516 lines
17 KiB
C
516 lines
17 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* arch/sparc/math-emu/math.c
|
||
|
*
|
||
|
* Copyright (C) 1998 Peter Maydell (pmaydell@chiark.greenend.org.uk)
|
||
|
* Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
|
||
|
* Copyright (C) 1999 David S. Miller (davem@redhat.com)
|
||
|
*
|
||
|
* This is a good place to start if you're trying to understand the
|
||
|
* emulation code, because it's pretty simple. What we do is
|
||
|
* essentially analyse the instruction to work out what the operation
|
||
|
* is and which registers are involved. We then execute the appropriate
|
||
|
* FXXXX function. [The floating point queue introduces a minor wrinkle;
|
||
|
* see below...]
|
||
|
* The fxxxxx.c files each emulate a single insn. They look relatively
|
||
|
* simple because the complexity is hidden away in an unholy tangle
|
||
|
* of preprocessor macros.
|
||
|
*
|
||
|
* The first layer of macros is single.h, double.h, quad.h. Generally
|
||
|
* these files define macros for working with floating point numbers
|
||
|
* of the three IEEE formats. FP_ADD_D(R,A,B) is for adding doubles,
|
||
|
* for instance. These macros are usually defined as calls to more
|
||
|
* generic macros (in this case _FP_ADD(D,2,R,X,Y) where the number
|
||
|
* of machine words required to store the given IEEE format is passed
|
||
|
* as a parameter. [double.h and co check the number of bits in a word
|
||
|
* and define FP_ADD_D & co appropriately].
|
||
|
* The generic macros are defined in op-common.h. This is where all
|
||
|
* the grotty stuff like handling NaNs is coded. To handle the possible
|
||
|
* word sizes macros in op-common.h use macros like _FP_FRAC_SLL_##wc()
|
||
|
* where wc is the 'number of machine words' parameter (here 2).
|
||
|
* These are defined in the third layer of macros: op-1.h, op-2.h
|
||
|
* and op-4.h. These handle operations on floating point numbers composed
|
||
|
* of 1,2 and 4 machine words respectively. [For example, on sparc64
|
||
|
* doubles are one machine word so macros in double.h eventually use
|
||
|
* constructs in op-1.h, but on sparc32 they use op-2.h definitions.]
|
||
|
* soft-fp.h is on the same level as op-common.h, and defines some
|
||
|
* macros which are independent of both word size and FP format.
|
||
|
* Finally, sfp-machine.h is the machine dependent part of the
|
||
|
* code: it defines the word size and what type a word is. It also
|
||
|
* defines how _FP_MUL_MEAT_t() maps to _FP_MUL_MEAT_n_* : op-n.h
|
||
|
* provide several possible flavours of multiply algorithm, most
|
||
|
* of which require that you supply some form of asm or C primitive to
|
||
|
* do the actual multiply. (such asm primitives should be defined
|
||
|
* in sfp-machine.h too). udivmodti4.c is the same sort of thing.
|
||
|
*
|
||
|
* There may be some errors here because I'm working from a
|
||
|
* SPARC architecture manual V9, and what I really want is V8...
|
||
|
* Also, the insns which can generate exceptions seem to be a
|
||
|
* greater subset of the FPops than for V9 (for example, FCMPED
|
||
|
* has to be emulated on V8). So I think I'm going to have
|
||
|
* to emulate them all just to be on the safe side...
|
||
|
*
|
||
|
* Emulation routines originate from soft-fp package, which is
|
||
|
* part of glibc and has appropriate copyrights in it (allegedly).
|
||
|
*
|
||
|
* NB: on sparc int == long == 4 bytes, long long == 8 bytes.
|
||
|
* Most bits of the kernel seem to go for long rather than int,
|
||
|
* so we follow that practice...
|
||
|
*/
|
||
|
|
||
|
/* TODO:
|
||
|
* fpsave() saves the FP queue but fpload() doesn't reload it.
|
||
|
* Therefore when we context switch or change FPU ownership
|
||
|
* we have to check to see if the queue had anything in it and
|
||
|
* emulate it if it did. This is going to be a pain.
|
||
|
*/
|
||
|
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/perf_event.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
|
||
|
#include "sfp-util_32.h"
|
||
|
#include <math-emu/soft-fp.h>
|
||
|
#include <math-emu/single.h>
|
||
|
#include <math-emu/double.h>
|
||
|
#include <math-emu/quad.h>
|
||
|
|
||
|
#define FLOATFUNC(x) extern int x(void *,void *,void *)
|
||
|
|
||
|
/* The Vn labels indicate what version of the SPARC architecture gas thinks
|
||
|
* each insn is. This is from the binutils source :->
|
||
|
*/
|
||
|
/* quadword instructions */
|
||
|
#define FSQRTQ 0x02b /* v8 */
|
||
|
#define FADDQ 0x043 /* v8 */
|
||
|
#define FSUBQ 0x047 /* v8 */
|
||
|
#define FMULQ 0x04b /* v8 */
|
||
|
#define FDIVQ 0x04f /* v8 */
|
||
|
#define FDMULQ 0x06e /* v8 */
|
||
|
#define FQTOS 0x0c7 /* v8 */
|
||
|
#define FQTOD 0x0cb /* v8 */
|
||
|
#define FITOQ 0x0cc /* v8 */
|
||
|
#define FSTOQ 0x0cd /* v8 */
|
||
|
#define FDTOQ 0x0ce /* v8 */
|
||
|
#define FQTOI 0x0d3 /* v8 */
|
||
|
#define FCMPQ 0x053 /* v8 */
|
||
|
#define FCMPEQ 0x057 /* v8 */
|
||
|
/* single/double instructions (subnormal): should all work */
|
||
|
#define FSQRTS 0x029 /* v7 */
|
||
|
#define FSQRTD 0x02a /* v7 */
|
||
|
#define FADDS 0x041 /* v6 */
|
||
|
#define FADDD 0x042 /* v6 */
|
||
|
#define FSUBS 0x045 /* v6 */
|
||
|
#define FSUBD 0x046 /* v6 */
|
||
|
#define FMULS 0x049 /* v6 */
|
||
|
#define FMULD 0x04a /* v6 */
|
||
|
#define FDIVS 0x04d /* v6 */
|
||
|
#define FDIVD 0x04e /* v6 */
|
||
|
#define FSMULD 0x069 /* v6 */
|
||
|
#define FDTOS 0x0c6 /* v6 */
|
||
|
#define FSTOD 0x0c9 /* v6 */
|
||
|
#define FSTOI 0x0d1 /* v6 */
|
||
|
#define FDTOI 0x0d2 /* v6 */
|
||
|
#define FABSS 0x009 /* v6 */
|
||
|
#define FCMPS 0x051 /* v6 */
|
||
|
#define FCMPES 0x055 /* v6 */
|
||
|
#define FCMPD 0x052 /* v6 */
|
||
|
#define FCMPED 0x056 /* v6 */
|
||
|
#define FMOVS 0x001 /* v6 */
|
||
|
#define FNEGS 0x005 /* v6 */
|
||
|
#define FITOS 0x0c4 /* v6 */
|
||
|
#define FITOD 0x0c8 /* v6 */
|
||
|
|
||
|
#define FSR_TEM_SHIFT 23UL
|
||
|
#define FSR_TEM_MASK (0x1fUL << FSR_TEM_SHIFT)
|
||
|
#define FSR_AEXC_SHIFT 5UL
|
||
|
#define FSR_AEXC_MASK (0x1fUL << FSR_AEXC_SHIFT)
|
||
|
#define FSR_CEXC_SHIFT 0UL
|
||
|
#define FSR_CEXC_MASK (0x1fUL << FSR_CEXC_SHIFT)
|
||
|
|
||
|
static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs);
|
||
|
|
||
|
/* Unlike the Sparc64 version (which has a struct fpustate), we
|
||
|
* pass the taskstruct corresponding to the task which currently owns the
|
||
|
* FPU. This is partly because we don't have the fpustate struct and
|
||
|
* partly because the task owning the FPU isn't always current (as is
|
||
|
* the case for the Sparc64 port). This is probably SMP-related...
|
||
|
* This function returns 1 if all queued insns were emulated successfully.
|
||
|
* The test for unimplemented FPop in kernel mode has been moved into
|
||
|
* kernel/traps.c for simplicity.
|
||
|
*/
|
||
|
int do_mathemu(struct pt_regs *regs, struct task_struct *fpt)
|
||
|
{
|
||
|
/* regs->pc isn't necessarily the PC at which the offending insn is sitting.
|
||
|
* The FPU maintains a queue of FPops which cause traps.
|
||
|
* When it hits an instruction that requires that the trapped op succeeded
|
||
|
* (usually because it reads a reg. that the trapped op wrote) then it
|
||
|
* causes this exception. We need to emulate all the insns on the queue
|
||
|
* and then allow the op to proceed.
|
||
|
* This code should also handle the case where the trap was precise,
|
||
|
* in which case the queue length is zero and regs->pc points at the
|
||
|
* single FPop to be emulated. (this case is untested, though :->)
|
||
|
* You'll need this case if you want to be able to emulate all FPops
|
||
|
* because the FPU either doesn't exist or has been software-disabled.
|
||
|
* [The UltraSPARC makes FP a precise trap; this isn't as stupid as it
|
||
|
* might sound because the Ultra does funky things with a superscalar
|
||
|
* architecture.]
|
||
|
*/
|
||
|
|
||
|
/* You wouldn't believe how often I typed 'ftp' when I meant 'fpt' :-> */
|
||
|
|
||
|
int i;
|
||
|
int retcode = 0; /* assume all succeed */
|
||
|
unsigned long insn;
|
||
|
|
||
|
perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
|
||
|
|
||
|
#ifdef DEBUG_MATHEMU
|
||
|
printk("In do_mathemu()... pc is %08lx\n", regs->pc);
|
||
|
printk("fpqdepth is %ld\n", fpt->thread.fpqdepth);
|
||
|
for (i = 0; i < fpt->thread.fpqdepth; i++)
|
||
|
printk("%d: %08lx at %08lx\n", i, fpt->thread.fpqueue[i].insn,
|
||
|
(unsigned long)fpt->thread.fpqueue[i].insn_addr);
|
||
|
#endif
|
||
|
|
||
|
if (fpt->thread.fpqdepth == 0) { /* no queue, guilty insn is at regs->pc */
|
||
|
#ifdef DEBUG_MATHEMU
|
||
|
printk("precise trap at %08lx\n", regs->pc);
|
||
|
#endif
|
||
|
if (!get_user(insn, (u32 __user *) regs->pc)) {
|
||
|
retcode = do_one_mathemu(insn, &fpt->thread.fsr, fpt->thread.float_regs);
|
||
|
if (retcode) {
|
||
|
/* in this case we need to fix up PC & nPC */
|
||
|
regs->pc = regs->npc;
|
||
|
regs->npc += 4;
|
||
|
}
|
||
|
}
|
||
|
return retcode;
|
||
|
}
|
||
|
|
||
|
/* Normal case: need to empty the queue... */
|
||
|
for (i = 0; i < fpt->thread.fpqdepth; i++) {
|
||
|
retcode = do_one_mathemu(fpt->thread.fpqueue[i].insn, &(fpt->thread.fsr), fpt->thread.float_regs);
|
||
|
if (!retcode) /* insn failed, no point doing any more */
|
||
|
break;
|
||
|
}
|
||
|
/* Now empty the queue and clear the queue_not_empty flag */
|
||
|
if (retcode)
|
||
|
fpt->thread.fsr &= ~(0x3000 | FSR_CEXC_MASK);
|
||
|
else
|
||
|
fpt->thread.fsr &= ~0x3000;
|
||
|
fpt->thread.fpqdepth = 0;
|
||
|
|
||
|
return retcode;
|
||
|
}
|
||
|
|
||
|
/* All routines returning an exception to raise should detect
|
||
|
* such exceptions _before_ rounding to be consistent with
|
||
|
* the behavior of the hardware in the implemented cases
|
||
|
* (and thus with the recommendations in the V9 architecture
|
||
|
* manual).
|
||
|
*
|
||
|
* We return 0 if a SIGFPE should be sent, 1 otherwise.
|
||
|
*/
|
||
|
static inline int record_exception(unsigned long *pfsr, int eflag)
|
||
|
{
|
||
|
unsigned long fsr = *pfsr;
|
||
|
int would_trap;
|
||
|
|
||
|
/* Determine if this exception would have generated a trap. */
|
||
|
would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL;
|
||
|
|
||
|
/* If trapping, we only want to signal one bit. */
|
||
|
if (would_trap != 0) {
|
||
|
eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT);
|
||
|
if ((eflag & (eflag - 1)) != 0) {
|
||
|
if (eflag & FP_EX_INVALID)
|
||
|
eflag = FP_EX_INVALID;
|
||
|
else if (eflag & FP_EX_OVERFLOW)
|
||
|
eflag = FP_EX_OVERFLOW;
|
||
|
else if (eflag & FP_EX_UNDERFLOW)
|
||
|
eflag = FP_EX_UNDERFLOW;
|
||
|
else if (eflag & FP_EX_DIVZERO)
|
||
|
eflag = FP_EX_DIVZERO;
|
||
|
else if (eflag & FP_EX_INEXACT)
|
||
|
eflag = FP_EX_INEXACT;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Set CEXC, here is the rule:
|
||
|
*
|
||
|
* In general all FPU ops will set one and only one
|
||
|
* bit in the CEXC field, this is always the case
|
||
|
* when the IEEE exception trap is enabled in TEM.
|
||
|
*/
|
||
|
fsr &= ~(FSR_CEXC_MASK);
|
||
|
fsr |= ((long)eflag << FSR_CEXC_SHIFT);
|
||
|
|
||
|
/* Set the AEXC field, rule is:
|
||
|
*
|
||
|
* If a trap would not be generated, the
|
||
|
* CEXC just generated is OR'd into the
|
||
|
* existing value of AEXC.
|
||
|
*/
|
||
|
if (would_trap == 0)
|
||
|
fsr |= ((long)eflag << FSR_AEXC_SHIFT);
|
||
|
|
||
|
/* If trapping, indicate fault trap type IEEE. */
|
||
|
if (would_trap != 0)
|
||
|
fsr |= (1UL << 14);
|
||
|
|
||
|
*pfsr = fsr;
|
||
|
|
||
|
return (would_trap ? 0 : 1);
|
||
|
}
|
||
|
|
||
|
typedef union {
|
||
|
u32 s;
|
||
|
u64 d;
|
||
|
u64 q[2];
|
||
|
} *argp;
|
||
|
|
||
|
static int do_one_mathemu(u32 insn, unsigned long *pfsr, unsigned long *fregs)
|
||
|
{
|
||
|
/* Emulate the given insn, updating fsr and fregs appropriately. */
|
||
|
int type = 0;
|
||
|
/* r is rd, b is rs2 and a is rs1. The *u arg tells
|
||
|
whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack)
|
||
|
non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */
|
||
|
#define TYPE(dummy, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6)
|
||
|
int freg;
|
||
|
argp rs1 = NULL, rs2 = NULL, rd = NULL;
|
||
|
FP_DECL_EX;
|
||
|
FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
|
||
|
FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
|
||
|
FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
|
||
|
int IR;
|
||
|
long fsr;
|
||
|
|
||
|
#ifdef DEBUG_MATHEMU
|
||
|
printk("In do_mathemu(), emulating %08lx\n", insn);
|
||
|
#endif
|
||
|
|
||
|
if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ {
|
||
|
switch ((insn >> 5) & 0x1ff) {
|
||
|
case FSQRTQ: TYPE(3,3,1,3,1,0,0); break;
|
||
|
case FADDQ:
|
||
|
case FSUBQ:
|
||
|
case FMULQ:
|
||
|
case FDIVQ: TYPE(3,3,1,3,1,3,1); break;
|
||
|
case FDMULQ: TYPE(3,3,1,2,1,2,1); break;
|
||
|
case FQTOS: TYPE(3,1,1,3,1,0,0); break;
|
||
|
case FQTOD: TYPE(3,2,1,3,1,0,0); break;
|
||
|
case FITOQ: TYPE(3,3,1,1,0,0,0); break;
|
||
|
case FSTOQ: TYPE(3,3,1,1,1,0,0); break;
|
||
|
case FDTOQ: TYPE(3,3,1,2,1,0,0); break;
|
||
|
case FQTOI: TYPE(3,1,0,3,1,0,0); break;
|
||
|
case FSQRTS: TYPE(2,1,1,1,1,0,0); break;
|
||
|
case FSQRTD: TYPE(2,2,1,2,1,0,0); break;
|
||
|
case FADDD:
|
||
|
case FSUBD:
|
||
|
case FMULD:
|
||
|
case FDIVD: TYPE(2,2,1,2,1,2,1); break;
|
||
|
case FADDS:
|
||
|
case FSUBS:
|
||
|
case FMULS:
|
||
|
case FDIVS: TYPE(2,1,1,1,1,1,1); break;
|
||
|
case FSMULD: TYPE(2,2,1,1,1,1,1); break;
|
||
|
case FDTOS: TYPE(2,1,1,2,1,0,0); break;
|
||
|
case FSTOD: TYPE(2,2,1,1,1,0,0); break;
|
||
|
case FSTOI: TYPE(2,1,0,1,1,0,0); break;
|
||
|
case FDTOI: TYPE(2,1,0,2,1,0,0); break;
|
||
|
case FITOS: TYPE(2,1,1,1,0,0,0); break;
|
||
|
case FITOD: TYPE(2,2,1,1,0,0,0); break;
|
||
|
case FMOVS:
|
||
|
case FABSS:
|
||
|
case FNEGS: TYPE(2,1,0,1,0,0,0); break;
|
||
|
}
|
||
|
} else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ {
|
||
|
switch ((insn >> 5) & 0x1ff) {
|
||
|
case FCMPS: TYPE(3,0,0,1,1,1,1); break;
|
||
|
case FCMPES: TYPE(3,0,0,1,1,1,1); break;
|
||
|
case FCMPD: TYPE(3,0,0,2,1,2,1); break;
|
||
|
case FCMPED: TYPE(3,0,0,2,1,2,1); break;
|
||
|
case FCMPQ: TYPE(3,0,0,3,1,3,1); break;
|
||
|
case FCMPEQ: TYPE(3,0,0,3,1,3,1); break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!type) { /* oops, didn't recognise that FPop */
|
||
|
#ifdef DEBUG_MATHEMU
|
||
|
printk("attempt to emulate unrecognised FPop!\n");
|
||
|
#endif
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Decode the registers to be used */
|
||
|
freg = (*pfsr >> 14) & 0xf;
|
||
|
|
||
|
*pfsr &= ~0x1c000; /* clear the traptype bits */
|
||
|
|
||
|
freg = ((insn >> 14) & 0x1f);
|
||
|
switch (type & 0x3) { /* is rs1 single, double or quad? */
|
||
|
case 3:
|
||
|
if (freg & 3) { /* quadwords must have bits 4&5 of the */
|
||
|
/* encoded reg. number set to zero. */
|
||
|
*pfsr |= (6 << 14);
|
||
|
return 0; /* simulate invalid_fp_register exception */
|
||
|
}
|
||
|
/* fall through */
|
||
|
case 2:
|
||
|
if (freg & 1) { /* doublewords must have bit 5 zeroed */
|
||
|
*pfsr |= (6 << 14);
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
rs1 = (argp)&fregs[freg];
|
||
|
switch (type & 0x7) {
|
||
|
case 7: FP_UNPACK_QP (QA, rs1); break;
|
||
|
case 6: FP_UNPACK_DP (DA, rs1); break;
|
||
|
case 5: FP_UNPACK_SP (SA, rs1); break;
|
||
|
}
|
||
|
freg = (insn & 0x1f);
|
||
|
switch ((type >> 3) & 0x3) { /* same again for rs2 */
|
||
|
case 3:
|
||
|
if (freg & 3) { /* quadwords must have bits 4&5 of the */
|
||
|
/* encoded reg. number set to zero. */
|
||
|
*pfsr |= (6 << 14);
|
||
|
return 0; /* simulate invalid_fp_register exception */
|
||
|
}
|
||
|
/* fall through */
|
||
|
case 2:
|
||
|
if (freg & 1) { /* doublewords must have bit 5 zeroed */
|
||
|
*pfsr |= (6 << 14);
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
rs2 = (argp)&fregs[freg];
|
||
|
switch ((type >> 3) & 0x7) {
|
||
|
case 7: FP_UNPACK_QP (QB, rs2); break;
|
||
|
case 6: FP_UNPACK_DP (DB, rs2); break;
|
||
|
case 5: FP_UNPACK_SP (SB, rs2); break;
|
||
|
}
|
||
|
freg = ((insn >> 25) & 0x1f);
|
||
|
switch ((type >> 6) & 0x3) { /* and finally rd. This one's a bit different */
|
||
|
case 0: /* dest is fcc. (this must be FCMPQ or FCMPEQ) */
|
||
|
if (freg) { /* V8 has only one set of condition codes, so */
|
||
|
/* anything but 0 in the rd field is an error */
|
||
|
*pfsr |= (6 << 14); /* (should probably flag as invalid opcode */
|
||
|
return 0; /* but SIGFPE will do :-> ) */
|
||
|
}
|
||
|
break;
|
||
|
case 3:
|
||
|
if (freg & 3) { /* quadwords must have bits 4&5 of the */
|
||
|
/* encoded reg. number set to zero. */
|
||
|
*pfsr |= (6 << 14);
|
||
|
return 0; /* simulate invalid_fp_register exception */
|
||
|
}
|
||
|
/* fall through */
|
||
|
case 2:
|
||
|
if (freg & 1) { /* doublewords must have bit 5 zeroed */
|
||
|
*pfsr |= (6 << 14);
|
||
|
return 0;
|
||
|
}
|
||
|
/* fall through */
|
||
|
case 1:
|
||
|
rd = (void *)&fregs[freg];
|
||
|
break;
|
||
|
}
|
||
|
#ifdef DEBUG_MATHEMU
|
||
|
printk("executing insn...\n");
|
||
|
#endif
|
||
|
/* do the Right Thing */
|
||
|
switch ((insn >> 5) & 0x1ff) {
|
||
|
/* + */
|
||
|
case FADDS: FP_ADD_S (SR, SA, SB); break;
|
||
|
case FADDD: FP_ADD_D (DR, DA, DB); break;
|
||
|
case FADDQ: FP_ADD_Q (QR, QA, QB); break;
|
||
|
/* - */
|
||
|
case FSUBS: FP_SUB_S (SR, SA, SB); break;
|
||
|
case FSUBD: FP_SUB_D (DR, DA, DB); break;
|
||
|
case FSUBQ: FP_SUB_Q (QR, QA, QB); break;
|
||
|
/* * */
|
||
|
case FMULS: FP_MUL_S (SR, SA, SB); break;
|
||
|
case FSMULD: FP_CONV (D, S, 2, 1, DA, SA);
|
||
|
FP_CONV (D, S, 2, 1, DB, SB);
|
||
|
case FMULD: FP_MUL_D (DR, DA, DB); break;
|
||
|
case FDMULQ: FP_CONV (Q, D, 4, 2, QA, DA);
|
||
|
FP_CONV (Q, D, 4, 2, QB, DB);
|
||
|
case FMULQ: FP_MUL_Q (QR, QA, QB); break;
|
||
|
/* / */
|
||
|
case FDIVS: FP_DIV_S (SR, SA, SB); break;
|
||
|
case FDIVD: FP_DIV_D (DR, DA, DB); break;
|
||
|
case FDIVQ: FP_DIV_Q (QR, QA, QB); break;
|
||
|
/* sqrt */
|
||
|
case FSQRTS: FP_SQRT_S (SR, SB); break;
|
||
|
case FSQRTD: FP_SQRT_D (DR, DB); break;
|
||
|
case FSQRTQ: FP_SQRT_Q (QR, QB); break;
|
||
|
/* mov */
|
||
|
case FMOVS: rd->s = rs2->s; break;
|
||
|
case FABSS: rd->s = rs2->s & 0x7fffffff; break;
|
||
|
case FNEGS: rd->s = rs2->s ^ 0x80000000; break;
|
||
|
/* float to int */
|
||
|
case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break;
|
||
|
case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break;
|
||
|
case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break;
|
||
|
/* int to float */
|
||
|
case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break;
|
||
|
case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break;
|
||
|
case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break;
|
||
|
/* float to float */
|
||
|
case FSTOD: FP_CONV (D, S, 2, 1, DR, SB); break;
|
||
|
case FSTOQ: FP_CONV (Q, S, 4, 1, QR, SB); break;
|
||
|
case FDTOQ: FP_CONV (Q, D, 4, 2, QR, DB); break;
|
||
|
case FDTOS: FP_CONV (S, D, 1, 2, SR, DB); break;
|
||
|
case FQTOS: FP_CONV (S, Q, 1, 4, SR, QB); break;
|
||
|
case FQTOD: FP_CONV (D, Q, 2, 4, DR, QB); break;
|
||
|
/* comparison */
|
||
|
case FCMPS:
|
||
|
case FCMPES:
|
||
|
FP_CMP_S(IR, SB, SA, 3);
|
||
|
if (IR == 3 &&
|
||
|
(((insn >> 5) & 0x1ff) == FCMPES ||
|
||
|
FP_ISSIGNAN_S(SA) ||
|
||
|
FP_ISSIGNAN_S(SB)))
|
||
|
FP_SET_EXCEPTION (FP_EX_INVALID);
|
||
|
break;
|
||
|
case FCMPD:
|
||
|
case FCMPED:
|
||
|
FP_CMP_D(IR, DB, DA, 3);
|
||
|
if (IR == 3 &&
|
||
|
(((insn >> 5) & 0x1ff) == FCMPED ||
|
||
|
FP_ISSIGNAN_D(DA) ||
|
||
|
FP_ISSIGNAN_D(DB)))
|
||
|
FP_SET_EXCEPTION (FP_EX_INVALID);
|
||
|
break;
|
||
|
case FCMPQ:
|
||
|
case FCMPEQ:
|
||
|
FP_CMP_Q(IR, QB, QA, 3);
|
||
|
if (IR == 3 &&
|
||
|
(((insn >> 5) & 0x1ff) == FCMPEQ ||
|
||
|
FP_ISSIGNAN_Q(QA) ||
|
||
|
FP_ISSIGNAN_Q(QB)))
|
||
|
FP_SET_EXCEPTION (FP_EX_INVALID);
|
||
|
}
|
||
|
if (!FP_INHIBIT_RESULTS) {
|
||
|
switch ((type >> 6) & 0x7) {
|
||
|
case 0: fsr = *pfsr;
|
||
|
if (IR == -1) IR = 2;
|
||
|
/* fcc is always fcc0 */
|
||
|
fsr &= ~0xc00; fsr |= (IR << 10);
|
||
|
*pfsr = fsr;
|
||
|
break;
|
||
|
case 1: rd->s = IR; break;
|
||
|
case 5: FP_PACK_SP (rd, SR); break;
|
||
|
case 6: FP_PACK_DP (rd, DR); break;
|
||
|
case 7: FP_PACK_QP (rd, QR); break;
|
||
|
}
|
||
|
}
|
||
|
if (_fex == 0)
|
||
|
return 1; /* success! */
|
||
|
return record_exception(pfsr, _fex);
|
||
|
}
|