358 lines
11 KiB
C
358 lines
11 KiB
C
|
#ifndef _ASM_POWERPC_PAGE_H
|
||
|
#define _ASM_POWERPC_PAGE_H
|
||
|
|
||
|
/*
|
||
|
* Copyright (C) 2001,2005 IBM Corporation.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License
|
||
|
* as published by the Free Software Foundation; either version
|
||
|
* 2 of the License, or (at your option) any later version.
|
||
|
*/
|
||
|
|
||
|
#ifndef __ASSEMBLY__
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#else
|
||
|
#include <asm/types.h>
|
||
|
#endif
|
||
|
#include <asm/asm-const.h>
|
||
|
|
||
|
/*
|
||
|
* On regular PPC32 page size is 4K (but we support 4K/16K/64K/256K pages
|
||
|
* on PPC44x). For PPC64 we support either 4K or 64K software
|
||
|
* page size. When using 64K pages however, whether we are really supporting
|
||
|
* 64K pages in HW or not is irrelevant to those definitions.
|
||
|
*/
|
||
|
#if defined(CONFIG_PPC_256K_PAGES)
|
||
|
#define PAGE_SHIFT 18
|
||
|
#elif defined(CONFIG_PPC_64K_PAGES)
|
||
|
#define PAGE_SHIFT 16
|
||
|
#elif defined(CONFIG_PPC_16K_PAGES)
|
||
|
#define PAGE_SHIFT 14
|
||
|
#else
|
||
|
#define PAGE_SHIFT 12
|
||
|
#endif
|
||
|
|
||
|
#define PAGE_SIZE (ASM_CONST(1) << PAGE_SHIFT)
|
||
|
|
||
|
#ifndef __ASSEMBLY__
|
||
|
#ifdef CONFIG_HUGETLB_PAGE
|
||
|
extern bool hugetlb_disabled;
|
||
|
extern unsigned int HPAGE_SHIFT;
|
||
|
#else
|
||
|
#define HPAGE_SHIFT PAGE_SHIFT
|
||
|
#endif
|
||
|
#define HPAGE_SIZE ((1UL) << HPAGE_SHIFT)
|
||
|
#define HPAGE_MASK (~(HPAGE_SIZE - 1))
|
||
|
#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
|
||
|
#define HUGE_MAX_HSTATE (MMU_PAGE_COUNT-1)
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Subtle: (1 << PAGE_SHIFT) is an int, not an unsigned long. So if we
|
||
|
* assign PAGE_MASK to a larger type it gets extended the way we want
|
||
|
* (i.e. with 1s in the high bits)
|
||
|
*/
|
||
|
#define PAGE_MASK (~((1 << PAGE_SHIFT) - 1))
|
||
|
|
||
|
/*
|
||
|
* KERNELBASE is the virtual address of the start of the kernel, it's often
|
||
|
* the same as PAGE_OFFSET, but _might not be_.
|
||
|
*
|
||
|
* The kdump dump kernel is one example where KERNELBASE != PAGE_OFFSET.
|
||
|
*
|
||
|
* PAGE_OFFSET is the virtual address of the start of lowmem.
|
||
|
*
|
||
|
* PHYSICAL_START is the physical address of the start of the kernel.
|
||
|
*
|
||
|
* MEMORY_START is the physical address of the start of lowmem.
|
||
|
*
|
||
|
* KERNELBASE, PAGE_OFFSET, and PHYSICAL_START are all configurable on
|
||
|
* ppc32 and based on how they are set we determine MEMORY_START.
|
||
|
*
|
||
|
* For the linear mapping the following equation should be true:
|
||
|
* KERNELBASE - PAGE_OFFSET = PHYSICAL_START - MEMORY_START
|
||
|
*
|
||
|
* Also, KERNELBASE >= PAGE_OFFSET and PHYSICAL_START >= MEMORY_START
|
||
|
*
|
||
|
* There are two ways to determine a physical address from a virtual one:
|
||
|
* va = pa + PAGE_OFFSET - MEMORY_START
|
||
|
* va = pa + KERNELBASE - PHYSICAL_START
|
||
|
*
|
||
|
* If you want to know something's offset from the start of the kernel you
|
||
|
* should subtract KERNELBASE.
|
||
|
*
|
||
|
* If you want to test if something's a kernel address, use is_kernel_addr().
|
||
|
*/
|
||
|
|
||
|
#define KERNELBASE ASM_CONST(CONFIG_KERNEL_START)
|
||
|
#define PAGE_OFFSET ASM_CONST(CONFIG_PAGE_OFFSET)
|
||
|
#define LOAD_OFFSET ASM_CONST((CONFIG_KERNEL_START-CONFIG_PHYSICAL_START))
|
||
|
|
||
|
#if defined(CONFIG_NONSTATIC_KERNEL)
|
||
|
#ifndef __ASSEMBLY__
|
||
|
|
||
|
extern phys_addr_t memstart_addr;
|
||
|
extern phys_addr_t kernstart_addr;
|
||
|
|
||
|
#if defined(CONFIG_RELOCATABLE) && defined(CONFIG_PPC32)
|
||
|
extern long long virt_phys_offset;
|
||
|
#endif
|
||
|
|
||
|
#endif /* __ASSEMBLY__ */
|
||
|
#define PHYSICAL_START kernstart_addr
|
||
|
|
||
|
#else /* !CONFIG_NONSTATIC_KERNEL */
|
||
|
#define PHYSICAL_START ASM_CONST(CONFIG_PHYSICAL_START)
|
||
|
#endif
|
||
|
|
||
|
/* See Description below for VIRT_PHYS_OFFSET */
|
||
|
#if defined(CONFIG_PPC32) && defined(CONFIG_BOOKE)
|
||
|
#ifdef CONFIG_RELOCATABLE
|
||
|
#define VIRT_PHYS_OFFSET virt_phys_offset
|
||
|
#else
|
||
|
#define VIRT_PHYS_OFFSET (KERNELBASE - PHYSICAL_START)
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#ifdef CONFIG_PPC64
|
||
|
#define MEMORY_START 0UL
|
||
|
#elif defined(CONFIG_NONSTATIC_KERNEL)
|
||
|
#define MEMORY_START memstart_addr
|
||
|
#else
|
||
|
#define MEMORY_START (PHYSICAL_START + PAGE_OFFSET - KERNELBASE)
|
||
|
#endif
|
||
|
|
||
|
#ifdef CONFIG_FLATMEM
|
||
|
#define ARCH_PFN_OFFSET ((unsigned long)(MEMORY_START >> PAGE_SHIFT))
|
||
|
#ifndef __ASSEMBLY__
|
||
|
extern unsigned long max_mapnr;
|
||
|
static inline bool pfn_valid(unsigned long pfn)
|
||
|
{
|
||
|
unsigned long min_pfn = ARCH_PFN_OFFSET;
|
||
|
|
||
|
return pfn >= min_pfn && pfn < max_mapnr;
|
||
|
}
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#define virt_to_pfn(kaddr) (__pa(kaddr) >> PAGE_SHIFT)
|
||
|
#define virt_to_page(kaddr) pfn_to_page(virt_to_pfn(kaddr))
|
||
|
#define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT)
|
||
|
|
||
|
#ifdef CONFIG_PPC_BOOK3S_64
|
||
|
/*
|
||
|
* On hash the vmalloc and other regions alias to the kernel region when passed
|
||
|
* through __pa(), which virt_to_pfn() uses. That means virt_addr_valid() can
|
||
|
* return true for some vmalloc addresses, which is incorrect. So explicitly
|
||
|
* check that the address is in the kernel region.
|
||
|
*/
|
||
|
#define virt_addr_valid(kaddr) (REGION_ID(kaddr) == KERNEL_REGION_ID && \
|
||
|
pfn_valid(virt_to_pfn(kaddr)))
|
||
|
#else
|
||
|
#define virt_addr_valid(kaddr) pfn_valid(virt_to_pfn(kaddr))
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* On Book-E parts we need __va to parse the device tree and we can't
|
||
|
* determine MEMORY_START until then. However we can determine PHYSICAL_START
|
||
|
* from information at hand (program counter, TLB lookup).
|
||
|
*
|
||
|
* On BookE with RELOCATABLE && PPC32
|
||
|
*
|
||
|
* With RELOCATABLE && PPC32, we support loading the kernel at any physical
|
||
|
* address without any restriction on the page alignment.
|
||
|
*
|
||
|
* We find the runtime address of _stext and relocate ourselves based on
|
||
|
* the following calculation:
|
||
|
*
|
||
|
* virtual_base = ALIGN_DOWN(KERNELBASE,256M) +
|
||
|
* MODULO(_stext.run,256M)
|
||
|
* and create the following mapping:
|
||
|
*
|
||
|
* ALIGN_DOWN(_stext.run,256M) => ALIGN_DOWN(KERNELBASE,256M)
|
||
|
*
|
||
|
* When we process relocations, we cannot depend on the
|
||
|
* existing equation for the __va()/__pa() translations:
|
||
|
*
|
||
|
* __va(x) = (x) - PHYSICAL_START + KERNELBASE
|
||
|
*
|
||
|
* Where:
|
||
|
* PHYSICAL_START = kernstart_addr = Physical address of _stext
|
||
|
* KERNELBASE = Compiled virtual address of _stext.
|
||
|
*
|
||
|
* This formula holds true iff, kernel load address is TLB page aligned.
|
||
|
*
|
||
|
* In our case, we need to also account for the shift in the kernel Virtual
|
||
|
* address.
|
||
|
*
|
||
|
* E.g.,
|
||
|
*
|
||
|
* Let the kernel be loaded at 64MB and KERNELBASE be 0xc0000000 (same as PAGE_OFFSET).
|
||
|
* In this case, we would be mapping 0 to 0xc0000000, and kernstart_addr = 64M
|
||
|
*
|
||
|
* Now __va(1MB) = (0x100000) - (0x4000000) + 0xc0000000
|
||
|
* = 0xbc100000 , which is wrong.
|
||
|
*
|
||
|
* Rather, it should be : 0xc0000000 + 0x100000 = 0xc0100000
|
||
|
* according to our mapping.
|
||
|
*
|
||
|
* Hence we use the following formula to get the translations right:
|
||
|
*
|
||
|
* __va(x) = (x) - [ PHYSICAL_START - Effective KERNELBASE ]
|
||
|
*
|
||
|
* Where :
|
||
|
* PHYSICAL_START = dynamic load address.(kernstart_addr variable)
|
||
|
* Effective KERNELBASE = virtual_base =
|
||
|
* = ALIGN_DOWN(KERNELBASE,256M) +
|
||
|
* MODULO(PHYSICAL_START,256M)
|
||
|
*
|
||
|
* To make the cost of __va() / __pa() more light weight, we introduce
|
||
|
* a new variable virt_phys_offset, which will hold :
|
||
|
*
|
||
|
* virt_phys_offset = Effective KERNELBASE - PHYSICAL_START
|
||
|
* = ALIGN_DOWN(KERNELBASE,256M) -
|
||
|
* ALIGN_DOWN(PHYSICALSTART,256M)
|
||
|
*
|
||
|
* Hence :
|
||
|
*
|
||
|
* __va(x) = x - PHYSICAL_START + Effective KERNELBASE
|
||
|
* = x + virt_phys_offset
|
||
|
*
|
||
|
* and
|
||
|
* __pa(x) = x + PHYSICAL_START - Effective KERNELBASE
|
||
|
* = x - virt_phys_offset
|
||
|
*
|
||
|
* On non-Book-E PPC64 PAGE_OFFSET and MEMORY_START are constants so use
|
||
|
* the other definitions for __va & __pa.
|
||
|
*/
|
||
|
#if defined(CONFIG_PPC32) && defined(CONFIG_BOOKE)
|
||
|
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + VIRT_PHYS_OFFSET))
|
||
|
#define __pa(x) ((unsigned long)(x) - VIRT_PHYS_OFFSET)
|
||
|
#else
|
||
|
#ifdef CONFIG_PPC64
|
||
|
/*
|
||
|
* gcc miscompiles (unsigned long)(&static_var) - PAGE_OFFSET
|
||
|
* with -mcmodel=medium, so we use & and | instead of - and + on 64-bit.
|
||
|
*/
|
||
|
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) | PAGE_OFFSET))
|
||
|
#define __pa(x) ((unsigned long)(x) & 0x0fffffffffffffffUL)
|
||
|
|
||
|
#else /* 32-bit, non book E */
|
||
|
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + PAGE_OFFSET - MEMORY_START))
|
||
|
#define __pa(x) ((unsigned long)(x) - PAGE_OFFSET + MEMORY_START)
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Unfortunately the PLT is in the BSS in the PPC32 ELF ABI,
|
||
|
* and needs to be executable. This means the whole heap ends
|
||
|
* up being executable.
|
||
|
*/
|
||
|
#define VM_DATA_DEFAULT_FLAGS32 \
|
||
|
(((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) | \
|
||
|
VM_READ | VM_WRITE | \
|
||
|
VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
|
||
|
|
||
|
#define VM_DATA_DEFAULT_FLAGS64 (VM_READ | VM_WRITE | \
|
||
|
VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
|
||
|
|
||
|
#ifdef __powerpc64__
|
||
|
#include <asm/page_64.h>
|
||
|
#else
|
||
|
#include <asm/page_32.h>
|
||
|
#endif
|
||
|
|
||
|
/* align addr on a size boundary - adjust address up/down if needed */
|
||
|
#define _ALIGN_UP(addr, size) __ALIGN_KERNEL(addr, size)
|
||
|
#define _ALIGN_DOWN(addr, size) ((addr)&(~((typeof(addr))(size)-1)))
|
||
|
|
||
|
/* align addr on a size boundary - adjust address up if needed */
|
||
|
#define _ALIGN(addr,size) _ALIGN_UP(addr,size)
|
||
|
|
||
|
/*
|
||
|
* Don't compare things with KERNELBASE or PAGE_OFFSET to test for
|
||
|
* "kernelness", use is_kernel_addr() - it should do what you want.
|
||
|
*/
|
||
|
#ifdef CONFIG_PPC_BOOK3E_64
|
||
|
#define is_kernel_addr(x) ((x) >= 0x8000000000000000ul)
|
||
|
#else
|
||
|
#define is_kernel_addr(x) ((x) >= PAGE_OFFSET)
|
||
|
#endif
|
||
|
|
||
|
#ifndef CONFIG_PPC_BOOK3S_64
|
||
|
/*
|
||
|
* Use the top bit of the higher-level page table entries to indicate whether
|
||
|
* the entries we point to contain hugepages. This works because we know that
|
||
|
* the page tables live in kernel space. If we ever decide to support having
|
||
|
* page tables at arbitrary addresses, this breaks and will have to change.
|
||
|
*/
|
||
|
#ifdef CONFIG_PPC64
|
||
|
#define PD_HUGE 0x8000000000000000
|
||
|
#else
|
||
|
#define PD_HUGE 0x80000000
|
||
|
#endif
|
||
|
|
||
|
#else /* CONFIG_PPC_BOOK3S_64 */
|
||
|
/*
|
||
|
* Book3S 64 stores real addresses in the hugepd entries to
|
||
|
* avoid overlaps with _PAGE_PRESENT and _PAGE_PTE.
|
||
|
*/
|
||
|
#define HUGEPD_ADDR_MASK (0x0ffffffffffffffful & ~HUGEPD_SHIFT_MASK)
|
||
|
#endif /* CONFIG_PPC_BOOK3S_64 */
|
||
|
|
||
|
/*
|
||
|
* Some number of bits at the level of the page table that points to
|
||
|
* a hugepte are used to encode the size. This masks those bits.
|
||
|
*/
|
||
|
#define HUGEPD_SHIFT_MASK 0x3f
|
||
|
|
||
|
#ifndef __ASSEMBLY__
|
||
|
|
||
|
#ifdef CONFIG_PPC_BOOK3S_64
|
||
|
#include <asm/pgtable-be-types.h>
|
||
|
#else
|
||
|
#include <asm/pgtable-types.h>
|
||
|
#endif
|
||
|
|
||
|
|
||
|
#ifndef CONFIG_HUGETLB_PAGE
|
||
|
#define is_hugepd(pdep) (0)
|
||
|
#define pgd_huge(pgd) (0)
|
||
|
#endif /* CONFIG_HUGETLB_PAGE */
|
||
|
|
||
|
struct page;
|
||
|
extern void clear_user_page(void *page, unsigned long vaddr, struct page *pg);
|
||
|
extern void copy_user_page(void *to, void *from, unsigned long vaddr,
|
||
|
struct page *p);
|
||
|
extern int page_is_ram(unsigned long pfn);
|
||
|
extern int devmem_is_allowed(unsigned long pfn);
|
||
|
|
||
|
#ifdef CONFIG_PPC_SMLPAR
|
||
|
void arch_free_page(struct page *page, int order);
|
||
|
#define HAVE_ARCH_FREE_PAGE
|
||
|
#endif
|
||
|
|
||
|
struct vm_area_struct;
|
||
|
#ifdef CONFIG_PPC_BOOK3S_64
|
||
|
/*
|
||
|
* For BOOK3s 64 with 4k and 64K linux page size
|
||
|
* we want to use pointers, because the page table
|
||
|
* actually store pfn
|
||
|
*/
|
||
|
typedef pte_t *pgtable_t;
|
||
|
#else
|
||
|
#if defined(CONFIG_PPC_64K_PAGES) && defined(CONFIG_PPC64)
|
||
|
typedef pte_t *pgtable_t;
|
||
|
#else
|
||
|
typedef struct page *pgtable_t;
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#include <asm-generic/memory_model.h>
|
||
|
#endif /* __ASSEMBLY__ */
|
||
|
#include <asm/slice.h>
|
||
|
|
||
|
#endif /* _ASM_POWERPC_PAGE_H */
|