kernel_samsung_a34x-permissive/drivers/rtc/rtc-rv3029c2.c

1002 lines
24 KiB
C
Raw Normal View History

/*
* Micro Crystal RV-3029 / RV-3049 rtc class driver
*
* Author: Gregory Hermant <gregory.hermant@calao-systems.com>
* Michael Buesch <m@bues.ch>
*
* based on previously existing rtc class drivers
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/spi/spi.h>
#include <linux/bcd.h>
#include <linux/rtc.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/regmap.h>
/* Register map */
/* control section */
#define RV3029_ONOFF_CTRL 0x00
#define RV3029_ONOFF_CTRL_WE BIT(0)
#define RV3029_ONOFF_CTRL_TE BIT(1)
#define RV3029_ONOFF_CTRL_TAR BIT(2)
#define RV3029_ONOFF_CTRL_EERE BIT(3)
#define RV3029_ONOFF_CTRL_SRON BIT(4)
#define RV3029_ONOFF_CTRL_TD0 BIT(5)
#define RV3029_ONOFF_CTRL_TD1 BIT(6)
#define RV3029_ONOFF_CTRL_CLKINT BIT(7)
#define RV3029_IRQ_CTRL 0x01
#define RV3029_IRQ_CTRL_AIE BIT(0)
#define RV3029_IRQ_CTRL_TIE BIT(1)
#define RV3029_IRQ_CTRL_V1IE BIT(2)
#define RV3029_IRQ_CTRL_V2IE BIT(3)
#define RV3029_IRQ_CTRL_SRIE BIT(4)
#define RV3029_IRQ_FLAGS 0x02
#define RV3029_IRQ_FLAGS_AF BIT(0)
#define RV3029_IRQ_FLAGS_TF BIT(1)
#define RV3029_IRQ_FLAGS_V1IF BIT(2)
#define RV3029_IRQ_FLAGS_V2IF BIT(3)
#define RV3029_IRQ_FLAGS_SRF BIT(4)
#define RV3029_STATUS 0x03
#define RV3029_STATUS_VLOW1 BIT(2)
#define RV3029_STATUS_VLOW2 BIT(3)
#define RV3029_STATUS_SR BIT(4)
#define RV3029_STATUS_PON BIT(5)
#define RV3029_STATUS_EEBUSY BIT(7)
#define RV3029_RST_CTRL 0x04
#define RV3029_RST_CTRL_SYSR BIT(4)
#define RV3029_CONTROL_SECTION_LEN 0x05
/* watch section */
#define RV3029_W_SEC 0x08
#define RV3029_W_MINUTES 0x09
#define RV3029_W_HOURS 0x0A
#define RV3029_REG_HR_12_24 BIT(6) /* 24h/12h mode */
#define RV3029_REG_HR_PM BIT(5) /* PM/AM bit in 12h mode */
#define RV3029_W_DATE 0x0B
#define RV3029_W_DAYS 0x0C
#define RV3029_W_MONTHS 0x0D
#define RV3029_W_YEARS 0x0E
#define RV3029_WATCH_SECTION_LEN 0x07
/* alarm section */
#define RV3029_A_SC 0x10
#define RV3029_A_MN 0x11
#define RV3029_A_HR 0x12
#define RV3029_A_DT 0x13
#define RV3029_A_DW 0x14
#define RV3029_A_MO 0x15
#define RV3029_A_YR 0x16
#define RV3029_A_AE_X BIT(7)
#define RV3029_ALARM_SECTION_LEN 0x07
/* timer section */
#define RV3029_TIMER_LOW 0x18
#define RV3029_TIMER_HIGH 0x19
/* temperature section */
#define RV3029_TEMP_PAGE 0x20
/* eeprom data section */
#define RV3029_E2P_EEDATA1 0x28
#define RV3029_E2P_EEDATA2 0x29
#define RV3029_E2PDATA_SECTION_LEN 0x02
/* eeprom control section */
#define RV3029_CONTROL_E2P_EECTRL 0x30
#define RV3029_EECTRL_THP BIT(0) /* temp scan interval */
#define RV3029_EECTRL_THE BIT(1) /* thermometer enable */
#define RV3029_EECTRL_FD0 BIT(2) /* CLKOUT */
#define RV3029_EECTRL_FD1 BIT(3) /* CLKOUT */
#define RV3029_TRICKLE_1K BIT(4) /* 1.5K resistance */
#define RV3029_TRICKLE_5K BIT(5) /* 5K resistance */
#define RV3029_TRICKLE_20K BIT(6) /* 20K resistance */
#define RV3029_TRICKLE_80K BIT(7) /* 80K resistance */
#define RV3029_TRICKLE_MASK (RV3029_TRICKLE_1K |\
RV3029_TRICKLE_5K |\
RV3029_TRICKLE_20K |\
RV3029_TRICKLE_80K)
#define RV3029_TRICKLE_SHIFT 4
#define RV3029_CONTROL_E2P_XOFFS 0x31 /* XTAL offset */
#define RV3029_CONTROL_E2P_XOFFS_SIGN BIT(7) /* Sign: 1->pos, 0->neg */
#define RV3029_CONTROL_E2P_QCOEF 0x32 /* XTAL temp drift coef */
#define RV3029_CONTROL_E2P_TURNOVER 0x33 /* XTAL turnover temp (in *C) */
#define RV3029_CONTROL_E2P_TOV_MASK 0x3F /* XTAL turnover temp mask */
/* user ram section */
#define RV3029_USR1_RAM_PAGE 0x38
#define RV3029_USR1_SECTION_LEN 0x04
#define RV3029_USR2_RAM_PAGE 0x3C
#define RV3029_USR2_SECTION_LEN 0x04
struct rv3029_data {
struct device *dev;
struct rtc_device *rtc;
struct regmap *regmap;
int irq;
};
static int rv3029_read_regs(struct device *dev, u8 reg, u8 *buf,
unsigned int len)
{
struct rv3029_data *rv3029 = dev_get_drvdata(dev);
if ((reg > RV3029_USR1_RAM_PAGE + 7) ||
(reg + len > RV3029_USR1_RAM_PAGE + 8))
return -EINVAL;
return regmap_bulk_read(rv3029->regmap, reg, buf, len);
}
static int rv3029_write_regs(struct device *dev, u8 reg, u8 const buf[],
unsigned int len)
{
struct rv3029_data *rv3029 = dev_get_drvdata(dev);
if ((reg > RV3029_USR1_RAM_PAGE + 7) ||
(reg + len > RV3029_USR1_RAM_PAGE + 8))
return -EINVAL;
return regmap_bulk_write(rv3029->regmap, reg, buf, len);
}
static int rv3029_update_bits(struct device *dev, u8 reg, u8 mask, u8 set)
{
u8 buf;
int ret;
ret = rv3029_read_regs(dev, reg, &buf, 1);
if (ret < 0)
return ret;
buf &= ~mask;
buf |= set & mask;
ret = rv3029_write_regs(dev, reg, &buf, 1);
if (ret < 0)
return ret;
return 0;
}
static int rv3029_get_sr(struct device *dev, u8 *buf)
{
int ret = rv3029_read_regs(dev, RV3029_STATUS, buf, 1);
if (ret < 0)
return -EIO;
dev_dbg(dev, "status = 0x%.2x (%d)\n", buf[0], buf[0]);
return 0;
}
static int rv3029_set_sr(struct device *dev, u8 val)
{
u8 buf[1];
int sr;
buf[0] = val;
sr = rv3029_write_regs(dev, RV3029_STATUS, buf, 1);
dev_dbg(dev, "status = 0x%.2x (%d)\n", buf[0], buf[0]);
if (sr < 0)
return -EIO;
return 0;
}
static int rv3029_eeprom_busywait(struct device *dev)
{
int i, ret;
u8 sr;
for (i = 100; i > 0; i--) {
ret = rv3029_get_sr(dev, &sr);
if (ret < 0)
break;
if (!(sr & RV3029_STATUS_EEBUSY))
break;
usleep_range(1000, 10000);
}
if (i <= 0) {
dev_err(dev, "EEPROM busy wait timeout.\n");
return -ETIMEDOUT;
}
return ret;
}
static int rv3029_eeprom_exit(struct device *dev)
{
/* Re-enable eeprom refresh */
return rv3029_update_bits(dev, RV3029_ONOFF_CTRL,
RV3029_ONOFF_CTRL_EERE,
RV3029_ONOFF_CTRL_EERE);
}
static int rv3029_eeprom_enter(struct device *dev)
{
int ret;
u8 sr;
/* Check whether we are in the allowed voltage range. */
ret = rv3029_get_sr(dev, &sr);
if (ret < 0)
return ret;
if (sr & (RV3029_STATUS_VLOW1 | RV3029_STATUS_VLOW2)) {
/* We clear the bits and retry once just in case
* we had a brown out in early startup.
*/
sr &= ~RV3029_STATUS_VLOW1;
sr &= ~RV3029_STATUS_VLOW2;
ret = rv3029_set_sr(dev, sr);
if (ret < 0)
return ret;
usleep_range(1000, 10000);
ret = rv3029_get_sr(dev, &sr);
if (ret < 0)
return ret;
if (sr & (RV3029_STATUS_VLOW1 | RV3029_STATUS_VLOW2)) {
dev_err(dev,
"Supply voltage is too low to safely access the EEPROM.\n");
return -ENODEV;
}
}
/* Disable eeprom refresh. */
ret = rv3029_update_bits(dev, RV3029_ONOFF_CTRL, RV3029_ONOFF_CTRL_EERE,
0);
if (ret < 0)
return ret;
/* Wait for any previous eeprom accesses to finish. */
ret = rv3029_eeprom_busywait(dev);
if (ret < 0)
rv3029_eeprom_exit(dev);
return ret;
}
static int rv3029_eeprom_read(struct device *dev, u8 reg,
u8 buf[], size_t len)
{
int ret, err;
err = rv3029_eeprom_enter(dev);
if (err < 0)
return err;
ret = rv3029_read_regs(dev, reg, buf, len);
err = rv3029_eeprom_exit(dev);
if (err < 0)
return err;
return ret;
}
static int rv3029_eeprom_write(struct device *dev, u8 reg,
u8 const buf[], size_t len)
{
int ret, err;
size_t i;
u8 tmp;
err = rv3029_eeprom_enter(dev);
if (err < 0)
return err;
for (i = 0; i < len; i++, reg++) {
ret = rv3029_read_regs(dev, reg, &tmp, 1);
if (ret < 0)
break;
if (tmp != buf[i]) {
ret = rv3029_write_regs(dev, reg, &buf[i], 1);
if (ret < 0)
break;
}
ret = rv3029_eeprom_busywait(dev);
if (ret < 0)
break;
}
err = rv3029_eeprom_exit(dev);
if (err < 0)
return err;
return ret;
}
static int rv3029_eeprom_update_bits(struct device *dev,
u8 reg, u8 mask, u8 set)
{
u8 buf;
int ret;
ret = rv3029_eeprom_read(dev, reg, &buf, 1);
if (ret < 0)
return ret;
buf &= ~mask;
buf |= set & mask;
ret = rv3029_eeprom_write(dev, reg, &buf, 1);
if (ret < 0)
return ret;
return 0;
}
static irqreturn_t rv3029_handle_irq(int irq, void *dev_id)
{
struct device *dev = dev_id;
struct rv3029_data *rv3029 = dev_get_drvdata(dev);
struct mutex *lock = &rv3029->rtc->ops_lock;
unsigned long events = 0;
u8 flags, controls;
int ret;
mutex_lock(lock);
ret = rv3029_read_regs(dev, RV3029_IRQ_CTRL, &controls, 1);
if (ret) {
dev_warn(dev, "Read IRQ Control Register error %d\n", ret);
mutex_unlock(lock);
return IRQ_NONE;
}
ret = rv3029_read_regs(dev, RV3029_IRQ_FLAGS, &flags, 1);
if (ret) {
dev_warn(dev, "Read IRQ Flags Register error %d\n", ret);
mutex_unlock(lock);
return IRQ_NONE;
}
if (flags & RV3029_IRQ_FLAGS_AF) {
flags &= ~RV3029_IRQ_FLAGS_AF;
controls &= ~RV3029_IRQ_CTRL_AIE;
events |= RTC_AF;
}
if (events) {
rtc_update_irq(rv3029->rtc, 1, events);
rv3029_write_regs(dev, RV3029_IRQ_FLAGS, &flags, 1);
rv3029_write_regs(dev, RV3029_IRQ_CTRL, &controls, 1);
}
mutex_unlock(lock);
return IRQ_HANDLED;
}
static int rv3029_read_time(struct device *dev, struct rtc_time *tm)
{
u8 buf[1];
int ret;
u8 regs[RV3029_WATCH_SECTION_LEN] = { 0, };
ret = rv3029_get_sr(dev, buf);
if (ret < 0) {
dev_err(dev, "%s: reading SR failed\n", __func__);
return -EIO;
}
ret = rv3029_read_regs(dev, RV3029_W_SEC, regs,
RV3029_WATCH_SECTION_LEN);
if (ret < 0) {
dev_err(dev, "%s: reading RTC section failed\n", __func__);
return ret;
}
tm->tm_sec = bcd2bin(regs[RV3029_W_SEC - RV3029_W_SEC]);
tm->tm_min = bcd2bin(regs[RV3029_W_MINUTES - RV3029_W_SEC]);
/* HR field has a more complex interpretation */
{
const u8 _hr = regs[RV3029_W_HOURS - RV3029_W_SEC];
if (_hr & RV3029_REG_HR_12_24) {
/* 12h format */
tm->tm_hour = bcd2bin(_hr & 0x1f);
if (_hr & RV3029_REG_HR_PM) /* PM flag set */
tm->tm_hour += 12;
} else /* 24h format */
tm->tm_hour = bcd2bin(_hr & 0x3f);
}
tm->tm_mday = bcd2bin(regs[RV3029_W_DATE - RV3029_W_SEC]);
tm->tm_mon = bcd2bin(regs[RV3029_W_MONTHS - RV3029_W_SEC]) - 1;
tm->tm_year = bcd2bin(regs[RV3029_W_YEARS - RV3029_W_SEC]) + 100;
tm->tm_wday = bcd2bin(regs[RV3029_W_DAYS - RV3029_W_SEC]) - 1;
return 0;
}
static int rv3029_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
struct rtc_time *const tm = &alarm->time;
int ret;
u8 regs[8], controls, flags;
ret = rv3029_get_sr(dev, regs);
if (ret < 0) {
dev_err(dev, "%s: reading SR failed\n", __func__);
return -EIO;
}
ret = rv3029_read_regs(dev, RV3029_A_SC, regs,
RV3029_ALARM_SECTION_LEN);
if (ret < 0) {
dev_err(dev, "%s: reading alarm section failed\n", __func__);
return ret;
}
ret = rv3029_read_regs(dev, RV3029_IRQ_CTRL, &controls, 1);
if (ret) {
dev_err(dev, "Read IRQ Control Register error %d\n", ret);
return ret;
}
ret = rv3029_read_regs(dev, RV3029_IRQ_FLAGS, &flags, 1);
if (ret < 0) {
dev_err(dev, "Read IRQ Flags Register error %d\n", ret);
return ret;
}
tm->tm_sec = bcd2bin(regs[RV3029_A_SC - RV3029_A_SC] & 0x7f);
tm->tm_min = bcd2bin(regs[RV3029_A_MN - RV3029_A_SC] & 0x7f);
tm->tm_hour = bcd2bin(regs[RV3029_A_HR - RV3029_A_SC] & 0x3f);
tm->tm_mday = bcd2bin(regs[RV3029_A_DT - RV3029_A_SC] & 0x3f);
tm->tm_mon = bcd2bin(regs[RV3029_A_MO - RV3029_A_SC] & 0x1f) - 1;
tm->tm_year = bcd2bin(regs[RV3029_A_YR - RV3029_A_SC] & 0x7f) + 100;
tm->tm_wday = bcd2bin(regs[RV3029_A_DW - RV3029_A_SC] & 0x07) - 1;
alarm->enabled = !!(controls & RV3029_IRQ_CTRL_AIE);
alarm->pending = (flags & RV3029_IRQ_FLAGS_AF) && alarm->enabled;
return 0;
}
static int rv3029_alarm_irq_enable(struct device *dev, unsigned int enable)
{
int ret;
u8 controls;
ret = rv3029_read_regs(dev, RV3029_IRQ_CTRL, &controls, 1);
if (ret < 0) {
dev_warn(dev, "Read IRQ Control Register error %d\n", ret);
return ret;
}
/* enable/disable AIE irq */
if (enable)
controls |= RV3029_IRQ_CTRL_AIE;
else
controls &= ~RV3029_IRQ_CTRL_AIE;
ret = rv3029_write_regs(dev, RV3029_IRQ_CTRL, &controls, 1);
if (ret < 0) {
dev_err(dev, "can't update INT reg\n");
return ret;
}
return 0;
}
static int rv3029_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
struct rtc_time *const tm = &alarm->time;
int ret;
u8 regs[8];
/*
* The clock has an 8 bit wide bcd-coded register (they never learn)
* for the year. tm_year is an offset from 1900 and we are interested
* in the 2000-2099 range, so any value less than 100 is invalid.
*/
if (tm->tm_year < 100)
return -EINVAL;
ret = rv3029_get_sr(dev, regs);
if (ret < 0) {
dev_err(dev, "%s: reading SR failed\n", __func__);
return -EIO;
}
/* Activate all the alarms with AE_x bit */
regs[RV3029_A_SC - RV3029_A_SC] = bin2bcd(tm->tm_sec) | RV3029_A_AE_X;
regs[RV3029_A_MN - RV3029_A_SC] = bin2bcd(tm->tm_min) | RV3029_A_AE_X;
regs[RV3029_A_HR - RV3029_A_SC] = (bin2bcd(tm->tm_hour) & 0x3f)
| RV3029_A_AE_X;
regs[RV3029_A_DT - RV3029_A_SC] = (bin2bcd(tm->tm_mday) & 0x3f)
| RV3029_A_AE_X;
regs[RV3029_A_MO - RV3029_A_SC] = (bin2bcd(tm->tm_mon + 1) & 0x1f)
| RV3029_A_AE_X;
regs[RV3029_A_DW - RV3029_A_SC] = (bin2bcd(tm->tm_wday + 1) & 0x7)
| RV3029_A_AE_X;
regs[RV3029_A_YR - RV3029_A_SC] = (bin2bcd(tm->tm_year - 100))
| RV3029_A_AE_X;
/* Write the alarm */
ret = rv3029_write_regs(dev, RV3029_A_SC, regs,
RV3029_ALARM_SECTION_LEN);
if (ret < 0)
return ret;
if (alarm->enabled) {
/* enable AIE irq */
ret = rv3029_alarm_irq_enable(dev, 1);
if (ret)
return ret;
} else {
/* disable AIE irq */
ret = rv3029_alarm_irq_enable(dev, 0);
if (ret)
return ret;
}
return 0;
}
static int rv3029_set_time(struct device *dev, struct rtc_time *tm)
{
u8 regs[8];
int ret;
/*
* The clock has an 8 bit wide bcd-coded register (they never learn)
* for the year. tm_year is an offset from 1900 and we are interested
* in the 2000-2099 range, so any value less than 100 is invalid.
*/
if (tm->tm_year < 100)
return -EINVAL;
regs[RV3029_W_SEC - RV3029_W_SEC] = bin2bcd(tm->tm_sec);
regs[RV3029_W_MINUTES - RV3029_W_SEC] = bin2bcd(tm->tm_min);
regs[RV3029_W_HOURS - RV3029_W_SEC] = bin2bcd(tm->tm_hour);
regs[RV3029_W_DATE - RV3029_W_SEC] = bin2bcd(tm->tm_mday);
regs[RV3029_W_MONTHS - RV3029_W_SEC] = bin2bcd(tm->tm_mon + 1);
regs[RV3029_W_DAYS - RV3029_W_SEC] = bin2bcd(tm->tm_wday + 1) & 0x7;
regs[RV3029_W_YEARS - RV3029_W_SEC] = bin2bcd(tm->tm_year - 100);
ret = rv3029_write_regs(dev, RV3029_W_SEC, regs,
RV3029_WATCH_SECTION_LEN);
if (ret < 0)
return ret;
ret = rv3029_get_sr(dev, regs);
if (ret < 0) {
dev_err(dev, "%s: reading SR failed\n", __func__);
return ret;
}
/* clear PON bit */
ret = rv3029_set_sr(dev, (regs[0] & ~RV3029_STATUS_PON));
if (ret < 0) {
dev_err(dev, "%s: reading SR failed\n", __func__);
return ret;
}
return 0;
}
static const struct rv3029_trickle_tab_elem {
u32 r; /* resistance in ohms */
u8 conf; /* trickle config bits */
} rv3029_trickle_tab[] = {
{
.r = 1076,
.conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K |
RV3029_TRICKLE_20K | RV3029_TRICKLE_80K,
}, {
.r = 1091,
.conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K |
RV3029_TRICKLE_20K,
}, {
.r = 1137,
.conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K |
RV3029_TRICKLE_80K,
}, {
.r = 1154,
.conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K,
}, {
.r = 1371,
.conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_20K |
RV3029_TRICKLE_80K,
}, {
.r = 1395,
.conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_20K,
}, {
.r = 1472,
.conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_80K,
}, {
.r = 1500,
.conf = RV3029_TRICKLE_1K,
}, {
.r = 3810,
.conf = RV3029_TRICKLE_5K | RV3029_TRICKLE_20K |
RV3029_TRICKLE_80K,
}, {
.r = 4000,
.conf = RV3029_TRICKLE_5K | RV3029_TRICKLE_20K,
}, {
.r = 4706,
.conf = RV3029_TRICKLE_5K | RV3029_TRICKLE_80K,
}, {
.r = 5000,
.conf = RV3029_TRICKLE_5K,
}, {
.r = 16000,
.conf = RV3029_TRICKLE_20K | RV3029_TRICKLE_80K,
}, {
.r = 20000,
.conf = RV3029_TRICKLE_20K,
}, {
.r = 80000,
.conf = RV3029_TRICKLE_80K,
},
};
static void rv3029_trickle_config(struct device *dev)
{
struct device_node *of_node = dev->of_node;
const struct rv3029_trickle_tab_elem *elem;
int i, err;
u32 ohms;
u8 trickle_set_bits;
if (!of_node)
return;
/* Configure the trickle charger. */
err = of_property_read_u32(of_node, "trickle-resistor-ohms", &ohms);
if (err) {
/* Disable trickle charger. */
trickle_set_bits = 0;
} else {
/* Enable trickle charger. */
for (i = 0; i < ARRAY_SIZE(rv3029_trickle_tab); i++) {
elem = &rv3029_trickle_tab[i];
if (elem->r >= ohms)
break;
}
trickle_set_bits = elem->conf;
dev_info(dev,
"Trickle charger enabled at %d ohms resistance.\n",
elem->r);
}
err = rv3029_eeprom_update_bits(dev, RV3029_CONTROL_E2P_EECTRL,
RV3029_TRICKLE_MASK,
trickle_set_bits);
if (err < 0)
dev_err(dev, "Failed to update trickle charger config\n");
}
#ifdef CONFIG_RTC_DRV_RV3029_HWMON
static int rv3029_read_temp(struct device *dev, int *temp_mC)
{
int ret;
u8 temp;
ret = rv3029_read_regs(dev, RV3029_TEMP_PAGE, &temp, 1);
if (ret < 0)
return ret;
*temp_mC = ((int)temp - 60) * 1000;
return 0;
}
static ssize_t rv3029_hwmon_show_temp(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int ret, temp_mC;
ret = rv3029_read_temp(dev, &temp_mC);
if (ret < 0)
return ret;
return sprintf(buf, "%d\n", temp_mC);
}
static ssize_t rv3029_hwmon_set_update_interval(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
unsigned long interval_ms;
int ret;
u8 th_set_bits = 0;
ret = kstrtoul(buf, 10, &interval_ms);
if (ret < 0)
return ret;
if (interval_ms != 0) {
th_set_bits |= RV3029_EECTRL_THE;
if (interval_ms >= 16000)
th_set_bits |= RV3029_EECTRL_THP;
}
ret = rv3029_eeprom_update_bits(dev, RV3029_CONTROL_E2P_EECTRL,
RV3029_EECTRL_THE | RV3029_EECTRL_THP,
th_set_bits);
if (ret < 0)
return ret;
return count;
}
static ssize_t rv3029_hwmon_show_update_interval(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int ret, interval_ms;
u8 eectrl;
ret = rv3029_eeprom_read(dev, RV3029_CONTROL_E2P_EECTRL,
&eectrl, 1);
if (ret < 0)
return ret;
if (eectrl & RV3029_EECTRL_THE) {
if (eectrl & RV3029_EECTRL_THP)
interval_ms = 16000;
else
interval_ms = 1000;
} else {
interval_ms = 0;
}
return sprintf(buf, "%d\n", interval_ms);
}
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, rv3029_hwmon_show_temp,
NULL, 0);
static SENSOR_DEVICE_ATTR(update_interval, S_IWUSR | S_IRUGO,
rv3029_hwmon_show_update_interval,
rv3029_hwmon_set_update_interval, 0);
static struct attribute *rv3029_hwmon_attrs[] = {
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_update_interval.dev_attr.attr,
NULL,
};
ATTRIBUTE_GROUPS(rv3029_hwmon);
static void rv3029_hwmon_register(struct device *dev, const char *name)
{
struct rv3029_data *rv3029 = dev_get_drvdata(dev);
struct device *hwmon_dev;
hwmon_dev = devm_hwmon_device_register_with_groups(dev, name, rv3029,
rv3029_hwmon_groups);
if (IS_ERR(hwmon_dev)) {
dev_warn(dev, "unable to register hwmon device %ld\n",
PTR_ERR(hwmon_dev));
}
}
#else /* CONFIG_RTC_DRV_RV3029_HWMON */
static void rv3029_hwmon_register(struct device *dev, const char *name)
{
}
#endif /* CONFIG_RTC_DRV_RV3029_HWMON */
static struct rtc_class_ops rv3029_rtc_ops = {
.read_time = rv3029_read_time,
.set_time = rv3029_set_time,
};
static int rv3029_probe(struct device *dev, struct regmap *regmap, int irq,
const char *name)
{
struct rv3029_data *rv3029;
int rc = 0;
u8 buf[1];
rv3029 = devm_kzalloc(dev, sizeof(*rv3029), GFP_KERNEL);
if (!rv3029)
return -ENOMEM;
rv3029->regmap = regmap;
rv3029->irq = irq;
rv3029->dev = dev;
dev_set_drvdata(dev, rv3029);
rc = rv3029_get_sr(dev, buf);
if (rc < 0) {
dev_err(dev, "reading status failed\n");
return rc;
}
rv3029_trickle_config(dev);
rv3029_hwmon_register(dev, name);
rv3029->rtc = devm_rtc_device_register(dev, name, &rv3029_rtc_ops,
THIS_MODULE);
if (IS_ERR(rv3029->rtc)) {
dev_err(dev, "unable to register the class device\n");
return PTR_ERR(rv3029->rtc);
}
if (rv3029->irq > 0) {
rc = devm_request_threaded_irq(dev, rv3029->irq,
NULL, rv3029_handle_irq,
IRQF_TRIGGER_LOW | IRQF_ONESHOT,
"rv3029", dev);
if (rc) {
dev_warn(dev, "unable to request IRQ, alarms disabled\n");
rv3029->irq = 0;
} else {
rv3029_rtc_ops.read_alarm = rv3029_read_alarm;
rv3029_rtc_ops.set_alarm = rv3029_set_alarm;
rv3029_rtc_ops.alarm_irq_enable = rv3029_alarm_irq_enable;
}
}
return 0;
}
#if IS_ENABLED(CONFIG_I2C)
static int rv3029_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct regmap *regmap;
static const struct regmap_config config = {
.reg_bits = 8,
.val_bits = 8,
};
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_I2C_BLOCK |
I2C_FUNC_SMBUS_BYTE)) {
dev_err(&client->dev, "Adapter does not support SMBUS_I2C_BLOCK or SMBUS_I2C_BYTE\n");
return -ENODEV;
}
regmap = devm_regmap_init_i2c(client, &config);
if (IS_ERR(regmap)) {
dev_err(&client->dev, "%s: regmap allocation failed: %ld\n",
__func__, PTR_ERR(regmap));
return PTR_ERR(regmap);
}
return rv3029_probe(&client->dev, regmap, client->irq, client->name);
}
static const struct i2c_device_id rv3029_id[] = {
{ "rv3029", 0 },
{ "rv3029c2", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, rv3029_id);
static const struct of_device_id rv3029_of_match[] = {
{ .compatible = "microcrystal,rv3029" },
/* Backward compatibility only, do not use compatibles below: */
{ .compatible = "rv3029" },
{ .compatible = "rv3029c2" },
{ .compatible = "mc,rv3029c2" },
{ }
};
MODULE_DEVICE_TABLE(of, rv3029_of_match);
static struct i2c_driver rv3029_driver = {
.driver = {
.name = "rtc-rv3029c2",
.of_match_table = of_match_ptr(rv3029_of_match),
},
.probe = rv3029_i2c_probe,
.id_table = rv3029_id,
};
static int rv3029_register_driver(void)
{
return i2c_add_driver(&rv3029_driver);
}
static void rv3029_unregister_driver(void)
{
i2c_del_driver(&rv3029_driver);
}
#else
static int rv3029_register_driver(void)
{
return 0;
}
static void rv3029_unregister_driver(void)
{
}
#endif
#if IS_ENABLED(CONFIG_SPI_MASTER)
static int rv3049_probe(struct spi_device *spi)
{
static const struct regmap_config config = {
.reg_bits = 8,
.val_bits = 8,
};
struct regmap *regmap;
regmap = devm_regmap_init_spi(spi, &config);
if (IS_ERR(regmap)) {
dev_err(&spi->dev, "%s: regmap allocation failed: %ld\n",
__func__, PTR_ERR(regmap));
return PTR_ERR(regmap);
}
return rv3029_probe(&spi->dev, regmap, spi->irq, "rv3049");
}
static struct spi_driver rv3049_driver = {
.driver = {
.name = "rv3049",
},
.probe = rv3049_probe,
};
static int rv3049_register_driver(void)
{
return spi_register_driver(&rv3049_driver);
}
static void rv3049_unregister_driver(void)
{
spi_unregister_driver(&rv3049_driver);
}
#else
static int rv3049_register_driver(void)
{
return 0;
}
static void rv3049_unregister_driver(void)
{
}
#endif
static int __init rv30x9_init(void)
{
int ret;
ret = rv3029_register_driver();
if (ret) {
pr_err("Failed to register rv3029 driver: %d\n", ret);
return ret;
}
ret = rv3049_register_driver();
if (ret) {
pr_err("Failed to register rv3049 driver: %d\n", ret);
rv3029_unregister_driver();
}
return ret;
}
module_init(rv30x9_init)
static void __exit rv30x9_exit(void)
{
rv3049_unregister_driver();
rv3029_unregister_driver();
}
module_exit(rv30x9_exit)
MODULE_AUTHOR("Gregory Hermant <gregory.hermant@calao-systems.com>");
MODULE_AUTHOR("Michael Buesch <m@bues.ch>");
MODULE_DESCRIPTION("Micro Crystal RV3029/RV3049 RTC driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("spi:rv3049");