kernel_samsung_a34x-permissive/drivers/gpu/drm/nouveau/dispnv04/crtc.c

1173 lines
38 KiB
C
Raw Normal View History

/*
* Copyright 1993-2003 NVIDIA, Corporation
* Copyright 2006 Dave Airlie
* Copyright 2007 Maarten Maathuis
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <linux/pm_runtime.h>
#include <drm/drmP.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_plane_helper.h>
#include "nouveau_drv.h"
#include "nouveau_reg.h"
#include "nouveau_ttm.h"
#include "nouveau_bo.h"
#include "nouveau_gem.h"
#include "nouveau_encoder.h"
#include "nouveau_connector.h"
#include "nouveau_crtc.h"
#include "hw.h"
#include "nvreg.h"
#include "nouveau_fbcon.h"
#include "disp.h"
#include <subdev/bios/pll.h>
#include <subdev/clk.h>
static int
nv04_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb);
static void
crtc_wr_cio_state(struct drm_crtc *crtc, struct nv04_crtc_reg *crtcstate, int index)
{
NVWriteVgaCrtc(crtc->dev, nouveau_crtc(crtc)->index, index,
crtcstate->CRTC[index]);
}
static void nv_crtc_set_digital_vibrance(struct drm_crtc *crtc, int level)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
regp->CRTC[NV_CIO_CRE_CSB] = nv_crtc->saturation = level;
if (nv_crtc->saturation && nv_gf4_disp_arch(crtc->dev)) {
regp->CRTC[NV_CIO_CRE_CSB] = 0x80;
regp->CRTC[NV_CIO_CRE_5B] = nv_crtc->saturation << 2;
crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_5B);
}
crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_CSB);
}
static void nv_crtc_set_image_sharpening(struct drm_crtc *crtc, int level)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
nv_crtc->sharpness = level;
if (level < 0) /* blur is in hw range 0x3f -> 0x20 */
level += 0x40;
regp->ramdac_634 = level;
NVWriteRAMDAC(crtc->dev, nv_crtc->index, NV_PRAMDAC_634, regp->ramdac_634);
}
#define PLLSEL_VPLL1_MASK \
(NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_VPLL \
| NV_PRAMDAC_PLL_COEFF_SELECT_VCLK_RATIO_DB2)
#define PLLSEL_VPLL2_MASK \
(NV_PRAMDAC_PLL_COEFF_SELECT_PLL_SOURCE_VPLL2 \
| NV_PRAMDAC_PLL_COEFF_SELECT_VCLK2_RATIO_DB2)
#define PLLSEL_TV_MASK \
(NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK1 \
| NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK1 \
| NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK2 \
| NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK2)
/* NV4x 0x40.. pll notes:
* gpu pll: 0x4000 + 0x4004
* ?gpu? pll: 0x4008 + 0x400c
* vpll1: 0x4010 + 0x4014
* vpll2: 0x4018 + 0x401c
* mpll: 0x4020 + 0x4024
* mpll: 0x4038 + 0x403c
*
* the first register of each pair has some unknown details:
* bits 0-7: redirected values from elsewhere? (similar to PLL_SETUP_CONTROL?)
* bits 20-23: (mpll) something to do with post divider?
* bits 28-31: related to single stage mode? (bit 8/12)
*/
static void nv_crtc_calc_state_ext(struct drm_crtc *crtc, struct drm_display_mode * mode, int dot_clock)
{
struct drm_device *dev = crtc->dev;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
struct nvkm_clk *clk = nvxx_clk(&drm->client.device);
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nv04_mode_state *state = &nv04_display(dev)->mode_reg;
struct nv04_crtc_reg *regp = &state->crtc_reg[nv_crtc->index];
struct nvkm_pll_vals *pv = &regp->pllvals;
struct nvbios_pll pll_lim;
if (nvbios_pll_parse(bios, nv_crtc->index ? PLL_VPLL1 : PLL_VPLL0,
&pll_lim))
return;
/* NM2 == 0 is used to determine single stage mode on two stage plls */
pv->NM2 = 0;
/* for newer nv4x the blob uses only the first stage of the vpll below a
* certain clock. for a certain nv4b this is 150MHz. since the max
* output frequency of the first stage for this card is 300MHz, it is
* assumed the threshold is given by vco1 maxfreq/2
*/
/* for early nv4x, specifically nv40 and *some* nv43 (devids 0 and 6,
* not 8, others unknown), the blob always uses both plls. no problem
* has yet been observed in allowing the use a single stage pll on all
* nv43 however. the behaviour of single stage use is untested on nv40
*/
if (drm->client.device.info.chipset > 0x40 && dot_clock <= (pll_lim.vco1.max_freq / 2))
memset(&pll_lim.vco2, 0, sizeof(pll_lim.vco2));
if (!clk->pll_calc(clk, &pll_lim, dot_clock, pv))
return;
state->pllsel &= PLLSEL_VPLL1_MASK | PLLSEL_VPLL2_MASK | PLLSEL_TV_MASK;
/* The blob uses this always, so let's do the same */
if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE)
state->pllsel |= NV_PRAMDAC_PLL_COEFF_SELECT_USE_VPLL2_TRUE;
/* again nv40 and some nv43 act more like nv3x as described above */
if (drm->client.device.info.chipset < 0x41)
state->pllsel |= NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_MPLL |
NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_NVPLL;
state->pllsel |= nv_crtc->index ? PLLSEL_VPLL2_MASK : PLLSEL_VPLL1_MASK;
if (pv->NM2)
NV_DEBUG(drm, "vpll: n1 %d n2 %d m1 %d m2 %d log2p %d\n",
pv->N1, pv->N2, pv->M1, pv->M2, pv->log2P);
else
NV_DEBUG(drm, "vpll: n %d m %d log2p %d\n",
pv->N1, pv->M1, pv->log2P);
nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.offset);
}
static void
nv_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct nouveau_drm *drm = nouveau_drm(dev);
unsigned char seq1 = 0, crtc17 = 0;
unsigned char crtc1A;
NV_DEBUG(drm, "Setting dpms mode %d on CRTC %d\n", mode,
nv_crtc->index);
if (nv_crtc->last_dpms == mode) /* Don't do unnecessary mode changes. */
return;
nv_crtc->last_dpms = mode;
if (nv_two_heads(dev))
NVSetOwner(dev, nv_crtc->index);
/* nv4ref indicates these two RPC1 bits inhibit h/v sync */
crtc1A = NVReadVgaCrtc(dev, nv_crtc->index,
NV_CIO_CRE_RPC1_INDEX) & ~0xC0;
switch (mode) {
case DRM_MODE_DPMS_STANDBY:
/* Screen: Off; HSync: Off, VSync: On -- Not Supported */
seq1 = 0x20;
crtc17 = 0x80;
crtc1A |= 0x80;
break;
case DRM_MODE_DPMS_SUSPEND:
/* Screen: Off; HSync: On, VSync: Off -- Not Supported */
seq1 = 0x20;
crtc17 = 0x80;
crtc1A |= 0x40;
break;
case DRM_MODE_DPMS_OFF:
/* Screen: Off; HSync: Off, VSync: Off */
seq1 = 0x20;
crtc17 = 0x00;
crtc1A |= 0xC0;
break;
case DRM_MODE_DPMS_ON:
default:
/* Screen: On; HSync: On, VSync: On */
seq1 = 0x00;
crtc17 = 0x80;
break;
}
NVVgaSeqReset(dev, nv_crtc->index, true);
/* Each head has it's own sequencer, so we can turn it off when we want */
seq1 |= (NVReadVgaSeq(dev, nv_crtc->index, NV_VIO_SR_CLOCK_INDEX) & ~0x20);
NVWriteVgaSeq(dev, nv_crtc->index, NV_VIO_SR_CLOCK_INDEX, seq1);
crtc17 |= (NVReadVgaCrtc(dev, nv_crtc->index, NV_CIO_CR_MODE_INDEX) & ~0x80);
mdelay(10);
NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CR_MODE_INDEX, crtc17);
NVVgaSeqReset(dev, nv_crtc->index, false);
NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RPC1_INDEX, crtc1A);
}
static void
nv_crtc_mode_set_vga(struct drm_crtc *crtc, struct drm_display_mode *mode)
{
struct drm_device *dev = crtc->dev;
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
struct drm_framebuffer *fb = crtc->primary->fb;
/* Calculate our timings */
int horizDisplay = (mode->crtc_hdisplay >> 3) - 1;
int horizStart = (mode->crtc_hsync_start >> 3) + 1;
int horizEnd = (mode->crtc_hsync_end >> 3) + 1;
int horizTotal = (mode->crtc_htotal >> 3) - 5;
int horizBlankStart = (mode->crtc_hdisplay >> 3) - 1;
int horizBlankEnd = (mode->crtc_htotal >> 3) - 1;
int vertDisplay = mode->crtc_vdisplay - 1;
int vertStart = mode->crtc_vsync_start - 1;
int vertEnd = mode->crtc_vsync_end - 1;
int vertTotal = mode->crtc_vtotal - 2;
int vertBlankStart = mode->crtc_vdisplay - 1;
int vertBlankEnd = mode->crtc_vtotal - 1;
struct drm_encoder *encoder;
bool fp_output = false;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
if (encoder->crtc == crtc &&
(nv_encoder->dcb->type == DCB_OUTPUT_LVDS ||
nv_encoder->dcb->type == DCB_OUTPUT_TMDS))
fp_output = true;
}
if (fp_output) {
vertStart = vertTotal - 3;
vertEnd = vertTotal - 2;
vertBlankStart = vertStart;
horizStart = horizTotal - 5;
horizEnd = horizTotal - 2;
horizBlankEnd = horizTotal + 4;
#if 0
if (dev->overlayAdaptor && drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS)
/* This reportedly works around some video overlay bandwidth problems */
horizTotal += 2;
#endif
}
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
vertTotal |= 1;
#if 0
ErrorF("horizDisplay: 0x%X \n", horizDisplay);
ErrorF("horizStart: 0x%X \n", horizStart);
ErrorF("horizEnd: 0x%X \n", horizEnd);
ErrorF("horizTotal: 0x%X \n", horizTotal);
ErrorF("horizBlankStart: 0x%X \n", horizBlankStart);
ErrorF("horizBlankEnd: 0x%X \n", horizBlankEnd);
ErrorF("vertDisplay: 0x%X \n", vertDisplay);
ErrorF("vertStart: 0x%X \n", vertStart);
ErrorF("vertEnd: 0x%X \n", vertEnd);
ErrorF("vertTotal: 0x%X \n", vertTotal);
ErrorF("vertBlankStart: 0x%X \n", vertBlankStart);
ErrorF("vertBlankEnd: 0x%X \n", vertBlankEnd);
#endif
/*
* compute correct Hsync & Vsync polarity
*/
if ((mode->flags & (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))
&& (mode->flags & (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) {
regp->MiscOutReg = 0x23;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
regp->MiscOutReg |= 0x40;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
regp->MiscOutReg |= 0x80;
} else {
int vdisplay = mode->vdisplay;
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
vdisplay *= 2;
if (mode->vscan > 1)
vdisplay *= mode->vscan;
if (vdisplay < 400)
regp->MiscOutReg = 0xA3; /* +hsync -vsync */
else if (vdisplay < 480)
regp->MiscOutReg = 0x63; /* -hsync +vsync */
else if (vdisplay < 768)
regp->MiscOutReg = 0xE3; /* -hsync -vsync */
else
regp->MiscOutReg = 0x23; /* +hsync +vsync */
}
/*
* Time Sequencer
*/
regp->Sequencer[NV_VIO_SR_RESET_INDEX] = 0x00;
/* 0x20 disables the sequencer */
if (mode->flags & DRM_MODE_FLAG_CLKDIV2)
regp->Sequencer[NV_VIO_SR_CLOCK_INDEX] = 0x29;
else
regp->Sequencer[NV_VIO_SR_CLOCK_INDEX] = 0x21;
regp->Sequencer[NV_VIO_SR_PLANE_MASK_INDEX] = 0x0F;
regp->Sequencer[NV_VIO_SR_CHAR_MAP_INDEX] = 0x00;
regp->Sequencer[NV_VIO_SR_MEM_MODE_INDEX] = 0x0E;
/*
* CRTC
*/
regp->CRTC[NV_CIO_CR_HDT_INDEX] = horizTotal;
regp->CRTC[NV_CIO_CR_HDE_INDEX] = horizDisplay;
regp->CRTC[NV_CIO_CR_HBS_INDEX] = horizBlankStart;
regp->CRTC[NV_CIO_CR_HBE_INDEX] = (1 << 7) |
XLATE(horizBlankEnd, 0, NV_CIO_CR_HBE_4_0);
regp->CRTC[NV_CIO_CR_HRS_INDEX] = horizStart;
regp->CRTC[NV_CIO_CR_HRE_INDEX] = XLATE(horizBlankEnd, 5, NV_CIO_CR_HRE_HBE_5) |
XLATE(horizEnd, 0, NV_CIO_CR_HRE_4_0);
regp->CRTC[NV_CIO_CR_VDT_INDEX] = vertTotal;
regp->CRTC[NV_CIO_CR_OVL_INDEX] = XLATE(vertStart, 9, NV_CIO_CR_OVL_VRS_9) |
XLATE(vertDisplay, 9, NV_CIO_CR_OVL_VDE_9) |
XLATE(vertTotal, 9, NV_CIO_CR_OVL_VDT_9) |
(1 << 4) |
XLATE(vertBlankStart, 8, NV_CIO_CR_OVL_VBS_8) |
XLATE(vertStart, 8, NV_CIO_CR_OVL_VRS_8) |
XLATE(vertDisplay, 8, NV_CIO_CR_OVL_VDE_8) |
XLATE(vertTotal, 8, NV_CIO_CR_OVL_VDT_8);
regp->CRTC[NV_CIO_CR_RSAL_INDEX] = 0x00;
regp->CRTC[NV_CIO_CR_CELL_HT_INDEX] = ((mode->flags & DRM_MODE_FLAG_DBLSCAN) ? MASK(NV_CIO_CR_CELL_HT_SCANDBL) : 0) |
1 << 6 |
XLATE(vertBlankStart, 9, NV_CIO_CR_CELL_HT_VBS_9);
regp->CRTC[NV_CIO_CR_CURS_ST_INDEX] = 0x00;
regp->CRTC[NV_CIO_CR_CURS_END_INDEX] = 0x00;
regp->CRTC[NV_CIO_CR_SA_HI_INDEX] = 0x00;
regp->CRTC[NV_CIO_CR_SA_LO_INDEX] = 0x00;
regp->CRTC[NV_CIO_CR_TCOFF_HI_INDEX] = 0x00;
regp->CRTC[NV_CIO_CR_TCOFF_LO_INDEX] = 0x00;
regp->CRTC[NV_CIO_CR_VRS_INDEX] = vertStart;
regp->CRTC[NV_CIO_CR_VRE_INDEX] = 1 << 5 | XLATE(vertEnd, 0, NV_CIO_CR_VRE_3_0);
regp->CRTC[NV_CIO_CR_VDE_INDEX] = vertDisplay;
/* framebuffer can be larger than crtc scanout area. */
regp->CRTC[NV_CIO_CR_OFFSET_INDEX] = fb->pitches[0] / 8;
regp->CRTC[NV_CIO_CR_ULINE_INDEX] = 0x00;
regp->CRTC[NV_CIO_CR_VBS_INDEX] = vertBlankStart;
regp->CRTC[NV_CIO_CR_VBE_INDEX] = vertBlankEnd;
regp->CRTC[NV_CIO_CR_MODE_INDEX] = 0x43;
regp->CRTC[NV_CIO_CR_LCOMP_INDEX] = 0xff;
/*
* Some extended CRTC registers (they are not saved with the rest of the vga regs).
*/
/* framebuffer can be larger than crtc scanout area. */
regp->CRTC[NV_CIO_CRE_RPC0_INDEX] =
XLATE(fb->pitches[0] / 8, 8, NV_CIO_CRE_RPC0_OFFSET_10_8);
regp->CRTC[NV_CIO_CRE_42] =
XLATE(fb->pitches[0] / 8, 11, NV_CIO_CRE_42_OFFSET_11);
regp->CRTC[NV_CIO_CRE_RPC1_INDEX] = mode->crtc_hdisplay < 1280 ?
MASK(NV_CIO_CRE_RPC1_LARGE) : 0x00;
regp->CRTC[NV_CIO_CRE_LSR_INDEX] = XLATE(horizBlankEnd, 6, NV_CIO_CRE_LSR_HBE_6) |
XLATE(vertBlankStart, 10, NV_CIO_CRE_LSR_VBS_10) |
XLATE(vertStart, 10, NV_CIO_CRE_LSR_VRS_10) |
XLATE(vertDisplay, 10, NV_CIO_CRE_LSR_VDE_10) |
XLATE(vertTotal, 10, NV_CIO_CRE_LSR_VDT_10);
regp->CRTC[NV_CIO_CRE_HEB__INDEX] = XLATE(horizStart, 8, NV_CIO_CRE_HEB_HRS_8) |
XLATE(horizBlankStart, 8, NV_CIO_CRE_HEB_HBS_8) |
XLATE(horizDisplay, 8, NV_CIO_CRE_HEB_HDE_8) |
XLATE(horizTotal, 8, NV_CIO_CRE_HEB_HDT_8);
regp->CRTC[NV_CIO_CRE_EBR_INDEX] = XLATE(vertBlankStart, 11, NV_CIO_CRE_EBR_VBS_11) |
XLATE(vertStart, 11, NV_CIO_CRE_EBR_VRS_11) |
XLATE(vertDisplay, 11, NV_CIO_CRE_EBR_VDE_11) |
XLATE(vertTotal, 11, NV_CIO_CRE_EBR_VDT_11);
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
horizTotal = (horizTotal >> 1) & ~1;
regp->CRTC[NV_CIO_CRE_ILACE__INDEX] = horizTotal;
regp->CRTC[NV_CIO_CRE_HEB__INDEX] |= XLATE(horizTotal, 8, NV_CIO_CRE_HEB_ILC_8);
} else
regp->CRTC[NV_CIO_CRE_ILACE__INDEX] = 0xff; /* interlace off */
/*
* Graphics Display Controller
*/
regp->Graphics[NV_VIO_GX_SR_INDEX] = 0x00;
regp->Graphics[NV_VIO_GX_SREN_INDEX] = 0x00;
regp->Graphics[NV_VIO_GX_CCOMP_INDEX] = 0x00;
regp->Graphics[NV_VIO_GX_ROP_INDEX] = 0x00;
regp->Graphics[NV_VIO_GX_READ_MAP_INDEX] = 0x00;
regp->Graphics[NV_VIO_GX_MODE_INDEX] = 0x40; /* 256 color mode */
regp->Graphics[NV_VIO_GX_MISC_INDEX] = 0x05; /* map 64k mem + graphic mode */
regp->Graphics[NV_VIO_GX_DONT_CARE_INDEX] = 0x0F;
regp->Graphics[NV_VIO_GX_BIT_MASK_INDEX] = 0xFF;
regp->Attribute[0] = 0x00; /* standard colormap translation */
regp->Attribute[1] = 0x01;
regp->Attribute[2] = 0x02;
regp->Attribute[3] = 0x03;
regp->Attribute[4] = 0x04;
regp->Attribute[5] = 0x05;
regp->Attribute[6] = 0x06;
regp->Attribute[7] = 0x07;
regp->Attribute[8] = 0x08;
regp->Attribute[9] = 0x09;
regp->Attribute[10] = 0x0A;
regp->Attribute[11] = 0x0B;
regp->Attribute[12] = 0x0C;
regp->Attribute[13] = 0x0D;
regp->Attribute[14] = 0x0E;
regp->Attribute[15] = 0x0F;
regp->Attribute[NV_CIO_AR_MODE_INDEX] = 0x01; /* Enable graphic mode */
/* Non-vga */
regp->Attribute[NV_CIO_AR_OSCAN_INDEX] = 0x00;
regp->Attribute[NV_CIO_AR_PLANE_INDEX] = 0x0F; /* enable all color planes */
regp->Attribute[NV_CIO_AR_HPP_INDEX] = 0x00;
regp->Attribute[NV_CIO_AR_CSEL_INDEX] = 0x00;
}
/**
* Sets up registers for the given mode/adjusted_mode pair.
*
* The clocks, CRTCs and outputs attached to this CRTC must be off.
*
* This shouldn't enable any clocks, CRTCs, or outputs, but they should
* be easily turned on/off after this.
*/
static void
nv_crtc_mode_set_regs(struct drm_crtc *crtc, struct drm_display_mode * mode)
{
struct drm_device *dev = crtc->dev;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
struct nv04_crtc_reg *savep = &nv04_display(dev)->saved_reg.crtc_reg[nv_crtc->index];
const struct drm_framebuffer *fb = crtc->primary->fb;
struct drm_encoder *encoder;
bool lvds_output = false, tmds_output = false, tv_output = false,
off_chip_digital = false;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
bool digital = false;
if (encoder->crtc != crtc)
continue;
if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS)
digital = lvds_output = true;
if (nv_encoder->dcb->type == DCB_OUTPUT_TV)
tv_output = true;
if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS)
digital = tmds_output = true;
if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP && digital)
off_chip_digital = true;
}
/* Registers not directly related to the (s)vga mode */
/* What is the meaning of this register? */
/* A few popular values are 0x18, 0x1c, 0x38, 0x3c */
regp->CRTC[NV_CIO_CRE_ENH_INDEX] = savep->CRTC[NV_CIO_CRE_ENH_INDEX] & ~(1<<5);
regp->crtc_eng_ctrl = 0;
/* Except for rare conditions I2C is enabled on the primary crtc */
if (nv_crtc->index == 0)
regp->crtc_eng_ctrl |= NV_CRTC_FSEL_I2C;
#if 0
/* Set overlay to desired crtc. */
if (dev->overlayAdaptor) {
NVPortPrivPtr pPriv = GET_OVERLAY_PRIVATE(dev);
if (pPriv->overlayCRTC == nv_crtc->index)
regp->crtc_eng_ctrl |= NV_CRTC_FSEL_OVERLAY;
}
#endif
/* ADDRESS_SPACE_PNVM is the same as setting HCUR_ASI */
regp->cursor_cfg = NV_PCRTC_CURSOR_CONFIG_CUR_LINES_64 |
NV_PCRTC_CURSOR_CONFIG_CUR_PIXELS_64 |
NV_PCRTC_CURSOR_CONFIG_ADDRESS_SPACE_PNVM;
if (drm->client.device.info.chipset >= 0x11)
regp->cursor_cfg |= NV_PCRTC_CURSOR_CONFIG_CUR_BPP_32;
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
regp->cursor_cfg |= NV_PCRTC_CURSOR_CONFIG_DOUBLE_SCAN_ENABLE;
/* Unblock some timings */
regp->CRTC[NV_CIO_CRE_53] = 0;
regp->CRTC[NV_CIO_CRE_54] = 0;
/* 0x00 is disabled, 0x11 is lvds, 0x22 crt and 0x88 tmds */
if (lvds_output)
regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x11;
else if (tmds_output)
regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x88;
else
regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x22;
/* These values seem to vary */
/* This register seems to be used by the bios to make certain decisions on some G70 cards? */
regp->CRTC[NV_CIO_CRE_SCRATCH4__INDEX] = savep->CRTC[NV_CIO_CRE_SCRATCH4__INDEX];
nv_crtc_set_digital_vibrance(crtc, nv_crtc->saturation);
/* probably a scratch reg, but kept for cargo-cult purposes:
* bit0: crtc0?, head A
* bit6: lvds, head A
* bit7: (only in X), head A
*/
if (nv_crtc->index == 0)
regp->CRTC[NV_CIO_CRE_4B] = savep->CRTC[NV_CIO_CRE_4B] | 0x80;
/* The blob seems to take the current value from crtc 0, add 4 to that
* and reuse the old value for crtc 1 */
regp->CRTC[NV_CIO_CRE_TVOUT_LATENCY] = nv04_display(dev)->saved_reg.crtc_reg[0].CRTC[NV_CIO_CRE_TVOUT_LATENCY];
if (!nv_crtc->index)
regp->CRTC[NV_CIO_CRE_TVOUT_LATENCY] += 4;
/* the blob sometimes sets |= 0x10 (which is the same as setting |=
* 1 << 30 on 0x60.830), for no apparent reason */
regp->CRTC[NV_CIO_CRE_59] = off_chip_digital;
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_RANKINE)
regp->CRTC[0x9f] = off_chip_digital ? 0x11 : 0x1;
regp->crtc_830 = mode->crtc_vdisplay - 3;
regp->crtc_834 = mode->crtc_vdisplay - 1;
if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE)
/* This is what the blob does */
regp->crtc_850 = NVReadCRTC(dev, 0, NV_PCRTC_850);
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_RANKINE)
regp->gpio_ext = NVReadCRTC(dev, 0, NV_PCRTC_GPIO_EXT);
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS)
regp->crtc_cfg = NV10_PCRTC_CONFIG_START_ADDRESS_HSYNC;
else
regp->crtc_cfg = NV04_PCRTC_CONFIG_START_ADDRESS_HSYNC;
/* Some misc regs */
if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) {
regp->CRTC[NV_CIO_CRE_85] = 0xFF;
regp->CRTC[NV_CIO_CRE_86] = 0x1;
}
regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] = (fb->format->depth + 1) / 8;
/* Enable slaved mode (called MODE_TV in nv4ref.h) */
if (lvds_output || tmds_output || tv_output)
regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] |= (1 << 7);
/* Generic PRAMDAC regs */
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS)
/* Only bit that bios and blob set. */
regp->nv10_cursync = (1 << 25);
regp->ramdac_gen_ctrl = NV_PRAMDAC_GENERAL_CONTROL_BPC_8BITS |
NV_PRAMDAC_GENERAL_CONTROL_VGA_STATE_SEL |
NV_PRAMDAC_GENERAL_CONTROL_PIXMIX_ON;
if (fb->format->depth == 16)
regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL;
if (drm->client.device.info.chipset >= 0x11)
regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_PIPE_LONG;
regp->ramdac_630 = 0; /* turn off green mode (tv test pattern?) */
regp->tv_setup = 0;
nv_crtc_set_image_sharpening(crtc, nv_crtc->sharpness);
/* Some values the blob sets */
regp->ramdac_8c0 = 0x100;
regp->ramdac_a20 = 0x0;
regp->ramdac_a24 = 0xfffff;
regp->ramdac_a34 = 0x1;
}
static int
nv_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
{
struct nv04_display *disp = nv04_display(crtc->dev);
struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->primary->fb);
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
int ret;
ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM, false);
if (ret == 0) {
if (disp->image[nv_crtc->index])
nouveau_bo_unpin(disp->image[nv_crtc->index]);
nouveau_bo_ref(nvfb->nvbo, &disp->image[nv_crtc->index]);
}
return ret;
}
/**
* Sets up registers for the given mode/adjusted_mode pair.
*
* The clocks, CRTCs and outputs attached to this CRTC must be off.
*
* This shouldn't enable any clocks, CRTCs, or outputs, but they should
* be easily turned on/off after this.
*/
static int
nv_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y, struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nouveau_drm *drm = nouveau_drm(dev);
int ret;
NV_DEBUG(drm, "CTRC mode on CRTC %d:\n", nv_crtc->index);
drm_mode_debug_printmodeline(adjusted_mode);
ret = nv_crtc_swap_fbs(crtc, old_fb);
if (ret)
return ret;
/* unlock must come after turning off FP_TG_CONTROL in output_prepare */
nv_lock_vga_crtc_shadow(dev, nv_crtc->index, -1);
nv_crtc_mode_set_vga(crtc, adjusted_mode);
/* calculated in nv04_dfp_prepare, nv40 needs it written before calculating PLLs */
if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE)
NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, nv04_display(dev)->mode_reg.sel_clk);
nv_crtc_mode_set_regs(crtc, adjusted_mode);
nv_crtc_calc_state_ext(crtc, mode, adjusted_mode->clock);
return 0;
}
static void nv_crtc_save(struct drm_crtc *crtc)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct nv04_mode_state *state = &nv04_display(dev)->mode_reg;
struct nv04_crtc_reg *crtc_state = &state->crtc_reg[nv_crtc->index];
struct nv04_mode_state *saved = &nv04_display(dev)->saved_reg;
struct nv04_crtc_reg *crtc_saved = &saved->crtc_reg[nv_crtc->index];
if (nv_two_heads(crtc->dev))
NVSetOwner(crtc->dev, nv_crtc->index);
nouveau_hw_save_state(crtc->dev, nv_crtc->index, saved);
/* init some state to saved value */
state->sel_clk = saved->sel_clk & ~(0x5 << 16);
crtc_state->CRTC[NV_CIO_CRE_LCD__INDEX] = crtc_saved->CRTC[NV_CIO_CRE_LCD__INDEX];
state->pllsel = saved->pllsel & ~(PLLSEL_VPLL1_MASK | PLLSEL_VPLL2_MASK | PLLSEL_TV_MASK);
crtc_state->gpio_ext = crtc_saved->gpio_ext;
}
static void nv_crtc_restore(struct drm_crtc *crtc)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct drm_device *dev = crtc->dev;
int head = nv_crtc->index;
uint8_t saved_cr21 = nv04_display(dev)->saved_reg.crtc_reg[head].CRTC[NV_CIO_CRE_21];
if (nv_two_heads(crtc->dev))
NVSetOwner(crtc->dev, head);
nouveau_hw_load_state(crtc->dev, head, &nv04_display(dev)->saved_reg);
nv_lock_vga_crtc_shadow(crtc->dev, head, saved_cr21);
nv_crtc->last_dpms = NV_DPMS_CLEARED;
}
static void nv_crtc_prepare(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
const struct drm_crtc_helper_funcs *funcs = crtc->helper_private;
if (nv_two_heads(dev))
NVSetOwner(dev, nv_crtc->index);
drm_crtc_vblank_off(crtc);
funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
NVBlankScreen(dev, nv_crtc->index, true);
/* Some more preparation. */
NVWriteCRTC(dev, nv_crtc->index, NV_PCRTC_CONFIG, NV_PCRTC_CONFIG_START_ADDRESS_NON_VGA);
if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) {
uint32_t reg900 = NVReadRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_900);
NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_900, reg900 & ~0x10000);
}
}
static void nv_crtc_commit(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
const struct drm_crtc_helper_funcs *funcs = crtc->helper_private;
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
nouveau_hw_load_state(dev, nv_crtc->index, &nv04_display(dev)->mode_reg);
nv04_crtc_mode_set_base(crtc, crtc->x, crtc->y, NULL);
#ifdef __BIG_ENDIAN
/* turn on LFB swapping */
{
uint8_t tmp = NVReadVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RCR);
tmp |= MASK(NV_CIO_CRE_RCR_ENDIAN_BIG);
NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RCR, tmp);
}
#endif
funcs->dpms(crtc, DRM_MODE_DPMS_ON);
drm_crtc_vblank_on(crtc);
}
static void nv_crtc_destroy(struct drm_crtc *crtc)
{
struct nv04_display *disp = nv04_display(crtc->dev);
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
if (!nv_crtc)
return;
drm_crtc_cleanup(crtc);
if (disp->image[nv_crtc->index])
nouveau_bo_unpin(disp->image[nv_crtc->index]);
nouveau_bo_ref(NULL, &disp->image[nv_crtc->index]);
nouveau_bo_unmap(nv_crtc->cursor.nvbo);
nouveau_bo_unpin(nv_crtc->cursor.nvbo);
nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
kfree(nv_crtc);
}
static void
nv_crtc_gamma_load(struct drm_crtc *crtc)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct drm_device *dev = nv_crtc->base.dev;
struct rgb { uint8_t r, g, b; } __attribute__((packed)) *rgbs;
u16 *r, *g, *b;
int i;
rgbs = (struct rgb *)nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].DAC;
r = crtc->gamma_store;
g = r + crtc->gamma_size;
b = g + crtc->gamma_size;
for (i = 0; i < 256; i++) {
rgbs[i].r = *r++ >> 8;
rgbs[i].g = *g++ >> 8;
rgbs[i].b = *b++ >> 8;
}
nouveau_hw_load_state_palette(dev, nv_crtc->index, &nv04_display(dev)->mode_reg);
}
static void
nv_crtc_disable(struct drm_crtc *crtc)
{
struct nv04_display *disp = nv04_display(crtc->dev);
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
if (disp->image[nv_crtc->index])
nouveau_bo_unpin(disp->image[nv_crtc->index]);
nouveau_bo_ref(NULL, &disp->image[nv_crtc->index]);
}
static int
nv_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
uint32_t size,
struct drm_modeset_acquire_ctx *ctx)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
/* We need to know the depth before we upload, but it's possible to
* get called before a framebuffer is bound. If this is the case,
* mark the lut values as dirty by setting depth==0, and it'll be
* uploaded on the first mode_set_base()
*/
if (!nv_crtc->base.primary->fb) {
nv_crtc->lut.depth = 0;
return 0;
}
nv_crtc_gamma_load(crtc);
return 0;
}
static int
nv04_crtc_do_mode_set_base(struct drm_crtc *crtc,
struct drm_framebuffer *passed_fb,
int x, int y, bool atomic)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
struct drm_framebuffer *drm_fb;
struct nouveau_framebuffer *fb;
int arb_burst, arb_lwm;
NV_DEBUG(drm, "index %d\n", nv_crtc->index);
/* no fb bound */
if (!atomic && !crtc->primary->fb) {
NV_DEBUG(drm, "No FB bound\n");
return 0;
}
/* If atomic, we want to switch to the fb we were passed, so
* now we update pointers to do that.
*/
if (atomic) {
drm_fb = passed_fb;
fb = nouveau_framebuffer(passed_fb);
} else {
drm_fb = crtc->primary->fb;
fb = nouveau_framebuffer(crtc->primary->fb);
}
nv_crtc->fb.offset = fb->nvbo->bo.offset;
if (nv_crtc->lut.depth != drm_fb->format->depth) {
nv_crtc->lut.depth = drm_fb->format->depth;
nv_crtc_gamma_load(crtc);
}
/* Update the framebuffer format. */
regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] &= ~3;
regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] |= (drm_fb->format->depth + 1) / 8;
regp->ramdac_gen_ctrl &= ~NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL;
if (drm_fb->format->depth == 16)
regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL;
crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_PIXEL_INDEX);
NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_GENERAL_CONTROL,
regp->ramdac_gen_ctrl);
regp->CRTC[NV_CIO_CR_OFFSET_INDEX] = drm_fb->pitches[0] >> 3;
regp->CRTC[NV_CIO_CRE_RPC0_INDEX] =
XLATE(drm_fb->pitches[0] >> 3, 8, NV_CIO_CRE_RPC0_OFFSET_10_8);
regp->CRTC[NV_CIO_CRE_42] =
XLATE(drm_fb->pitches[0] / 8, 11, NV_CIO_CRE_42_OFFSET_11);
crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_RPC0_INDEX);
crtc_wr_cio_state(crtc, regp, NV_CIO_CR_OFFSET_INDEX);
crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_42);
/* Update the framebuffer location. */
regp->fb_start = nv_crtc->fb.offset & ~3;
regp->fb_start += (y * drm_fb->pitches[0]) + (x * drm_fb->format->cpp[0]);
nv_set_crtc_base(dev, nv_crtc->index, regp->fb_start);
/* Update the arbitration parameters. */
nouveau_calc_arb(dev, crtc->mode.clock, drm_fb->format->cpp[0] * 8,
&arb_burst, &arb_lwm);
regp->CRTC[NV_CIO_CRE_FF_INDEX] = arb_burst;
regp->CRTC[NV_CIO_CRE_FFLWM__INDEX] = arb_lwm & 0xff;
crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_FF_INDEX);
crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_FFLWM__INDEX);
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_KELVIN) {
regp->CRTC[NV_CIO_CRE_47] = arb_lwm >> 8;
crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_47);
}
return 0;
}
static int
nv04_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
int ret = nv_crtc_swap_fbs(crtc, old_fb);
if (ret)
return ret;
return nv04_crtc_do_mode_set_base(crtc, old_fb, x, y, false);
}
static int
nv04_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int x, int y, enum mode_set_atomic state)
{
struct nouveau_drm *drm = nouveau_drm(crtc->dev);
struct drm_device *dev = drm->dev;
if (state == ENTER_ATOMIC_MODE_SET)
nouveau_fbcon_accel_save_disable(dev);
else
nouveau_fbcon_accel_restore(dev);
return nv04_crtc_do_mode_set_base(crtc, fb, x, y, true);
}
static void nv04_cursor_upload(struct drm_device *dev, struct nouveau_bo *src,
struct nouveau_bo *dst)
{
int width = nv_cursor_width(dev);
uint32_t pixel;
int i, j;
for (i = 0; i < width; i++) {
for (j = 0; j < width; j++) {
pixel = nouveau_bo_rd32(src, i*64 + j);
nouveau_bo_wr16(dst, i*width + j, (pixel & 0x80000000) >> 16
| (pixel & 0xf80000) >> 9
| (pixel & 0xf800) >> 6
| (pixel & 0xf8) >> 3);
}
}
}
static void nv11_cursor_upload(struct drm_device *dev, struct nouveau_bo *src,
struct nouveau_bo *dst)
{
uint32_t pixel;
int alpha, i;
/* nv11+ supports premultiplied (PM), or non-premultiplied (NPM) alpha
* cursors (though NPM in combination with fp dithering may not work on
* nv11, from "nv" driver history)
* NPM mode needs NV_PCRTC_CURSOR_CONFIG_ALPHA_BLEND set and is what the
* blob uses, however we get given PM cursors so we use PM mode
*/
for (i = 0; i < 64 * 64; i++) {
pixel = nouveau_bo_rd32(src, i);
/* hw gets unhappy if alpha <= rgb values. for a PM image "less
* than" shouldn't happen; fix "equal to" case by adding one to
* alpha channel (slightly inaccurate, but so is attempting to
* get back to NPM images, due to limits of integer precision)
*/
alpha = pixel >> 24;
if (alpha > 0 && alpha < 255)
pixel = (pixel & 0x00ffffff) | ((alpha + 1) << 24);
#ifdef __BIG_ENDIAN
{
struct nouveau_drm *drm = nouveau_drm(dev);
if (drm->client.device.info.chipset == 0x11) {
pixel = ((pixel & 0x000000ff) << 24) |
((pixel & 0x0000ff00) << 8) |
((pixel & 0x00ff0000) >> 8) |
((pixel & 0xff000000) >> 24);
}
}
#endif
nouveau_bo_wr32(dst, i, pixel);
}
}
static int
nv04_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
uint32_t buffer_handle, uint32_t width, uint32_t height)
{
struct nouveau_drm *drm = nouveau_drm(crtc->dev);
struct drm_device *dev = drm->dev;
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nouveau_bo *cursor = NULL;
struct drm_gem_object *gem;
int ret = 0;
if (!buffer_handle) {
nv_crtc->cursor.hide(nv_crtc, true);
return 0;
}
if (width != 64 || height != 64)
return -EINVAL;
gem = drm_gem_object_lookup(file_priv, buffer_handle);
if (!gem)
return -ENOENT;
cursor = nouveau_gem_object(gem);
ret = nouveau_bo_map(cursor);
if (ret)
goto out;
if (drm->client.device.info.chipset >= 0x11)
nv11_cursor_upload(dev, cursor, nv_crtc->cursor.nvbo);
else
nv04_cursor_upload(dev, cursor, nv_crtc->cursor.nvbo);
nouveau_bo_unmap(cursor);
nv_crtc->cursor.offset = nv_crtc->cursor.nvbo->bo.offset;
nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.offset);
nv_crtc->cursor.show(nv_crtc, true);
out:
drm_gem_object_put_unlocked(gem);
return ret;
}
static int
nv04_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
nv_crtc->cursor.set_pos(nv_crtc, x, y);
return 0;
}
static int
nouveau_crtc_set_config(struct drm_mode_set *set,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_device *dev;
struct nouveau_drm *drm;
int ret;
struct drm_crtc *crtc;
bool active = false;
if (!set || !set->crtc)
return -EINVAL;
dev = set->crtc->dev;
/* get a pm reference here */
ret = pm_runtime_get_sync(dev->dev);
if (ret < 0 && ret != -EACCES)
return ret;
ret = drm_crtc_helper_set_config(set, ctx);
drm = nouveau_drm(dev);
/* if we get here with no crtcs active then we can drop a reference */
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
if (crtc->enabled)
active = true;
}
pm_runtime_mark_last_busy(dev->dev);
/* if we have active crtcs and we don't have a power ref,
take the current one */
if (active && !drm->have_disp_power_ref) {
drm->have_disp_power_ref = true;
return ret;
}
/* if we have no active crtcs, then drop the power ref
we got before */
if (!active && drm->have_disp_power_ref) {
pm_runtime_put_autosuspend(dev->dev);
drm->have_disp_power_ref = false;
}
/* drop the power reference we got coming in here */
pm_runtime_put_autosuspend(dev->dev);
return ret;
}
static const struct drm_crtc_funcs nv04_crtc_funcs = {
.cursor_set = nv04_crtc_cursor_set,
.cursor_move = nv04_crtc_cursor_move,
.gamma_set = nv_crtc_gamma_set,
.set_config = nouveau_crtc_set_config,
.page_flip = nouveau_crtc_page_flip,
.destroy = nv_crtc_destroy,
};
static const struct drm_crtc_helper_funcs nv04_crtc_helper_funcs = {
.dpms = nv_crtc_dpms,
.prepare = nv_crtc_prepare,
.commit = nv_crtc_commit,
.mode_set = nv_crtc_mode_set,
.mode_set_base = nv04_crtc_mode_set_base,
.mode_set_base_atomic = nv04_crtc_mode_set_base_atomic,
.disable = nv_crtc_disable,
};
static const uint32_t modeset_formats[] = {
DRM_FORMAT_XRGB8888,
DRM_FORMAT_RGB565,
DRM_FORMAT_XRGB1555,
};
static struct drm_plane *
create_primary_plane(struct drm_device *dev)
{
struct drm_plane *primary;
int ret;
primary = kzalloc(sizeof(*primary), GFP_KERNEL);
if (primary == NULL) {
DRM_DEBUG_KMS("Failed to allocate primary plane\n");
return NULL;
}
/* possible_crtc's will be filled in later by crtc_init */
ret = drm_universal_plane_init(dev, primary, 0,
&drm_primary_helper_funcs,
modeset_formats,
ARRAY_SIZE(modeset_formats), NULL,
DRM_PLANE_TYPE_PRIMARY, NULL);
if (ret) {
kfree(primary);
primary = NULL;
}
return primary;
}
int
nv04_crtc_create(struct drm_device *dev, int crtc_num)
{
struct nouveau_crtc *nv_crtc;
int ret;
nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
if (!nv_crtc)
return -ENOMEM;
nv_crtc->lut.depth = 0;
nv_crtc->index = crtc_num;
nv_crtc->last_dpms = NV_DPMS_CLEARED;
nv_crtc->save = nv_crtc_save;
nv_crtc->restore = nv_crtc_restore;
drm_crtc_init_with_planes(dev, &nv_crtc->base,
create_primary_plane(dev), NULL,
&nv04_crtc_funcs, NULL);
drm_crtc_helper_add(&nv_crtc->base, &nv04_crtc_helper_funcs);
drm_mode_crtc_set_gamma_size(&nv_crtc->base, 256);
ret = nouveau_bo_new(&nouveau_drm(dev)->client, 64*64*4, 0x100,
TTM_PL_FLAG_VRAM, 0, 0x0000, NULL, NULL,
&nv_crtc->cursor.nvbo);
if (!ret) {
ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM, false);
if (!ret) {
ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
if (ret)
nouveau_bo_unpin(nv_crtc->cursor.nvbo);
}
if (ret)
nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
}
nv04_cursor_init(nv_crtc);
return 0;
}