kernel_samsung_a34x-permissive/drivers/usb/host/whci/qset.c

832 lines
20 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Wireless Host Controller (WHC) qset management.
*
* Copyright (C) 2007 Cambridge Silicon Radio Ltd.
*/
#include <linux/kernel.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/uwb/umc.h>
#include <linux/usb.h>
#include "../../wusbcore/wusbhc.h"
#include "whcd.h"
struct whc_qset *qset_alloc(struct whc *whc, gfp_t mem_flags)
{
struct whc_qset *qset;
dma_addr_t dma;
qset = dma_pool_zalloc(whc->qset_pool, mem_flags, &dma);
if (qset == NULL)
return NULL;
qset->qset_dma = dma;
qset->whc = whc;
INIT_LIST_HEAD(&qset->list_node);
INIT_LIST_HEAD(&qset->stds);
return qset;
}
/**
* qset_fill_qh - fill the static endpoint state in a qset's QHead
* @qset: the qset whose QH needs initializing with static endpoint
* state
* @urb: an urb for a transfer to this endpoint
*/
static void qset_fill_qh(struct whc *whc, struct whc_qset *qset, struct urb *urb)
{
struct usb_device *usb_dev = urb->dev;
struct wusb_dev *wusb_dev = usb_dev->wusb_dev;
struct usb_wireless_ep_comp_descriptor *epcd;
bool is_out;
uint8_t phy_rate;
is_out = usb_pipeout(urb->pipe);
qset->max_packet = le16_to_cpu(urb->ep->desc.wMaxPacketSize);
epcd = (struct usb_wireless_ep_comp_descriptor *)qset->ep->extra;
if (epcd) {
qset->max_seq = epcd->bMaxSequence;
qset->max_burst = epcd->bMaxBurst;
} else {
qset->max_seq = 2;
qset->max_burst = 1;
}
/*
* Initial PHY rate is 53.3 Mbit/s for control endpoints or
* the maximum supported by the device for other endpoints
* (unless limited by the user).
*/
if (usb_pipecontrol(urb->pipe))
phy_rate = UWB_PHY_RATE_53;
else {
uint16_t phy_rates;
phy_rates = le16_to_cpu(wusb_dev->wusb_cap_descr->wPHYRates);
phy_rate = fls(phy_rates) - 1;
if (phy_rate > whc->wusbhc.phy_rate)
phy_rate = whc->wusbhc.phy_rate;
}
qset->qh.info1 = cpu_to_le32(
QH_INFO1_EP(usb_pipeendpoint(urb->pipe))
| (is_out ? QH_INFO1_DIR_OUT : QH_INFO1_DIR_IN)
| usb_pipe_to_qh_type(urb->pipe)
| QH_INFO1_DEV_INFO_IDX(wusb_port_no_to_idx(usb_dev->portnum))
| QH_INFO1_MAX_PKT_LEN(qset->max_packet)
);
qset->qh.info2 = cpu_to_le32(
QH_INFO2_BURST(qset->max_burst)
| QH_INFO2_DBP(0)
| QH_INFO2_MAX_COUNT(3)
| QH_INFO2_MAX_RETRY(3)
| QH_INFO2_MAX_SEQ(qset->max_seq - 1)
);
/* FIXME: where can we obtain these Tx parameters from? Why
* doesn't the chip know what Tx power to use? It knows the Rx
* strength and can presumably guess the Tx power required
* from that? */
qset->qh.info3 = cpu_to_le32(
QH_INFO3_TX_RATE(phy_rate)
| QH_INFO3_TX_PWR(0) /* 0 == max power */
);
qset->qh.cur_window = cpu_to_le32((1 << qset->max_burst) - 1);
}
/**
* qset_clear - clear fields in a qset so it may be reinserted into a
* schedule.
*
* The sequence number and current window are not cleared (see
* qset_reset()).
*/
void qset_clear(struct whc *whc, struct whc_qset *qset)
{
qset->td_start = qset->td_end = qset->ntds = 0;
qset->qh.link = cpu_to_le64(QH_LINK_NTDS(8) | QH_LINK_T);
qset->qh.status = qset->qh.status & QH_STATUS_SEQ_MASK;
qset->qh.err_count = 0;
qset->qh.scratch[0] = 0;
qset->qh.scratch[1] = 0;
qset->qh.scratch[2] = 0;
memset(&qset->qh.overlay, 0, sizeof(qset->qh.overlay));
init_completion(&qset->remove_complete);
}
/**
* qset_reset - reset endpoint state in a qset.
*
* Clears the sequence number and current window. This qset must not
* be in the ASL or PZL.
*/
void qset_reset(struct whc *whc, struct whc_qset *qset)
{
qset->reset = 0;
qset->qh.status &= ~QH_STATUS_SEQ_MASK;
qset->qh.cur_window = cpu_to_le32((1 << qset->max_burst) - 1);
}
/**
* get_qset - get the qset for an async endpoint
*
* A new qset is created if one does not already exist.
*/
struct whc_qset *get_qset(struct whc *whc, struct urb *urb,
gfp_t mem_flags)
{
struct whc_qset *qset;
qset = urb->ep->hcpriv;
if (qset == NULL) {
qset = qset_alloc(whc, mem_flags);
if (qset == NULL)
return NULL;
qset->ep = urb->ep;
urb->ep->hcpriv = qset;
qset_fill_qh(whc, qset, urb);
}
return qset;
}
void qset_remove_complete(struct whc *whc, struct whc_qset *qset)
{
qset->remove = 0;
list_del_init(&qset->list_node);
complete(&qset->remove_complete);
}
/**
* qset_add_qtds - add qTDs for an URB to a qset
*
* Returns true if the list (ASL/PZL) must be updated because (for a
* WHCI 0.95 controller) an activated qTD was pointed to be iCur.
*/
enum whc_update qset_add_qtds(struct whc *whc, struct whc_qset *qset)
{
struct whc_std *std;
enum whc_update update = 0;
list_for_each_entry(std, &qset->stds, list_node) {
struct whc_qtd *qtd;
uint32_t status;
if (qset->ntds >= WHCI_QSET_TD_MAX
|| (qset->pause_after_urb && std->urb != qset->pause_after_urb))
break;
if (std->qtd)
continue; /* already has a qTD */
qtd = std->qtd = &qset->qtd[qset->td_end];
/* Fill in setup bytes for control transfers. */
if (usb_pipecontrol(std->urb->pipe))
memcpy(qtd->setup, std->urb->setup_packet, 8);
status = QTD_STS_ACTIVE | QTD_STS_LEN(std->len);
if (whc_std_last(std) && usb_pipeout(std->urb->pipe))
status |= QTD_STS_LAST_PKT;
/*
* For an IN transfer the iAlt field should be set so
* the h/w will automatically advance to the next
* transfer. However, if there are 8 or more TDs
* remaining in this transfer then iAlt cannot be set
* as it could point to somewhere in this transfer.
*/
if (std->ntds_remaining < WHCI_QSET_TD_MAX) {
int ialt;
ialt = (qset->td_end + std->ntds_remaining) % WHCI_QSET_TD_MAX;
status |= QTD_STS_IALT(ialt);
} else if (usb_pipein(std->urb->pipe))
qset->pause_after_urb = std->urb;
if (std->num_pointers)
qtd->options = cpu_to_le32(QTD_OPT_IOC);
else
qtd->options = cpu_to_le32(QTD_OPT_IOC | QTD_OPT_SMALL);
qtd->page_list_ptr = cpu_to_le64(std->dma_addr);
qtd->status = cpu_to_le32(status);
if (QH_STATUS_TO_ICUR(qset->qh.status) == qset->td_end)
update = WHC_UPDATE_UPDATED;
if (++qset->td_end >= WHCI_QSET_TD_MAX)
qset->td_end = 0;
qset->ntds++;
}
return update;
}
/**
* qset_remove_qtd - remove the first qTD from a qset.
*
* The qTD might be still active (if it's part of a IN URB that
* resulted in a short read) so ensure it's deactivated.
*/
static void qset_remove_qtd(struct whc *whc, struct whc_qset *qset)
{
qset->qtd[qset->td_start].status = 0;
if (++qset->td_start >= WHCI_QSET_TD_MAX)
qset->td_start = 0;
qset->ntds--;
}
static void qset_copy_bounce_to_sg(struct whc *whc, struct whc_std *std)
{
struct scatterlist *sg;
void *bounce;
size_t remaining, offset;
bounce = std->bounce_buf;
remaining = std->len;
sg = std->bounce_sg;
offset = std->bounce_offset;
while (remaining) {
size_t len;
len = min(sg->length - offset, remaining);
memcpy(sg_virt(sg) + offset, bounce, len);
bounce += len;
remaining -= len;
offset += len;
if (offset >= sg->length) {
sg = sg_next(sg);
offset = 0;
}
}
}
/**
* qset_free_std - remove an sTD and free it.
* @whc: the WHCI host controller
* @std: the sTD to remove and free.
*/
void qset_free_std(struct whc *whc, struct whc_std *std)
{
list_del(&std->list_node);
if (std->bounce_buf) {
bool is_out = usb_pipeout(std->urb->pipe);
dma_addr_t dma_addr;
if (std->num_pointers)
dma_addr = le64_to_cpu(std->pl_virt[0].buf_ptr);
else
dma_addr = std->dma_addr;
dma_unmap_single(whc->wusbhc.dev, dma_addr,
std->len, is_out ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
if (!is_out)
qset_copy_bounce_to_sg(whc, std);
kfree(std->bounce_buf);
}
if (std->pl_virt) {
if (!dma_mapping_error(whc->wusbhc.dev, std->dma_addr))
dma_unmap_single(whc->wusbhc.dev, std->dma_addr,
std->num_pointers * sizeof(struct whc_page_list_entry),
DMA_TO_DEVICE);
kfree(std->pl_virt);
std->pl_virt = NULL;
}
kfree(std);
}
/**
* qset_remove_qtds - remove an URB's qTDs (and sTDs).
*/
static void qset_remove_qtds(struct whc *whc, struct whc_qset *qset,
struct urb *urb)
{
struct whc_std *std, *t;
list_for_each_entry_safe(std, t, &qset->stds, list_node) {
if (std->urb != urb)
break;
if (std->qtd != NULL)
qset_remove_qtd(whc, qset);
qset_free_std(whc, std);
}
}
/**
* qset_free_stds - free any remaining sTDs for an URB.
*/
static void qset_free_stds(struct whc_qset *qset, struct urb *urb)
{
struct whc_std *std, *t;
list_for_each_entry_safe(std, t, &qset->stds, list_node) {
if (std->urb == urb)
qset_free_std(qset->whc, std);
}
}
static int qset_fill_page_list(struct whc *whc, struct whc_std *std, gfp_t mem_flags)
{
dma_addr_t dma_addr = std->dma_addr;
dma_addr_t sp, ep;
size_t pl_len;
int p;
/* Short buffers don't need a page list. */
if (std->len <= WHCI_PAGE_SIZE) {
std->num_pointers = 0;
return 0;
}
sp = dma_addr & ~(WHCI_PAGE_SIZE-1);
ep = dma_addr + std->len;
std->num_pointers = DIV_ROUND_UP(ep - sp, WHCI_PAGE_SIZE);
pl_len = std->num_pointers * sizeof(struct whc_page_list_entry);
std->pl_virt = kmalloc(pl_len, mem_flags);
if (std->pl_virt == NULL)
return -ENOMEM;
std->dma_addr = dma_map_single(whc->wusbhc.dev, std->pl_virt, pl_len, DMA_TO_DEVICE);
if (dma_mapping_error(whc->wusbhc.dev, std->dma_addr)) {
kfree(std->pl_virt);
return -EFAULT;
}
for (p = 0; p < std->num_pointers; p++) {
std->pl_virt[p].buf_ptr = cpu_to_le64(dma_addr);
dma_addr = (dma_addr + WHCI_PAGE_SIZE) & ~(WHCI_PAGE_SIZE-1);
}
return 0;
}
/**
* urb_dequeue_work - executes asl/pzl update and gives back the urb to the system.
*/
static void urb_dequeue_work(struct work_struct *work)
{
struct whc_urb *wurb = container_of(work, struct whc_urb, dequeue_work);
struct whc_qset *qset = wurb->qset;
struct whc *whc = qset->whc;
unsigned long flags;
if (wurb->is_async)
asl_update(whc, WUSBCMD_ASYNC_UPDATED
| WUSBCMD_ASYNC_SYNCED_DB
| WUSBCMD_ASYNC_QSET_RM);
else
pzl_update(whc, WUSBCMD_PERIODIC_UPDATED
| WUSBCMD_PERIODIC_SYNCED_DB
| WUSBCMD_PERIODIC_QSET_RM);
spin_lock_irqsave(&whc->lock, flags);
qset_remove_urb(whc, qset, wurb->urb, wurb->status);
spin_unlock_irqrestore(&whc->lock, flags);
}
static struct whc_std *qset_new_std(struct whc *whc, struct whc_qset *qset,
struct urb *urb, gfp_t mem_flags)
{
struct whc_std *std;
std = kzalloc(sizeof(struct whc_std), mem_flags);
if (std == NULL)
return NULL;
std->urb = urb;
std->qtd = NULL;
INIT_LIST_HEAD(&std->list_node);
list_add_tail(&std->list_node, &qset->stds);
return std;
}
static int qset_add_urb_sg(struct whc *whc, struct whc_qset *qset, struct urb *urb,
gfp_t mem_flags)
{
size_t remaining;
struct scatterlist *sg;
int i;
int ntds = 0;
struct whc_std *std = NULL;
struct whc_page_list_entry *new_pl_virt;
dma_addr_t prev_end = 0;
size_t pl_len;
int p = 0;
remaining = urb->transfer_buffer_length;
for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
dma_addr_t dma_addr;
size_t dma_remaining;
dma_addr_t sp, ep;
int num_pointers;
if (remaining == 0) {
break;
}
dma_addr = sg_dma_address(sg);
dma_remaining = min_t(size_t, sg_dma_len(sg), remaining);
while (dma_remaining) {
size_t dma_len;
/*
* We can use the previous std (if it exists) provided that:
* - the previous one ended on a page boundary.
* - the current one begins on a page boundary.
* - the previous one isn't full.
*
* If a new std is needed but the previous one
* was not a whole number of packets then this
* sg list cannot be mapped onto multiple
* qTDs. Return an error and let the caller
* sort it out.
*/
if (!std
|| (prev_end & (WHCI_PAGE_SIZE-1))
|| (dma_addr & (WHCI_PAGE_SIZE-1))
|| std->len + WHCI_PAGE_SIZE > QTD_MAX_XFER_SIZE) {
if (std && std->len % qset->max_packet != 0)
return -EINVAL;
std = qset_new_std(whc, qset, urb, mem_flags);
if (std == NULL) {
return -ENOMEM;
}
ntds++;
p = 0;
}
dma_len = dma_remaining;
/*
* If the remainder of this element doesn't
* fit in a single qTD, limit the qTD to a
* whole number of packets. This allows the
* remainder to go into the next qTD.
*/
if (std->len + dma_len > QTD_MAX_XFER_SIZE) {
dma_len = (QTD_MAX_XFER_SIZE / qset->max_packet)
* qset->max_packet - std->len;
}
std->len += dma_len;
std->ntds_remaining = -1; /* filled in later */
sp = dma_addr & ~(WHCI_PAGE_SIZE-1);
ep = dma_addr + dma_len;
num_pointers = DIV_ROUND_UP(ep - sp, WHCI_PAGE_SIZE);
std->num_pointers += num_pointers;
pl_len = std->num_pointers * sizeof(struct whc_page_list_entry);
new_pl_virt = krealloc(std->pl_virt, pl_len, mem_flags);
if (new_pl_virt == NULL) {
kfree(std->pl_virt);
std->pl_virt = NULL;
return -ENOMEM;
}
std->pl_virt = new_pl_virt;
for (;p < std->num_pointers; p++) {
std->pl_virt[p].buf_ptr = cpu_to_le64(dma_addr);
dma_addr = (dma_addr + WHCI_PAGE_SIZE) & ~(WHCI_PAGE_SIZE-1);
}
prev_end = dma_addr = ep;
dma_remaining -= dma_len;
remaining -= dma_len;
}
}
/* Now the number of stds is know, go back and fill in
std->ntds_remaining. */
list_for_each_entry(std, &qset->stds, list_node) {
if (std->ntds_remaining == -1) {
pl_len = std->num_pointers * sizeof(struct whc_page_list_entry);
std->dma_addr = dma_map_single(whc->wusbhc.dev, std->pl_virt,
pl_len, DMA_TO_DEVICE);
if (dma_mapping_error(whc->wusbhc.dev, std->dma_addr))
return -EFAULT;
std->ntds_remaining = ntds--;
}
}
return 0;
}
/**
* qset_add_urb_sg_linearize - add an urb with sg list, copying the data
*
* If the URB contains an sg list whose elements cannot be directly
* mapped to qTDs then the data must be transferred via bounce
* buffers.
*/
static int qset_add_urb_sg_linearize(struct whc *whc, struct whc_qset *qset,
struct urb *urb, gfp_t mem_flags)
{
bool is_out = usb_pipeout(urb->pipe);
size_t max_std_len;
size_t remaining;
int ntds = 0;
struct whc_std *std = NULL;
void *bounce = NULL;
struct scatterlist *sg;
int i;
/* limit maximum bounce buffer to 16 * 3.5 KiB ~= 28 k */
max_std_len = qset->max_burst * qset->max_packet;
remaining = urb->transfer_buffer_length;
for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
size_t len;
size_t sg_remaining;
void *orig;
if (remaining == 0) {
break;
}
sg_remaining = min_t(size_t, remaining, sg->length);
orig = sg_virt(sg);
while (sg_remaining) {
if (!std || std->len == max_std_len) {
std = qset_new_std(whc, qset, urb, mem_flags);
if (std == NULL)
return -ENOMEM;
std->bounce_buf = kmalloc(max_std_len, mem_flags);
if (std->bounce_buf == NULL)
return -ENOMEM;
std->bounce_sg = sg;
std->bounce_offset = orig - sg_virt(sg);
bounce = std->bounce_buf;
ntds++;
}
len = min(sg_remaining, max_std_len - std->len);
if (is_out)
memcpy(bounce, orig, len);
std->len += len;
std->ntds_remaining = -1; /* filled in later */
bounce += len;
orig += len;
sg_remaining -= len;
remaining -= len;
}
}
/*
* For each of the new sTDs, map the bounce buffers, create
* page lists (if necessary), and fill in std->ntds_remaining.
*/
list_for_each_entry(std, &qset->stds, list_node) {
if (std->ntds_remaining != -1)
continue;
std->dma_addr = dma_map_single(&whc->umc->dev, std->bounce_buf, std->len,
is_out ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
if (dma_mapping_error(&whc->umc->dev, std->dma_addr))
return -EFAULT;
if (qset_fill_page_list(whc, std, mem_flags) < 0)
return -ENOMEM;
std->ntds_remaining = ntds--;
}
return 0;
}
/**
* qset_add_urb - add an urb to the qset's queue.
*
* The URB is chopped into sTDs, one for each qTD that will required.
* At least one qTD (and sTD) is required even if the transfer has no
* data (e.g., for some control transfers).
*/
int qset_add_urb(struct whc *whc, struct whc_qset *qset, struct urb *urb,
gfp_t mem_flags)
{
struct whc_urb *wurb;
int remaining = urb->transfer_buffer_length;
u64 transfer_dma = urb->transfer_dma;
int ntds_remaining;
int ret;
wurb = kzalloc(sizeof(struct whc_urb), mem_flags);
if (wurb == NULL)
goto err_no_mem;
urb->hcpriv = wurb;
wurb->qset = qset;
wurb->urb = urb;
INIT_WORK(&wurb->dequeue_work, urb_dequeue_work);
if (urb->num_sgs) {
ret = qset_add_urb_sg(whc, qset, urb, mem_flags);
if (ret == -EINVAL) {
qset_free_stds(qset, urb);
ret = qset_add_urb_sg_linearize(whc, qset, urb, mem_flags);
}
if (ret < 0)
goto err_no_mem;
return 0;
}
ntds_remaining = DIV_ROUND_UP(remaining, QTD_MAX_XFER_SIZE);
if (ntds_remaining == 0)
ntds_remaining = 1;
while (ntds_remaining) {
struct whc_std *std;
size_t std_len;
std_len = remaining;
if (std_len > QTD_MAX_XFER_SIZE)
std_len = QTD_MAX_XFER_SIZE;
std = qset_new_std(whc, qset, urb, mem_flags);
if (std == NULL)
goto err_no_mem;
std->dma_addr = transfer_dma;
std->len = std_len;
std->ntds_remaining = ntds_remaining;
if (qset_fill_page_list(whc, std, mem_flags) < 0)
goto err_no_mem;
ntds_remaining--;
remaining -= std_len;
transfer_dma += std_len;
}
return 0;
err_no_mem:
qset_free_stds(qset, urb);
return -ENOMEM;
}
/**
* qset_remove_urb - remove an URB from the urb queue.
*
* The URB is returned to the USB subsystem.
*/
void qset_remove_urb(struct whc *whc, struct whc_qset *qset,
struct urb *urb, int status)
{
struct wusbhc *wusbhc = &whc->wusbhc;
struct whc_urb *wurb = urb->hcpriv;
usb_hcd_unlink_urb_from_ep(&wusbhc->usb_hcd, urb);
/* Drop the lock as urb->complete() may enqueue another urb. */
spin_unlock(&whc->lock);
wusbhc_giveback_urb(wusbhc, urb, status);
spin_lock(&whc->lock);
kfree(wurb);
}
/**
* get_urb_status_from_qtd - get the completed urb status from qTD status
* @urb: completed urb
* @status: qTD status
*/
static int get_urb_status_from_qtd(struct urb *urb, u32 status)
{
if (status & QTD_STS_HALTED) {
if (status & QTD_STS_DBE)
return usb_pipein(urb->pipe) ? -ENOSR : -ECOMM;
else if (status & QTD_STS_BABBLE)
return -EOVERFLOW;
else if (status & QTD_STS_RCE)
return -ETIME;
return -EPIPE;
}
if (usb_pipein(urb->pipe)
&& (urb->transfer_flags & URB_SHORT_NOT_OK)
&& urb->actual_length < urb->transfer_buffer_length)
return -EREMOTEIO;
return 0;
}
/**
* process_inactive_qtd - process an inactive (but not halted) qTD.
*
* Update the urb with the transfer bytes from the qTD, if the urb is
* completely transferred or (in the case of an IN only) the LPF is
* set, then the transfer is complete and the urb should be returned
* to the system.
*/
void process_inactive_qtd(struct whc *whc, struct whc_qset *qset,
struct whc_qtd *qtd)
{
struct whc_std *std = list_first_entry(&qset->stds, struct whc_std, list_node);
struct urb *urb = std->urb;
uint32_t status;
bool complete;
status = le32_to_cpu(qtd->status);
urb->actual_length += std->len - QTD_STS_TO_LEN(status);
if (usb_pipein(urb->pipe) && (status & QTD_STS_LAST_PKT))
complete = true;
else
complete = whc_std_last(std);
qset_remove_qtd(whc, qset);
qset_free_std(whc, std);
/*
* Transfers for this URB are complete? Then return it to the
* USB subsystem.
*/
if (complete) {
qset_remove_qtds(whc, qset, urb);
qset_remove_urb(whc, qset, urb, get_urb_status_from_qtd(urb, status));
/*
* If iAlt isn't valid then the hardware didn't
* advance iCur. Adjust the start and end pointers to
* match iCur.
*/
if (!(status & QTD_STS_IALT_VALID))
qset->td_start = qset->td_end
= QH_STATUS_TO_ICUR(le16_to_cpu(qset->qh.status));
qset->pause_after_urb = NULL;
}
}
/**
* process_halted_qtd - process a qset with a halted qtd
*
* Remove all the qTDs for the failed URB and return the failed URB to
* the USB subsystem. Then remove all other qTDs so the qset can be
* removed.
*
* FIXME: this is the point where rate adaptation can be done. If a
* transfer failed because it exceeded the maximum number of retries
* then it could be reactivated with a slower rate without having to
* remove the qset.
*/
void process_halted_qtd(struct whc *whc, struct whc_qset *qset,
struct whc_qtd *qtd)
{
struct whc_std *std = list_first_entry(&qset->stds, struct whc_std, list_node);
struct urb *urb = std->urb;
int urb_status;
urb_status = get_urb_status_from_qtd(urb, le32_to_cpu(qtd->status));
qset_remove_qtds(whc, qset, urb);
qset_remove_urb(whc, qset, urb, urb_status);
list_for_each_entry(std, &qset->stds, list_node) {
if (qset->ntds == 0)
break;
qset_remove_qtd(whc, qset);
std->qtd = NULL;
}
qset->remove = 1;
}
void qset_free(struct whc *whc, struct whc_qset *qset)
{
dma_pool_free(whc->qset_pool, qset, qset->qset_dma);
}
/**
* qset_delete - wait for a qset to be unused, then free it.
*/
void qset_delete(struct whc *whc, struct whc_qset *qset)
{
wait_for_completion(&qset->remove_complete);
qset_free(whc, qset);
}