486 lines
11 KiB
C
486 lines
11 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* Implementation of the SID table type.
|
||
|
*
|
||
|
* Original author: Stephen Smalley, <sds@tycho.nsa.gov>
|
||
|
* Author: Ondrej Mosnacek, <omosnacek@gmail.com>
|
||
|
*
|
||
|
* Copyright (C) 2018 Red Hat, Inc.
|
||
|
*/
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <asm/barrier.h>
|
||
|
#include "flask.h"
|
||
|
#include "security.h"
|
||
|
#include "sidtab.h"
|
||
|
|
||
|
#define index_to_sid(index) (index + SECINITSID_NUM + 1)
|
||
|
#define sid_to_index(sid) (sid - (SECINITSID_NUM + 1))
|
||
|
|
||
|
int sidtab_init(struct sidtab *s)
|
||
|
{
|
||
|
u32 i;
|
||
|
|
||
|
memset(s->roots, 0, sizeof(s->roots));
|
||
|
|
||
|
for (i = 0; i < SECINITSID_NUM; i++)
|
||
|
s->isids[i].set = 0;
|
||
|
|
||
|
s->count = 0;
|
||
|
s->convert = NULL;
|
||
|
hash_init(s->context_to_sid);
|
||
|
|
||
|
spin_lock_init(&s->lock);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static u32 context_to_sid(struct sidtab *s, struct context *context)
|
||
|
{
|
||
|
struct sidtab_entry_leaf *entry;
|
||
|
u32 sid = 0;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
hash_for_each_possible_rcu(s->context_to_sid, entry, list,
|
||
|
context->hash) {
|
||
|
if (context_cmp(&entry->context, context)) {
|
||
|
sid = entry->sid;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
rcu_read_unlock();
|
||
|
return sid;
|
||
|
}
|
||
|
|
||
|
int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
|
||
|
{
|
||
|
struct sidtab_isid_entry *entry;
|
||
|
int rc;
|
||
|
|
||
|
if (sid == 0 || sid > SECINITSID_NUM)
|
||
|
return -EINVAL;
|
||
|
|
||
|
entry = &s->isids[sid - 1];
|
||
|
|
||
|
rc = context_cpy(&entry->leaf.context, context);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
entry->set = 1;
|
||
|
|
||
|
/*
|
||
|
* Multiple initial sids may map to the same context. Check that this
|
||
|
* context is not already represented in the context_to_sid hashtable
|
||
|
* to avoid duplicate entries and long linked lists upon hash
|
||
|
* collision.
|
||
|
*/
|
||
|
if (!context_to_sid(s, context)) {
|
||
|
entry->leaf.sid = sid;
|
||
|
hash_add(s->context_to_sid, &entry->leaf.list, context->hash);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int sidtab_hash_stats(struct sidtab *sidtab, char *page)
|
||
|
{
|
||
|
int i;
|
||
|
int chain_len = 0;
|
||
|
int slots_used = 0;
|
||
|
int entries = 0;
|
||
|
int max_chain_len = 0;
|
||
|
int cur_bucket = 0;
|
||
|
struct sidtab_entry_leaf *entry;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) {
|
||
|
entries++;
|
||
|
if (i == cur_bucket) {
|
||
|
chain_len++;
|
||
|
if (chain_len == 1)
|
||
|
slots_used++;
|
||
|
} else {
|
||
|
cur_bucket = i;
|
||
|
if (chain_len > max_chain_len)
|
||
|
max_chain_len = chain_len;
|
||
|
chain_len = 0;
|
||
|
}
|
||
|
}
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
if (chain_len > max_chain_len)
|
||
|
max_chain_len = chain_len;
|
||
|
|
||
|
return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
|
||
|
"longest chain: %d\n", entries,
|
||
|
slots_used, SIDTAB_HASH_BUCKETS, max_chain_len);
|
||
|
}
|
||
|
|
||
|
static u32 sidtab_level_from_count(u32 count)
|
||
|
{
|
||
|
u32 capacity = SIDTAB_LEAF_ENTRIES;
|
||
|
u32 level = 0;
|
||
|
|
||
|
while (count > capacity) {
|
||
|
capacity <<= SIDTAB_INNER_SHIFT;
|
||
|
++level;
|
||
|
}
|
||
|
return level;
|
||
|
}
|
||
|
|
||
|
static int sidtab_alloc_roots(struct sidtab *s, u32 level)
|
||
|
{
|
||
|
u32 l;
|
||
|
|
||
|
if (!s->roots[0].ptr_leaf) {
|
||
|
s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
|
||
|
GFP_ATOMIC);
|
||
|
if (!s->roots[0].ptr_leaf)
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
for (l = 1; l <= level; ++l)
|
||
|
if (!s->roots[l].ptr_inner) {
|
||
|
s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
|
||
|
GFP_ATOMIC);
|
||
|
if (!s->roots[l].ptr_inner)
|
||
|
return -ENOMEM;
|
||
|
s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct sidtab_entry_leaf *sidtab_do_lookup(struct sidtab *s, u32 index,
|
||
|
int alloc)
|
||
|
{
|
||
|
union sidtab_entry_inner *entry;
|
||
|
u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
|
||
|
|
||
|
/* find the level of the subtree we need */
|
||
|
level = sidtab_level_from_count(index + 1);
|
||
|
capacity_shift = level * SIDTAB_INNER_SHIFT;
|
||
|
|
||
|
/* allocate roots if needed */
|
||
|
if (alloc && sidtab_alloc_roots(s, level) != 0)
|
||
|
return NULL;
|
||
|
|
||
|
/* lookup inside the subtree */
|
||
|
entry = &s->roots[level];
|
||
|
while (level != 0) {
|
||
|
capacity_shift -= SIDTAB_INNER_SHIFT;
|
||
|
--level;
|
||
|
|
||
|
entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
|
||
|
leaf_index &= ((u32)1 << capacity_shift) - 1;
|
||
|
|
||
|
if (!entry->ptr_inner) {
|
||
|
if (alloc)
|
||
|
entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
|
||
|
GFP_ATOMIC);
|
||
|
if (!entry->ptr_inner)
|
||
|
return NULL;
|
||
|
}
|
||
|
}
|
||
|
if (!entry->ptr_leaf) {
|
||
|
if (alloc)
|
||
|
entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
|
||
|
GFP_ATOMIC);
|
||
|
if (!entry->ptr_leaf)
|
||
|
return NULL;
|
||
|
}
|
||
|
return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES];
|
||
|
}
|
||
|
|
||
|
static struct context *sidtab_lookup(struct sidtab *s, u32 index)
|
||
|
{
|
||
|
/* read entries only after reading count */
|
||
|
u32 count = smp_load_acquire(&s->count);
|
||
|
|
||
|
if (index >= count)
|
||
|
return NULL;
|
||
|
|
||
|
return &sidtab_do_lookup(s, index, 0)->context;
|
||
|
}
|
||
|
|
||
|
static struct context *sidtab_lookup_initial(struct sidtab *s, u32 sid)
|
||
|
{
|
||
|
return s->isids[sid - 1].set ? &s->isids[sid - 1].leaf.context : NULL;
|
||
|
}
|
||
|
|
||
|
static struct context *sidtab_search_core(struct sidtab *s, u32 sid, int force)
|
||
|
{
|
||
|
struct context *context;
|
||
|
|
||
|
if (sid != 0) {
|
||
|
if (sid > SECINITSID_NUM)
|
||
|
context = sidtab_lookup(s, sid_to_index(sid));
|
||
|
else
|
||
|
context = sidtab_lookup_initial(s, sid);
|
||
|
if (context && (!context->len || force))
|
||
|
return context;
|
||
|
}
|
||
|
|
||
|
return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
|
||
|
}
|
||
|
|
||
|
struct context *sidtab_search(struct sidtab *s, u32 sid)
|
||
|
{
|
||
|
return sidtab_search_core(s, sid, 0);
|
||
|
}
|
||
|
|
||
|
struct context *sidtab_search_force(struct sidtab *s, u32 sid)
|
||
|
{
|
||
|
return sidtab_search_core(s, sid, 1);
|
||
|
}
|
||
|
|
||
|
int sidtab_context_to_sid(struct sidtab *s, struct context *context,
|
||
|
u32 *sid)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
u32 count;
|
||
|
struct sidtab_convert_params *convert;
|
||
|
struct sidtab_entry_leaf *dst, *dst_convert;
|
||
|
int rc;
|
||
|
|
||
|
*sid = context_to_sid(s, context);
|
||
|
if (*sid)
|
||
|
return 0;
|
||
|
|
||
|
/* lock-free search failed: lock, re-search, and insert if not found */
|
||
|
spin_lock_irqsave(&s->lock, flags);
|
||
|
|
||
|
rc = 0;
|
||
|
*sid = context_to_sid(s, context);
|
||
|
if (*sid)
|
||
|
goto out_unlock;
|
||
|
|
||
|
/* read entries only after reading count */
|
||
|
count = smp_load_acquire(&s->count);
|
||
|
convert = s->convert;
|
||
|
|
||
|
/* bail out if we already reached max entries */
|
||
|
rc = -EOVERFLOW;
|
||
|
if (count >= SIDTAB_MAX)
|
||
|
goto out_unlock;
|
||
|
|
||
|
/* insert context into new entry */
|
||
|
rc = -ENOMEM;
|
||
|
dst = sidtab_do_lookup(s, count, 1);
|
||
|
if (!dst)
|
||
|
goto out_unlock;
|
||
|
|
||
|
dst->sid = index_to_sid(count);
|
||
|
|
||
|
rc = context_cpy(&dst->context, context);
|
||
|
if (rc)
|
||
|
goto out_unlock;
|
||
|
|
||
|
/*
|
||
|
* if we are building a new sidtab, we need to convert the context
|
||
|
* and insert it there as well
|
||
|
*/
|
||
|
if (convert) {
|
||
|
rc = -ENOMEM;
|
||
|
dst_convert = sidtab_do_lookup(convert->target, count, 1);
|
||
|
if (!dst_convert) {
|
||
|
context_destroy(&dst->context);
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
rc = convert->func(context, &dst_convert->context,
|
||
|
convert->args);
|
||
|
if (rc) {
|
||
|
context_destroy(&dst->context);
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
dst_convert->sid = index_to_sid(count);
|
||
|
convert->target->count = count + 1;
|
||
|
|
||
|
hash_add_rcu(convert->target->context_to_sid,
|
||
|
&dst_convert->list, dst_convert->context.hash);
|
||
|
}
|
||
|
|
||
|
if (context->len)
|
||
|
pr_info("SELinux: Context %s is not valid (left unmapped).\n",
|
||
|
context->str);
|
||
|
|
||
|
*sid = index_to_sid(count);
|
||
|
|
||
|
/* write entries before updating count */
|
||
|
smp_store_release(&s->count, count + 1);
|
||
|
hash_add_rcu(s->context_to_sid, &dst->list, dst->context.hash);
|
||
|
|
||
|
rc = 0;
|
||
|
out_unlock:
|
||
|
spin_unlock_irqrestore(&s->lock, flags);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static void sidtab_convert_hashtable(struct sidtab *s, u32 count)
|
||
|
{
|
||
|
struct sidtab_entry_leaf *entry;
|
||
|
u32 i;
|
||
|
|
||
|
for (i = 0; i < count; i++) {
|
||
|
entry = sidtab_do_lookup(s, i, 0);
|
||
|
entry->sid = index_to_sid(i);
|
||
|
|
||
|
hash_add_rcu(s->context_to_sid, &entry->list,
|
||
|
entry->context.hash);
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int sidtab_convert_tree(union sidtab_entry_inner *edst,
|
||
|
union sidtab_entry_inner *esrc,
|
||
|
u32 *pos, u32 count, u32 level,
|
||
|
struct sidtab_convert_params *convert)
|
||
|
{
|
||
|
int rc;
|
||
|
u32 i;
|
||
|
|
||
|
if (level != 0) {
|
||
|
if (!edst->ptr_inner) {
|
||
|
edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
|
||
|
GFP_KERNEL);
|
||
|
if (!edst->ptr_inner)
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
i = 0;
|
||
|
while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
|
||
|
rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
|
||
|
&esrc->ptr_inner->entries[i],
|
||
|
pos, count, level - 1,
|
||
|
convert);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
i++;
|
||
|
}
|
||
|
} else {
|
||
|
if (!edst->ptr_leaf) {
|
||
|
edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
|
||
|
GFP_KERNEL);
|
||
|
if (!edst->ptr_leaf)
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
i = 0;
|
||
|
while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
|
||
|
rc = convert->func(&esrc->ptr_leaf->entries[i].context,
|
||
|
&edst->ptr_leaf->entries[i].context,
|
||
|
convert->args);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
(*pos)++;
|
||
|
i++;
|
||
|
}
|
||
|
cond_resched();
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
u32 count, level, pos;
|
||
|
int rc;
|
||
|
|
||
|
spin_lock_irqsave(&s->lock, flags);
|
||
|
|
||
|
/* concurrent policy loads are not allowed */
|
||
|
if (s->convert) {
|
||
|
spin_unlock_irqrestore(&s->lock, flags);
|
||
|
return -EBUSY;
|
||
|
}
|
||
|
|
||
|
count = s->count;
|
||
|
level = sidtab_level_from_count(count);
|
||
|
|
||
|
/* allocate last leaf in the new sidtab (to avoid race with
|
||
|
* live convert)
|
||
|
*/
|
||
|
rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
|
||
|
if (rc) {
|
||
|
spin_unlock_irqrestore(&s->lock, flags);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* set count in case no new entries are added during conversion */
|
||
|
params->target->count = count;
|
||
|
|
||
|
/* enable live convert of new entries */
|
||
|
s->convert = params;
|
||
|
|
||
|
/* we can safely convert the tree outside the lock */
|
||
|
spin_unlock_irqrestore(&s->lock, flags);
|
||
|
|
||
|
pr_info("SELinux: Converting %u SID table entries...\n", count);
|
||
|
|
||
|
/* convert all entries not covered by live convert */
|
||
|
pos = 0;
|
||
|
rc = sidtab_convert_tree(¶ms->target->roots[level],
|
||
|
&s->roots[level], &pos, count, level, params);
|
||
|
if (rc) {
|
||
|
/* we need to keep the old table - disable live convert */
|
||
|
spin_lock_irqsave(&s->lock, flags);
|
||
|
s->convert = NULL;
|
||
|
spin_unlock_irqrestore(&s->lock, flags);
|
||
|
return rc;
|
||
|
}
|
||
|
/*
|
||
|
* The hashtable can also be modified in sidtab_context_to_sid()
|
||
|
* so we must re-acquire the lock here.
|
||
|
*/
|
||
|
spin_lock_irqsave(&s->lock, flags);
|
||
|
sidtab_convert_hashtable(params->target, count);
|
||
|
spin_unlock_irqrestore(&s->lock, flags);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
|
||
|
{
|
||
|
u32 i;
|
||
|
|
||
|
if (level != 0) {
|
||
|
struct sidtab_node_inner *node = entry.ptr_inner;
|
||
|
|
||
|
if (!node)
|
||
|
return;
|
||
|
|
||
|
for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
|
||
|
sidtab_destroy_tree(node->entries[i], level - 1);
|
||
|
kfree(node);
|
||
|
} else {
|
||
|
struct sidtab_node_leaf *node = entry.ptr_leaf;
|
||
|
|
||
|
if (!node)
|
||
|
return;
|
||
|
|
||
|
for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
|
||
|
context_destroy(&node->entries[i].context);
|
||
|
kfree(node);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void sidtab_destroy(struct sidtab *s)
|
||
|
{
|
||
|
u32 i, level;
|
||
|
|
||
|
for (i = 0; i < SECINITSID_NUM; i++)
|
||
|
if (s->isids[i].set)
|
||
|
context_destroy(&s->isids[i].leaf.context);
|
||
|
|
||
|
level = SIDTAB_MAX_LEVEL;
|
||
|
while (level && !s->roots[level].ptr_inner)
|
||
|
--level;
|
||
|
|
||
|
sidtab_destroy_tree(s->roots[level], level);
|
||
|
/*
|
||
|
* The context_to_sid hashtable's objects are all shared
|
||
|
* with the isids array and context tree, and so don't need
|
||
|
* to be cleaned up here.
|
||
|
*/
|
||
|
}
|