
* TODO: if we can find out how many frames were aggregated
* by the hw we could provide the real ampdu_len to mac80211
* which would allow the rc algorithm to better decide on
* which rates are suitable.
*/
if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
tx_info->flags |= IEEE80211_TX_STAT_AMPDU |
IEEE80211_TX_CTL_AMPDU;
tx_info->status.ampdu_len = 1;
tx_info->status.ampdu_ack_len = success ? 1 : 0;
if (!success)
tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
}
if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
if (success)
rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
else
rt2x00dev->low_level_stats.dot11RTSFailureCount++;
}
}
static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev,
struct queue_entry *entry)
{
/*
* Make this entry available for reuse.
*/
entry->skb = NULL;
entry->flags = 0;
rt2x00dev->ops->lib->clear_entry(entry);
rt2x00queue_index_inc(entry, Q_INDEX_DONE);
/*
* If the data queue was below the threshold before the txdone
* handler we must make sure the packet queue in the mac80211 stack
* is reenabled when the txdone handler has finished. This has to be
* serialized with rt2x00mac_tx(), otherwise we can wake up queue
* before it was stopped.
*/
spin_lock_bh(&entry->queue->tx_lock);
if (!rt2x00queue_threshold(entry->queue))
rt2x00queue_unpause_queue(entry->queue);
spin_unlock_bh(&entry->queue->tx_lock);
}
void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
struct txdone_entry_desc *txdesc)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
struct ieee80211_tx_info txinfo = {};
bool success;
/*
* Unmap the skb.
*/
rt2x00queue_unmap_skb(entry);
/*
* Signal that the TX descriptor is no longer in the skb.
*/
skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
/*
* Send frame to debugfs immediately, after this call is completed
* we are going to overwrite the skb->cb array.
*/
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
/*
* Determine if the frame has been successfully transmitted and
* remove BARs from our check list while checking for their
* TX status.
*/
success =
rt2x00lib_txdone_bar_status(entry) ||
test_bit(TXDONE_SUCCESS, &txdesc->flags);
if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) {
/*
* Update TX statistics.
*/
rt2x00dev->link.qual.tx_success += success;
rt2x00dev->link.qual.tx_failed += !success;
rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc,
success);
ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo);
}
dev_kfree_skb_any(entry->skb);
rt2x00lib_clear_entry(rt2x00dev, entry);
}
EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch);
void rt2x00lib_txdone(struct queue_entry *entry,
struct txdone_entry_desc *txdesc)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
u8 skbdesc_flags = skbdesc->flags;
unsigned int header_length;
bool success;
/*
* Unmap the skb.
*/
rt2x00queue_unmap_skb(entry);
/*
* Remove the extra tx headroom from the skb.
*/
skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
/*
* Signal that the TX descriptor is no longer in the skb.
*/
skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
/*
* Determine the length of 802.11 header.
*/
header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
/*
* Remove L2 padding which was added during
*/
if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
rt2x00queue_remove_l2pad(entry->skb, header_length);
/*
* If the IV/EIV data was stripped from the frame before it was
* passed to the hardware, we should now reinsert it again because
* mac80211 will expect the same data to be present it the
* frame as it was passed to us.
*/
if (rt2x00_has_cap_hw_crypto(rt2x00dev))
rt2x00crypto_tx_insert_iv(entry->skb, header_length);
/*
* Send frame to debugfs immediately, after this call is completed
* we are going to overwrite the skb->cb array.
*/
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
/*
* Determine if the frame has been successfully transmitted and
* remove BARs from our check list while checking for their
* TX status.
*/
success =
rt2x00lib_txdone_bar_status(entry) ||
test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
test_bit(TXDONE_UNKNOWN, &txdesc->flags);
/*
* Update TX statistics.
*/
rt2x00dev->link.qual.tx_success += success;
rt2x00dev->link.qual.tx_failed += !success;
rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success);
/*
* Only send the status report to mac80211 when it's a frame
* that originated in mac80211. If this was a extra frame coming
* through a mac80211 library call (RTS/CTS) then we should not
* send the status report back.
*/
if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
ieee80211_tx_status(rt2x00dev->hw, entry->skb);
else
ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
} else {
dev_kfree_skb_any(entry->skb);
}
rt2x00lib_clear_entry(rt2x00dev, entry);
}
EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
{
struct txdone_entry_desc txdesc;
txdesc.flags = 0;
__set_bit(status, &txdesc.flags);
txdesc.retry = 0;
rt2x00lib_txdone(entry, &txdesc);
}
EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
{
struct ieee80211_mgmt *mgmt = (void *)data;
u8 *pos, *end;
pos = (u8 *)mgmt->u.beacon.variable;
end = data + len;
while (pos < end) {
if (pos + 2 + pos[1] > end)
return NULL;
if (pos[0] == ie)
return pos;
pos += 2 + pos[1];
}
return NULL;
}
static void rt2x00lib_sleep(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, sleep_work);
if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
return;
/*
* Check again is powersaving is enabled, to prevent races from delayed
* work execution.
*/
if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
IEEE80211_CONF_CHANGE_PS);
}
static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
struct sk_buff *skb,
struct rxdone_entry_desc *rxdesc)
{
struct rt2x00_bar_list_entry *entry;
struct ieee80211_bar *ba = (void *)skb->data;
if (likely(!ieee80211_is_back(ba->frame_control)))
return;
if (rxdesc->size < sizeof(*ba) + FCS_LEN)
return;
rcu_read_lock();
list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
if (ba->start_seq_num != entry->start_seq_num)
continue;
#define TID_CHECK(a, b) ( \
((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \
((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \
if (!TID_CHECK(ba->control, entry->control))
continue;
#undef TID_CHECK
if (!ether_addr_equal_64bits(ba->ra, entry->ta))
continue;
if (!ether_addr_equal_64bits(ba->ta, entry->ra))
continue;
/* Mark BAR since we received the according BA */
spin_lock_bh(&rt2x00dev->bar_list_lock);
entry->block_acked = 1;
spin_unlock_bh(&rt2x00dev->bar_list_lock);
break;
}
rcu_read_unlock();
}
static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
struct sk_buff *skb,
struct rxdone_entry_desc *rxdesc)
{
struct ieee80211_hdr *hdr = (void *) skb->data;
struct ieee80211_tim_ie *tim_ie;
u8 *tim;
u8 tim_len;
bool cam;
/* If this is not a beacon, or if mac80211 has no powersaving
* configured, or if the device is already in powersaving mode
* we can exit now. */
if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
!(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
return;
/* min. beacon length + FCS_LEN */
if (skb->len <= 40 + FCS_LEN)
return;
/* and only beacons from the associated BSSID, please */
if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
!rt2x00dev->aid)
return;
rt2x00dev->last_beacon = jiffies;
tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
if (!tim)
return;
if (tim[1] < sizeof(*tim_ie))
return;
tim_len = tim[1];
tim_ie = (struct ieee80211_tim_ie *) &tim[2];
/* Check whenever the PHY can be turned off again. */
/* 1. What about buffered unicast traffic for our AID? */
cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
/* 2. Maybe the AP wants to send multicast/broadcast data? */
cam |= (tim_ie->bitmap_ctrl & 0x01);
if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
}
static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
struct rxdone_entry_desc *rxdesc)
{
struct ieee80211_supported_band *sband;
const struct rt2x00_rate *rate;
unsigned int i;
int signal = rxdesc->signal;
int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
switch (rxdesc->rate_mode) {
case RATE_MODE_CCK:
case RATE_MODE_OFDM:
/*
* For non-HT rates the MCS value needs to contain the
* actually used rate modulation (CCK or OFDM).
*/
if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
signal = RATE_MCS(rxdesc->rate_mode, signal);
sband = &rt2x00dev->bands[rt2x00dev->curr_band];
for (i = 0; i < sband->n_bitrates; i++) {
rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
if (((type == RXDONE_SIGNAL_PLCP) &&
(rate->plcp == signal)) ||
((type == RXDONE_SIGNAL_BITRATE) &&
(rate->bitrate == signal)) ||
((type == RXDONE_SIGNAL_MCS) &&
(rate->mcs == signal))) {
return i;
}
}
break;
case RATE_MODE_HT_MIX:
case RATE_MODE_HT_GREENFIELD:
if (signal >= 0 && signal <= 76)
return signal;
break;
default:
break;
}
rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
rxdesc->rate_mode, signal, type);
return 0;
}
void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct rxdone_entry_desc rxdesc;
struct sk_buff *skb;
struct ieee80211_rx_status *rx_status;
unsigned int header_length;
int rate_idx;
if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
goto submit_entry;
if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
goto submit_entry;
/*
* Allocate a new sk_buffer. If no new buffer available, drop the
* received frame and reuse the existing buffer.
*/
skb = rt2x00queue_alloc_rxskb(entry, gfp);
if (!skb)
goto submit_entry;
/*
* Unmap the skb.
*/
rt2x00queue_unmap_skb(entry);
/*
* Extract the RXD details.
*/
memset(&rxdesc, 0, sizeof(rxdesc));
rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
/*
* Check for valid size in case we get corrupted descriptor from
* hardware.
*/
if (unlikely(rxdesc.size == 0 ||
rxdesc.size > entry->queue->data_size)) {
rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
rxdesc.size, entry->queue->data_size);
dev_kfree_skb(entry->skb);
goto renew_skb;
}
/*
* The data behind the ieee80211 header must be
* aligned on a 4 byte boundary.
*/
header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
/*
* Hardware might have stripped the IV/EIV/ICV data,
* in that case it is possible that the data was
* provided separately (through hardware descriptor)
* in which case we should reinsert the data into the frame.
*/
if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
(rxdesc.flags & RX_FLAG_IV_STRIPPED))
rt2x00crypto_rx_insert_iv(entry->skb, header_length,
&rxdesc);
else if (header_length &&
(rxdesc.size > header_length) &&
(rxdesc.dev_flags & RXDONE_L2PAD))
rt2x00queue_remove_l2pad(entry->skb, header_length);
/* Trim buffer to correct size */
skb_trim(entry->skb, rxdesc.size);
/*
* Translate the signal to the correct bitrate index.
*/
rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
rxdesc.encoding = RX_ENC_HT;
/*
* Check if this is a beacon, and more frames have been
* buffered while we were in powersaving mode.
*/
rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
/*
* Check for incoming BlockAcks to match to the BlockAckReqs
* we've send out.
*/
rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
/*
* Update extra components
*/
rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry);
/*
* Initialize RX status information, and send frame
* to mac80211.
*/
rx_status = IEEE80211_SKB_RXCB(entry->skb);
/* Ensure that all fields of rx_status are initialized
* properly. The skb->cb array was used for driver
* specific informations, so rx_status might contain
* garbage.
*/
memset(rx_status, 0, sizeof(*rx_status));
rx_status->mactime = rxdesc.timestamp;
rx_status->band = rt2x00dev->curr_band;
rx_status->freq = rt2x00dev->curr_freq;
rx_status->rate_idx = rate_idx;
rx_status->signal = rxdesc.rssi;
rx_status->flag = rxdesc.flags;
rx_status->enc_flags = rxdesc.enc_flags;
rx_status->encoding = rxdesc.encoding;
rx_status->bw = rxdesc.bw;
rx_status->antenna = rt2x00dev->link.ant.active.rx;
ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
renew_skb:
/*
* Replace the skb with the freshly allocated one.
*/
entry->skb = skb;
submit_entry:
entry->flags = 0;
rt2x00queue_index_inc(entry, Q_INDEX_DONE);
if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
rt2x00dev->ops->lib->clear_entry(entry);
}
EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
/*
* Driver initialization handlers.
*/
const struct rt2x00_rate rt2x00_supported_rates[12] = {
{
.flags = DEV_RATE_CCK,
.bitrate = 10,
.ratemask = BIT(0),
.plcp = 0x00,
.mcs = RATE_MCS(RATE_MODE_CCK, 0),
},
{
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
.bitrate = 20,
.ratemask = BIT(1),
.plcp = 0x01,
.mcs = RATE_MCS(RATE_MODE_CCK, 1),
},
{
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
.bitrate = 55,
.ratemask = BIT(2),
.plcp = 0x02,
.mcs = RATE_MCS(RATE_MODE_CCK, 2),
},
{
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
.bitrate = 110,
.ratemask = BIT(3),
.plcp = 0x03,
.mcs = RATE_MCS(RATE_MODE_CCK, 3),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 60,
.ratemask = BIT(4),
.plcp = 0x0b,
.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 90,
.ratemask = BIT(5),
.plcp = 0x0f,
.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 120,
.ratemask = BIT(6),
.plcp = 0x0a,
.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 180,
.ratemask = BIT(7),
.plcp = 0x0e,
.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 240,
.ratemask = BIT(8),
.plcp = 0x09,
.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 360,
.ratemask = BIT(9),
.plcp = 0x0d,
.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 480,
.ratemask = BIT(10),
.plcp = 0x08,
.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 540,
.ratemask = BIT(11),
.plcp = 0x0c,
.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
},
};
static void rt2x00lib_channel(struct ieee80211_channel *entry,
const int channel, const int tx_power,
const int value)
{
/* XXX: this assumption about the band is wrong for 802.11j */
entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
entry->center_freq = ieee80211_channel_to_frequency(channel,
entry->band);
entry->hw_value = value;
entry->max_power = tx_power;
entry->max_antenna_gain = 0xff;
}
static void rt2x00lib_rate(struct ieee80211_rate *entry,
const u16 index, const struct rt2x00_rate *rate)
{
entry->flags = 0;
entry->bitrate = rate->bitrate;
entry->hw_value = index;
entry->hw_value_short = index;
if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
}
void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
{
const char *mac_addr;
mac_addr = of_get_mac_address(rt2x00dev->dev->of_node);
if (mac_addr)
ether_addr_copy(eeprom_mac_addr, mac_addr);
if (!is_valid_ether_addr(eeprom_mac_addr)) {
eth_random_addr(eeprom_mac_addr);
rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
}
}
EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
struct hw_mode_spec *spec)
{
struct ieee80211_hw *hw = rt2x00dev->hw;
struct ieee80211_channel *channels;
struct ieee80211_rate *rates;
unsigned int num_rates;
unsigned int i;
num_rates = 0;
if (spec->supported_rates & SUPPORT_RATE_CCK)
num_rates += 4;
if (spec->supported_rates & SUPPORT_RATE_OFDM)
num_rates += 8;
channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
if (!channels)
return -ENOMEM;
rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
if (!rates)
goto exit_free_channels;
/*
* Initialize Rate list.
*/
for (i = 0; i < num_rates; i++)
rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
/*
* Initialize Channel list.
*/
for (i = 0; i < spec->num_channels; i++) {
rt2x00lib_channel(&channels[i],
spec->channels[i].channel,
spec->channels_info[i].max_power, i);
}
/*
* Intitialize 802.11b, 802.11g
* Rates: CCK, OFDM.
* Channels: 2.4 GHz
*/
if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
hw->wiphy->bands[NL80211_BAND_2GHZ] =
&rt2x00dev->bands[NL80211_BAND_2GHZ];
memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
&spec->ht, sizeof(spec->ht));
}
/*
* Intitialize 802.11a
* Rates: OFDM.
* Channels: OFDM, UNII, HiperLAN2.
*/
if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
spec->num_channels - 14;
rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
num_rates - 4;
rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
hw->wiphy->bands[NL80211_BAND_5GHZ] =
&rt2x00dev->bands[NL80211_BAND_5GHZ];
memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
&spec->ht, sizeof(spec->ht));
}
return 0;
exit_free_channels:
kfree(channels);
rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
return -ENOMEM;
}
static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
{
if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
ieee80211_unregister_hw(rt2x00dev->hw);
if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
}
kfree(rt2x00dev->spec.channels_info);
}
static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
{
struct hw_mode_spec *spec = &rt2x00dev->spec;
int status;
if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
return 0;
/*
* Initialize HW modes.
*/
status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
if (status)
return status;
/*
* Initialize HW fields.
*/
rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
/*
* Initialize extra TX headroom required.
*/
rt2x00dev->hw->extra_tx_headroom =
max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
rt2x00dev->extra_tx_headroom);
/*
* Take TX headroom required for alignment into account.
*/
if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
/*
* Tell mac80211 about the size of our private STA structure.
*/
rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
/*
* Allocate tx status FIFO for driver use.
*/
if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
/*
* Allocate the txstatus fifo. In the worst case the tx
* status fifo has to hold the tx status of all entries
* in all tx queues. Hence, calculate the kfifo size as
* tx_queues * entry_num and round up to the nearest
* power of 2.
*/
int kfifo_size =
roundup_pow_of_two(rt2x00dev->ops->tx_queues *
rt2x00dev->tx->limit *
sizeof(u32));
status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
GFP_KERNEL);
if (status)
return status;
}
/*
* Initialize tasklets if used by the driver. Tasklets are
* disabled until the interrupts are turned on. The driver
* has to handle that.
*/
#define RT2X00_TASKLET_INIT(taskletname) \
if (rt2x00dev->ops->lib->taskletname) { \
tasklet_init(&rt2x00dev->taskletname, \
rt2x00dev->ops->lib->taskletname, \
(unsigned long)rt2x00dev); \
}
RT2X00_TASKLET_INIT(txstatus_tasklet);
RT2X00_TASKLET_INIT(pretbtt_tasklet);
RT2X00_TASKLET_INIT(tbtt_tasklet);
RT2X00_TASKLET_INIT(rxdone_tasklet);
RT2X00_TASKLET_INIT(autowake_tasklet);
#undef RT2X00_TASKLET_INIT
/*
* Register HW.
*/
status = ieee80211_register_hw(rt2x00dev->hw);
if (status)
return status;
set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
return 0;
}
/*
* Initialization/uninitialization handlers.
*/
static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
{
if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
return;
/*
* Stop rfkill polling.
*/
if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
rt2x00rfkill_unregister(rt2x00dev);
/*
* Allow the HW to uninitialize.
*/
rt2x00dev->ops->lib->uninitialize(rt2x00dev);
/*
* Free allocated queue entries.
*/
rt2x00queue_uninitialize(rt2x00dev);
}
static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
{
int status;
if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
return 0;
/*
* Allocate all queue entries.
*/
status = rt2x00queue_initialize(rt2x00dev);
if (status)
return status;
/*
* Initialize the device.
*/
status = rt2x00dev->ops->lib->initialize(rt2x00dev);
if (status) {
rt2x00queue_uninitialize(rt2x00dev);
return status;
}
set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
/*
* Start rfkill polling.
*/
if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
rt2x00rfkill_register(rt2x00dev);
return 0;
}
int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
{
int retval;
if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
return 0;
/*
* If this is the first interface which is added,
* we should load the firmware now.
*/
retval = rt2x00lib_load_firmware(rt2x00dev);
if (retval)
return retval;
/*
* Initialize the device.
*/
retval = rt2x00lib_initialize(rt2x00dev);
if (retval)
return retval;
rt2x00dev->intf_ap_count = 0;
rt2x00dev->intf_sta_count = 0;
rt2x00dev->intf_associated = 0;
/* Enable the radio */
retval = rt2x00lib_enable_radio(rt2x00dev);
if (retval)
return retval;
set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
return 0;
}
void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
{
if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
return;
/*
* Perhaps we can add something smarter here,
* but for now just disabling the radio should do.
*/
rt2x00lib_disable_radio(rt2x00dev);
rt2x00dev->intf_ap_count = 0;
rt2x00dev->intf_sta_count = 0;
rt2x00dev->intf_associated = 0;
}
static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
{
struct ieee80211_iface_limit *if_limit;
struct ieee80211_iface_combination *if_combination;
if (rt2x00dev->ops->max_ap_intf < 2)
return;
/*
* Build up AP interface limits structure.
*/
if_limit = &rt2x00dev->if_limits_ap;
if_limit->max = rt2x00dev->ops->max_ap_intf;
if_limit->types = BIT(NL80211_IFTYPE_AP);
#ifdef CONFIG_MAC80211_MESH
if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
#endif
/*
* Build up AP interface combinations structure.
*/
if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
if_combination->limits = if_limit;
if_combination->n_limits = 1;
if_combination->max_interfaces = if_limit->max;
if_combination->num_different_channels = 1;
/*
* Finally, specify the possible combinations to mac80211.
*/
rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
rt2x00dev->hw->wiphy->n_iface_combinations = 1;
}
static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
{
if (WARN_ON(!rt2x00dev->tx))
return 0;
if (rt2x00_is_usb(rt2x00dev))
return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
return rt2x00dev->tx[0].winfo_size;
}
/*
* driver allocation handlers.
*/
int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
{
int retval = -ENOMEM;
/*
* Set possible interface combinations.
*/
rt2x00lib_set_if_combinations(rt2x00dev);
/*
* Allocate the driver data memory, if necessary.
*/
if (rt2x00dev->ops->drv_data_size > 0) {
rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
GFP_KERNEL);
if (!rt2x00dev->drv_data) {
retval = -ENOMEM;
goto exit;
}
}
spin_lock_init(&rt2x00dev->irqmask_lock);
mutex_init(&rt2x00dev->csr_mutex);
mutex_init(&rt2x00dev->conf_mutex);
INIT_LIST_HEAD(&rt2x00dev->bar_list);
spin_lock_init(&rt2x00dev->bar_list_lock);
set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
/*
* Make room for rt2x00_intf inside the per-interface
* structure ieee80211_vif.
*/
rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
/*
* rt2x00 devices can only use the last n bits of the MAC address
* for virtual interfaces.
*/
rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
(rt2x00dev->ops->max_ap_intf - 1);
/*
* Initialize work.
*/
rt2x00dev->workqueue =
alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
if (!rt2x00dev->workqueue) {
retval = -ENOMEM;
goto exit;
}
INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
/*
* Let the driver probe the device to detect the capabilities.
*/
retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
if (retval) {
rt2x00_err(rt2x00dev, "Failed to allocate device\n");
goto exit;
}
/*
* Allocate queue array.
*/
retval = rt2x00queue_allocate(rt2x00dev);
if (retval)
goto exit;
/* Cache TX headroom value */
rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
/*
* Determine which operating modes are supported, all modes
* which require beaconing, depend on the availability of
* beacon entries.
*/
rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
if (rt2x00dev->bcn->limit > 0)
rt2x00dev->hw->wiphy->interface_modes |=
BIT(NL80211_IFTYPE_ADHOC) |
#ifdef CONFIG_MAC80211_MESH
BIT(NL80211_IFTYPE_MESH_POINT) |
#endif
#ifdef CONFIG_WIRELESS_WDS
BIT(NL80211_IFTYPE_WDS) |
#endif
BIT(NL80211_IFTYPE_AP);
rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
wiphy_ext_feature_set(rt2x00dev->hw->wiphy,
NL80211_EXT_FEATURE_CQM_RSSI_LIST);
/*
* Initialize ieee80211 structure.
*/
retval = rt2x00lib_probe_hw(rt2x00dev);
if (retval) {
rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
goto exit;
}
/*
* Register extra components.
*/
rt2x00link_register(rt2x00dev);
rt2x00leds_register(rt2x00dev);
rt2x00debug_register(rt2x00dev);
/*
* Start rfkill polling.
*/
if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
rt2x00rfkill_register(rt2x00dev);
return 0;
exit:
rt2x00lib_remove_dev(rt2x00dev);
return retval;
}
EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
{
clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
/*
* Stop rfkill polling.
*/
if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
rt2x00rfkill_unregister(rt2x00dev);
/*
* Disable radio.
*/
rt2x00lib_disable_radio(rt2x00dev);
/*
* Stop all work.
*/
cancel_work_sync(&rt2x00dev->intf_work);
cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
cancel_work_sync(&rt2x00dev->sleep_work);
/*
* Kill the tx status tasklet.
*/
tasklet_kill(&rt2x00dev->txstatus_tasklet);
tasklet_kill(&rt2x00dev->pretbtt_tasklet);
tasklet_kill(&rt2x00dev->tbtt_tasklet);
tasklet_kill(&rt2x00dev->rxdone_tasklet);
tasklet_kill(&rt2x00dev->autowake_tasklet);
/*
* Uninitialize device.
*/
rt2x00lib_uninitialize(rt2x00dev);
if (rt2x00dev->workqueue)
destroy_workqueue(rt2x00dev->workqueue);
/*
* Free the tx status fifo.
*/
kfifo_free(&rt2x00dev->txstatus_fifo);
/*
* Free extra components
*/
rt2x00debug_deregister(rt2x00dev);
rt2x00leds_unregister(rt2x00dev);
/*
* Free ieee80211_hw memory.
*/
rt2x00lib_remove_hw(rt2x00dev);
/*
* Free firmware image.
*/
rt2x00lib_free_firmware(rt2x00dev);
/*
* Free queue structures.
*/
rt2x00queue_free(rt2x00dev);
/*
* Free the driver data.
*/
kfree(rt2x00dev->drv_data);
}
EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
/*
* Device state handlers
*/
#ifdef CONFIG_PM
int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
{
rt2x00_dbg(rt2x00dev, "Going to sleep\n");
/*
* Prevent mac80211 from accessing driver while suspended.
*/
if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
return 0;
/*
* Cleanup as much as possible.
*/
rt2x00lib_uninitialize(rt2x00dev);
/*
* Suspend/disable extra components.
*/
rt2x00leds_suspend(rt2x00dev);
rt2x00debug_deregister(rt2x00dev);
/*
* Set device mode to sleep for power management,
* on some hardware this call seems to consistently fail.
* From the specifications it is hard to tell why it fails,
* and if this is a "bad thing".
* Overall it is safe to just ignore the failure and
* continue suspending. The only downside is that the
* device will not be in optimal power save mode, but with
* the radio and the other components already disabled the
* device is as good as disabled.
*/
if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
return 0;
}
EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
{
rt2x00_dbg(rt2x00dev, "Waking up\n");
/*
* Restore/enable extra components.
*/
rt2x00debug_register(rt2x00dev);
rt2x00leds_resume(rt2x00dev);
/*
* We are ready again to receive requests from mac80211.
*/
set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
return 0;
}
EXPORT_SYMBOL_GPL(rt2x00lib_resume);
#endif /* CONFIG_PM */
/*
* rt2x00lib module information.
*/
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("rt2x00 library");
MODULE_LICENSE("GPL");