902 lines
22 KiB
C
902 lines
22 KiB
C
|
/*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License, version 2, as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
|
||
|
*/
|
||
|
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/kvm.h>
|
||
|
#include <linux/kvm_host.h>
|
||
|
|
||
|
#include <asm/kvm_ppc.h>
|
||
|
#include <asm/kvm_book3s.h>
|
||
|
#include <asm/page.h>
|
||
|
#include <asm/mmu.h>
|
||
|
#include <asm/pgtable.h>
|
||
|
#include <asm/pgalloc.h>
|
||
|
#include <asm/pte-walk.h>
|
||
|
|
||
|
/*
|
||
|
* Supported radix tree geometry.
|
||
|
* Like p9, we support either 5 or 9 bits at the first (lowest) level,
|
||
|
* for a page size of 64k or 4k.
|
||
|
*/
|
||
|
static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
|
||
|
|
||
|
int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
|
||
|
struct kvmppc_pte *gpte, bool data, bool iswrite)
|
||
|
{
|
||
|
struct kvm *kvm = vcpu->kvm;
|
||
|
u32 pid;
|
||
|
int ret, level, ps;
|
||
|
__be64 prte, rpte;
|
||
|
unsigned long ptbl;
|
||
|
unsigned long root, pte, index;
|
||
|
unsigned long rts, bits, offset;
|
||
|
unsigned long gpa;
|
||
|
unsigned long proc_tbl_size;
|
||
|
|
||
|
/* Work out effective PID */
|
||
|
switch (eaddr >> 62) {
|
||
|
case 0:
|
||
|
pid = vcpu->arch.pid;
|
||
|
break;
|
||
|
case 3:
|
||
|
pid = 0;
|
||
|
break;
|
||
|
default:
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
proc_tbl_size = 1 << ((kvm->arch.process_table & PRTS_MASK) + 12);
|
||
|
if (pid * 16 >= proc_tbl_size)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* Read partition table to find root of tree for effective PID */
|
||
|
ptbl = (kvm->arch.process_table & PRTB_MASK) + (pid * 16);
|
||
|
ret = kvm_read_guest(kvm, ptbl, &prte, sizeof(prte));
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
root = be64_to_cpu(prte);
|
||
|
rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
|
||
|
((root & RTS2_MASK) >> RTS2_SHIFT);
|
||
|
bits = root & RPDS_MASK;
|
||
|
root = root & RPDB_MASK;
|
||
|
|
||
|
offset = rts + 31;
|
||
|
|
||
|
/* current implementations only support 52-bit space */
|
||
|
if (offset != 52)
|
||
|
return -EINVAL;
|
||
|
|
||
|
for (level = 3; level >= 0; --level) {
|
||
|
if (level && bits != p9_supported_radix_bits[level])
|
||
|
return -EINVAL;
|
||
|
if (level == 0 && !(bits == 5 || bits == 9))
|
||
|
return -EINVAL;
|
||
|
offset -= bits;
|
||
|
index = (eaddr >> offset) & ((1UL << bits) - 1);
|
||
|
/* check that low bits of page table base are zero */
|
||
|
if (root & ((1UL << (bits + 3)) - 1))
|
||
|
return -EINVAL;
|
||
|
ret = kvm_read_guest(kvm, root + index * 8,
|
||
|
&rpte, sizeof(rpte));
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
pte = __be64_to_cpu(rpte);
|
||
|
if (!(pte & _PAGE_PRESENT))
|
||
|
return -ENOENT;
|
||
|
if (pte & _PAGE_PTE)
|
||
|
break;
|
||
|
bits = pte & 0x1f;
|
||
|
root = pte & 0x0fffffffffffff00ul;
|
||
|
}
|
||
|
/* need a leaf at lowest level; 512GB pages not supported */
|
||
|
if (level < 0 || level == 3)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* offset is now log base 2 of the page size */
|
||
|
gpa = pte & 0x01fffffffffff000ul;
|
||
|
if (gpa & ((1ul << offset) - 1))
|
||
|
return -EINVAL;
|
||
|
gpa += eaddr & ((1ul << offset) - 1);
|
||
|
for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
|
||
|
if (offset == mmu_psize_defs[ps].shift)
|
||
|
break;
|
||
|
gpte->page_size = ps;
|
||
|
|
||
|
gpte->eaddr = eaddr;
|
||
|
gpte->raddr = gpa;
|
||
|
|
||
|
/* Work out permissions */
|
||
|
gpte->may_read = !!(pte & _PAGE_READ);
|
||
|
gpte->may_write = !!(pte & _PAGE_WRITE);
|
||
|
gpte->may_execute = !!(pte & _PAGE_EXEC);
|
||
|
if (kvmppc_get_msr(vcpu) & MSR_PR) {
|
||
|
if (pte & _PAGE_PRIVILEGED) {
|
||
|
gpte->may_read = 0;
|
||
|
gpte->may_write = 0;
|
||
|
gpte->may_execute = 0;
|
||
|
}
|
||
|
} else {
|
||
|
if (!(pte & _PAGE_PRIVILEGED)) {
|
||
|
/* Check AMR/IAMR to see if strict mode is in force */
|
||
|
if (vcpu->arch.amr & (1ul << 62))
|
||
|
gpte->may_read = 0;
|
||
|
if (vcpu->arch.amr & (1ul << 63))
|
||
|
gpte->may_write = 0;
|
||
|
if (vcpu->arch.iamr & (1ul << 62))
|
||
|
gpte->may_execute = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
|
||
|
unsigned int pshift)
|
||
|
{
|
||
|
unsigned long psize = PAGE_SIZE;
|
||
|
|
||
|
if (pshift)
|
||
|
psize = 1UL << pshift;
|
||
|
|
||
|
addr &= ~(psize - 1);
|
||
|
radix__flush_tlb_lpid_page(kvm->arch.lpid, addr, psize);
|
||
|
}
|
||
|
|
||
|
static void kvmppc_radix_flush_pwc(struct kvm *kvm)
|
||
|
{
|
||
|
radix__flush_pwc_lpid(kvm->arch.lpid);
|
||
|
}
|
||
|
|
||
|
static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
|
||
|
unsigned long clr, unsigned long set,
|
||
|
unsigned long addr, unsigned int shift)
|
||
|
{
|
||
|
return __radix_pte_update(ptep, clr, set);
|
||
|
}
|
||
|
|
||
|
void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
|
||
|
pte_t *ptep, pte_t pte)
|
||
|
{
|
||
|
radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
|
||
|
}
|
||
|
|
||
|
static struct kmem_cache *kvm_pte_cache;
|
||
|
static struct kmem_cache *kvm_pmd_cache;
|
||
|
|
||
|
static pte_t *kvmppc_pte_alloc(void)
|
||
|
{
|
||
|
pte_t *pte;
|
||
|
|
||
|
pte = kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
|
||
|
/* pmd_populate() will only reference _pa(pte). */
|
||
|
kmemleak_ignore(pte);
|
||
|
|
||
|
return pte;
|
||
|
}
|
||
|
|
||
|
static void kvmppc_pte_free(pte_t *ptep)
|
||
|
{
|
||
|
kmem_cache_free(kvm_pte_cache, ptep);
|
||
|
}
|
||
|
|
||
|
/* Like pmd_huge() and pmd_large(), but works regardless of config options */
|
||
|
static inline int pmd_is_leaf(pmd_t pmd)
|
||
|
{
|
||
|
return !!(pmd_val(pmd) & _PAGE_PTE);
|
||
|
}
|
||
|
|
||
|
static pmd_t *kvmppc_pmd_alloc(void)
|
||
|
{
|
||
|
pmd_t *pmd;
|
||
|
|
||
|
pmd = kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL);
|
||
|
/* pud_populate() will only reference _pa(pmd). */
|
||
|
kmemleak_ignore(pmd);
|
||
|
|
||
|
return pmd;
|
||
|
}
|
||
|
|
||
|
static void kvmppc_pmd_free(pmd_t *pmdp)
|
||
|
{
|
||
|
kmem_cache_free(kvm_pmd_cache, pmdp);
|
||
|
}
|
||
|
|
||
|
static void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte,
|
||
|
unsigned long gpa, unsigned int shift)
|
||
|
|
||
|
{
|
||
|
unsigned long page_size = 1ul << shift;
|
||
|
unsigned long old;
|
||
|
|
||
|
old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift);
|
||
|
kvmppc_radix_tlbie_page(kvm, gpa, shift);
|
||
|
if (old & _PAGE_DIRTY) {
|
||
|
unsigned long gfn = gpa >> PAGE_SHIFT;
|
||
|
struct kvm_memory_slot *memslot;
|
||
|
|
||
|
memslot = gfn_to_memslot(kvm, gfn);
|
||
|
if (memslot && memslot->dirty_bitmap)
|
||
|
kvmppc_update_dirty_map(memslot, gfn, page_size);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* kvmppc_free_p?d are used to free existing page tables, and recursively
|
||
|
* descend and clear and free children.
|
||
|
* Callers are responsible for flushing the PWC.
|
||
|
*
|
||
|
* When page tables are being unmapped/freed as part of page fault path
|
||
|
* (full == false), ptes are not expected. There is code to unmap them
|
||
|
* and emit a warning if encountered, but there may already be data
|
||
|
* corruption due to the unexpected mappings.
|
||
|
*/
|
||
|
static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full)
|
||
|
{
|
||
|
if (full) {
|
||
|
memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE);
|
||
|
} else {
|
||
|
pte_t *p = pte;
|
||
|
unsigned long it;
|
||
|
|
||
|
for (it = 0; it < PTRS_PER_PTE; ++it, ++p) {
|
||
|
if (pte_val(*p) == 0)
|
||
|
continue;
|
||
|
WARN_ON_ONCE(1);
|
||
|
kvmppc_unmap_pte(kvm, p,
|
||
|
pte_pfn(*p) << PAGE_SHIFT,
|
||
|
PAGE_SHIFT);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
kvmppc_pte_free(pte);
|
||
|
}
|
||
|
|
||
|
static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full)
|
||
|
{
|
||
|
unsigned long im;
|
||
|
pmd_t *p = pmd;
|
||
|
|
||
|
for (im = 0; im < PTRS_PER_PMD; ++im, ++p) {
|
||
|
if (!pmd_present(*p))
|
||
|
continue;
|
||
|
if (pmd_is_leaf(*p)) {
|
||
|
if (full) {
|
||
|
pmd_clear(p);
|
||
|
} else {
|
||
|
WARN_ON_ONCE(1);
|
||
|
kvmppc_unmap_pte(kvm, (pte_t *)p,
|
||
|
pte_pfn(*(pte_t *)p) << PAGE_SHIFT,
|
||
|
PMD_SHIFT);
|
||
|
}
|
||
|
} else {
|
||
|
pte_t *pte;
|
||
|
|
||
|
pte = pte_offset_map(p, 0);
|
||
|
kvmppc_unmap_free_pte(kvm, pte, full);
|
||
|
pmd_clear(p);
|
||
|
}
|
||
|
}
|
||
|
kvmppc_pmd_free(pmd);
|
||
|
}
|
||
|
|
||
|
static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud)
|
||
|
{
|
||
|
unsigned long iu;
|
||
|
pud_t *p = pud;
|
||
|
|
||
|
for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) {
|
||
|
if (!pud_present(*p))
|
||
|
continue;
|
||
|
if (pud_huge(*p)) {
|
||
|
pud_clear(p);
|
||
|
} else {
|
||
|
pmd_t *pmd;
|
||
|
|
||
|
pmd = pmd_offset(p, 0);
|
||
|
kvmppc_unmap_free_pmd(kvm, pmd, true);
|
||
|
pud_clear(p);
|
||
|
}
|
||
|
}
|
||
|
pud_free(kvm->mm, pud);
|
||
|
}
|
||
|
|
||
|
void kvmppc_free_radix(struct kvm *kvm)
|
||
|
{
|
||
|
unsigned long ig;
|
||
|
pgd_t *pgd;
|
||
|
|
||
|
if (!kvm->arch.pgtable)
|
||
|
return;
|
||
|
pgd = kvm->arch.pgtable;
|
||
|
for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
|
||
|
pud_t *pud;
|
||
|
|
||
|
if (!pgd_present(*pgd))
|
||
|
continue;
|
||
|
pud = pud_offset(pgd, 0);
|
||
|
kvmppc_unmap_free_pud(kvm, pud);
|
||
|
pgd_clear(pgd);
|
||
|
}
|
||
|
pgd_free(kvm->mm, kvm->arch.pgtable);
|
||
|
kvm->arch.pgtable = NULL;
|
||
|
}
|
||
|
|
||
|
static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd,
|
||
|
unsigned long gpa)
|
||
|
{
|
||
|
pte_t *pte = pte_offset_kernel(pmd, 0);
|
||
|
|
||
|
/*
|
||
|
* Clearing the pmd entry then flushing the PWC ensures that the pte
|
||
|
* page no longer be cached by the MMU, so can be freed without
|
||
|
* flushing the PWC again.
|
||
|
*/
|
||
|
pmd_clear(pmd);
|
||
|
kvmppc_radix_flush_pwc(kvm);
|
||
|
|
||
|
kvmppc_unmap_free_pte(kvm, pte, false);
|
||
|
}
|
||
|
|
||
|
static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud,
|
||
|
unsigned long gpa)
|
||
|
{
|
||
|
pmd_t *pmd = pmd_offset(pud, 0);
|
||
|
|
||
|
/*
|
||
|
* Clearing the pud entry then flushing the PWC ensures that the pmd
|
||
|
* page and any children pte pages will no longer be cached by the MMU,
|
||
|
* so can be freed without flushing the PWC again.
|
||
|
*/
|
||
|
pud_clear(pud);
|
||
|
kvmppc_radix_flush_pwc(kvm);
|
||
|
|
||
|
kvmppc_unmap_free_pmd(kvm, pmd, false);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* There are a number of bits which may differ between different faults to
|
||
|
* the same partition scope entry. RC bits, in the course of cleaning and
|
||
|
* aging. And the write bit can change, either the access could have been
|
||
|
* upgraded, or a read fault could happen concurrently with a write fault
|
||
|
* that sets those bits first.
|
||
|
*/
|
||
|
#define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED))
|
||
|
|
||
|
static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
|
||
|
unsigned int level, unsigned long mmu_seq)
|
||
|
{
|
||
|
pgd_t *pgd;
|
||
|
pud_t *pud, *new_pud = NULL;
|
||
|
pmd_t *pmd, *new_pmd = NULL;
|
||
|
pte_t *ptep, *new_ptep = NULL;
|
||
|
int ret;
|
||
|
|
||
|
/* Traverse the guest's 2nd-level tree, allocate new levels needed */
|
||
|
pgd = kvm->arch.pgtable + pgd_index(gpa);
|
||
|
pud = NULL;
|
||
|
if (pgd_present(*pgd))
|
||
|
pud = pud_offset(pgd, gpa);
|
||
|
else
|
||
|
new_pud = pud_alloc_one(kvm->mm, gpa);
|
||
|
|
||
|
pmd = NULL;
|
||
|
if (pud && pud_present(*pud) && !pud_huge(*pud))
|
||
|
pmd = pmd_offset(pud, gpa);
|
||
|
else if (level <= 1)
|
||
|
new_pmd = kvmppc_pmd_alloc();
|
||
|
|
||
|
if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd)))
|
||
|
new_ptep = kvmppc_pte_alloc();
|
||
|
|
||
|
/* Check if we might have been invalidated; let the guest retry if so */
|
||
|
spin_lock(&kvm->mmu_lock);
|
||
|
ret = -EAGAIN;
|
||
|
if (mmu_notifier_retry(kvm, mmu_seq))
|
||
|
goto out_unlock;
|
||
|
|
||
|
/* Now traverse again under the lock and change the tree */
|
||
|
ret = -ENOMEM;
|
||
|
if (pgd_none(*pgd)) {
|
||
|
if (!new_pud)
|
||
|
goto out_unlock;
|
||
|
pgd_populate(kvm->mm, pgd, new_pud);
|
||
|
new_pud = NULL;
|
||
|
}
|
||
|
pud = pud_offset(pgd, gpa);
|
||
|
if (pud_huge(*pud)) {
|
||
|
unsigned long hgpa = gpa & PUD_MASK;
|
||
|
|
||
|
/* Check if we raced and someone else has set the same thing */
|
||
|
if (level == 2) {
|
||
|
if (pud_raw(*pud) == pte_raw(pte)) {
|
||
|
ret = 0;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
/* Valid 1GB page here already, add our extra bits */
|
||
|
WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) &
|
||
|
PTE_BITS_MUST_MATCH);
|
||
|
kvmppc_radix_update_pte(kvm, (pte_t *)pud,
|
||
|
0, pte_val(pte), hgpa, PUD_SHIFT);
|
||
|
ret = 0;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
/*
|
||
|
* If we raced with another CPU which has just put
|
||
|
* a 1GB pte in after we saw a pmd page, try again.
|
||
|
*/
|
||
|
if (!new_pmd) {
|
||
|
ret = -EAGAIN;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
/* Valid 1GB page here already, remove it */
|
||
|
kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT);
|
||
|
}
|
||
|
if (level == 2) {
|
||
|
if (!pud_none(*pud)) {
|
||
|
/*
|
||
|
* There's a page table page here, but we wanted to
|
||
|
* install a large page, so remove and free the page
|
||
|
* table page.
|
||
|
*/
|
||
|
kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa);
|
||
|
}
|
||
|
kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte);
|
||
|
ret = 0;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
if (pud_none(*pud)) {
|
||
|
if (!new_pmd)
|
||
|
goto out_unlock;
|
||
|
pud_populate(kvm->mm, pud, new_pmd);
|
||
|
new_pmd = NULL;
|
||
|
}
|
||
|
pmd = pmd_offset(pud, gpa);
|
||
|
if (pmd_is_leaf(*pmd)) {
|
||
|
unsigned long lgpa = gpa & PMD_MASK;
|
||
|
|
||
|
/* Check if we raced and someone else has set the same thing */
|
||
|
if (level == 1) {
|
||
|
if (pmd_raw(*pmd) == pte_raw(pte)) {
|
||
|
ret = 0;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
/* Valid 2MB page here already, add our extra bits */
|
||
|
WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) &
|
||
|
PTE_BITS_MUST_MATCH);
|
||
|
kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd),
|
||
|
0, pte_val(pte), lgpa, PMD_SHIFT);
|
||
|
ret = 0;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If we raced with another CPU which has just put
|
||
|
* a 2MB pte in after we saw a pte page, try again.
|
||
|
*/
|
||
|
if (!new_ptep) {
|
||
|
ret = -EAGAIN;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
/* Valid 2MB page here already, remove it */
|
||
|
kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT);
|
||
|
}
|
||
|
if (level == 1) {
|
||
|
if (!pmd_none(*pmd)) {
|
||
|
/*
|
||
|
* There's a page table page here, but we wanted to
|
||
|
* install a large page, so remove and free the page
|
||
|
* table page.
|
||
|
*/
|
||
|
kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa);
|
||
|
}
|
||
|
kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
|
||
|
ret = 0;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
if (pmd_none(*pmd)) {
|
||
|
if (!new_ptep)
|
||
|
goto out_unlock;
|
||
|
pmd_populate(kvm->mm, pmd, new_ptep);
|
||
|
new_ptep = NULL;
|
||
|
}
|
||
|
ptep = pte_offset_kernel(pmd, gpa);
|
||
|
if (pte_present(*ptep)) {
|
||
|
/* Check if someone else set the same thing */
|
||
|
if (pte_raw(*ptep) == pte_raw(pte)) {
|
||
|
ret = 0;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
/* Valid page here already, add our extra bits */
|
||
|
WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) &
|
||
|
PTE_BITS_MUST_MATCH);
|
||
|
kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0);
|
||
|
ret = 0;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
|
||
|
ret = 0;
|
||
|
|
||
|
out_unlock:
|
||
|
spin_unlock(&kvm->mmu_lock);
|
||
|
if (new_pud)
|
||
|
pud_free(kvm->mm, new_pud);
|
||
|
if (new_pmd)
|
||
|
kvmppc_pmd_free(new_pmd);
|
||
|
if (new_ptep)
|
||
|
kvmppc_pte_free(new_ptep);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
||
|
unsigned long ea, unsigned long dsisr)
|
||
|
{
|
||
|
struct kvm *kvm = vcpu->kvm;
|
||
|
unsigned long mmu_seq;
|
||
|
unsigned long gpa, gfn, hva;
|
||
|
struct kvm_memory_slot *memslot;
|
||
|
struct page *page = NULL;
|
||
|
long ret;
|
||
|
bool writing;
|
||
|
bool upgrade_write = false;
|
||
|
bool *upgrade_p = &upgrade_write;
|
||
|
pte_t pte, *ptep;
|
||
|
unsigned long pgflags;
|
||
|
unsigned int shift, level;
|
||
|
|
||
|
/* Check for unusual errors */
|
||
|
if (dsisr & DSISR_UNSUPP_MMU) {
|
||
|
pr_err("KVM: Got unsupported MMU fault\n");
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
if (dsisr & DSISR_BADACCESS) {
|
||
|
/* Reflect to the guest as DSI */
|
||
|
pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
|
||
|
kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
|
||
|
return RESUME_GUEST;
|
||
|
}
|
||
|
|
||
|
/* Translate the logical address and get the page */
|
||
|
gpa = vcpu->arch.fault_gpa & ~0xfffUL;
|
||
|
gpa &= ~0xF000000000000000ul;
|
||
|
gfn = gpa >> PAGE_SHIFT;
|
||
|
if (!(dsisr & DSISR_PRTABLE_FAULT))
|
||
|
gpa |= ea & 0xfff;
|
||
|
memslot = gfn_to_memslot(kvm, gfn);
|
||
|
|
||
|
/* No memslot means it's an emulated MMIO region */
|
||
|
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
|
||
|
if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS |
|
||
|
DSISR_SET_RC)) {
|
||
|
/*
|
||
|
* Bad address in guest page table tree, or other
|
||
|
* unusual error - reflect it to the guest as DSI.
|
||
|
*/
|
||
|
kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
|
||
|
return RESUME_GUEST;
|
||
|
}
|
||
|
return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
|
||
|
dsisr & DSISR_ISSTORE);
|
||
|
}
|
||
|
|
||
|
writing = (dsisr & DSISR_ISSTORE) != 0;
|
||
|
if (memslot->flags & KVM_MEM_READONLY) {
|
||
|
if (writing) {
|
||
|
/* give the guest a DSI */
|
||
|
dsisr = DSISR_ISSTORE | DSISR_PROTFAULT;
|
||
|
kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
|
||
|
return RESUME_GUEST;
|
||
|
}
|
||
|
upgrade_p = NULL;
|
||
|
}
|
||
|
|
||
|
if (dsisr & DSISR_SET_RC) {
|
||
|
/*
|
||
|
* Need to set an R or C bit in the 2nd-level tables;
|
||
|
* since we are just helping out the hardware here,
|
||
|
* it is sufficient to do what the hardware does.
|
||
|
*/
|
||
|
pgflags = _PAGE_ACCESSED;
|
||
|
if (writing)
|
||
|
pgflags |= _PAGE_DIRTY;
|
||
|
/*
|
||
|
* We are walking the secondary page table here. We can do this
|
||
|
* without disabling irq.
|
||
|
*/
|
||
|
spin_lock(&kvm->mmu_lock);
|
||
|
ptep = __find_linux_pte(kvm->arch.pgtable,
|
||
|
gpa, NULL, &shift);
|
||
|
if (ptep && pte_present(*ptep) &&
|
||
|
(!writing || pte_write(*ptep))) {
|
||
|
kvmppc_radix_update_pte(kvm, ptep, 0, pgflags,
|
||
|
gpa, shift);
|
||
|
dsisr &= ~DSISR_SET_RC;
|
||
|
}
|
||
|
spin_unlock(&kvm->mmu_lock);
|
||
|
if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
|
||
|
DSISR_PROTFAULT | DSISR_SET_RC)))
|
||
|
return RESUME_GUEST;
|
||
|
}
|
||
|
|
||
|
/* used to check for invalidations in progress */
|
||
|
mmu_seq = kvm->mmu_notifier_seq;
|
||
|
smp_rmb();
|
||
|
|
||
|
/*
|
||
|
* Do a fast check first, since __gfn_to_pfn_memslot doesn't
|
||
|
* do it with !atomic && !async, which is how we call it.
|
||
|
* We always ask for write permission since the common case
|
||
|
* is that the page is writable.
|
||
|
*/
|
||
|
hva = gfn_to_hva_memslot(memslot, gfn);
|
||
|
if (upgrade_p && __get_user_pages_fast(hva, 1, 1, &page) == 1) {
|
||
|
upgrade_write = true;
|
||
|
} else {
|
||
|
unsigned long pfn;
|
||
|
|
||
|
/* Call KVM generic code to do the slow-path check */
|
||
|
pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
|
||
|
writing, upgrade_p);
|
||
|
if (is_error_noslot_pfn(pfn))
|
||
|
return -EFAULT;
|
||
|
page = NULL;
|
||
|
if (pfn_valid(pfn)) {
|
||
|
page = pfn_to_page(pfn);
|
||
|
if (PageReserved(page))
|
||
|
page = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read the PTE from the process' radix tree and use that
|
||
|
* so we get the shift and attribute bits.
|
||
|
*/
|
||
|
local_irq_disable();
|
||
|
ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift);
|
||
|
/*
|
||
|
* If the PTE disappeared temporarily due to a THP
|
||
|
* collapse, just return and let the guest try again.
|
||
|
*/
|
||
|
if (!ptep) {
|
||
|
local_irq_enable();
|
||
|
if (page)
|
||
|
put_page(page);
|
||
|
return RESUME_GUEST;
|
||
|
}
|
||
|
pte = *ptep;
|
||
|
local_irq_enable();
|
||
|
|
||
|
/* Get pte level from shift/size */
|
||
|
if (shift == PUD_SHIFT &&
|
||
|
(gpa & (PUD_SIZE - PAGE_SIZE)) ==
|
||
|
(hva & (PUD_SIZE - PAGE_SIZE))) {
|
||
|
level = 2;
|
||
|
} else if (shift == PMD_SHIFT &&
|
||
|
(gpa & (PMD_SIZE - PAGE_SIZE)) ==
|
||
|
(hva & (PMD_SIZE - PAGE_SIZE))) {
|
||
|
level = 1;
|
||
|
} else {
|
||
|
level = 0;
|
||
|
if (shift > PAGE_SHIFT) {
|
||
|
/*
|
||
|
* If the pte maps more than one page, bring over
|
||
|
* bits from the virtual address to get the real
|
||
|
* address of the specific single page we want.
|
||
|
*/
|
||
|
unsigned long rpnmask = (1ul << shift) - PAGE_SIZE;
|
||
|
pte = __pte(pte_val(pte) | (hva & rpnmask));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED);
|
||
|
if (writing || upgrade_write) {
|
||
|
if (pte_val(pte) & _PAGE_WRITE)
|
||
|
pte = __pte(pte_val(pte) | _PAGE_DIRTY);
|
||
|
} else {
|
||
|
pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY));
|
||
|
}
|
||
|
|
||
|
/* Allocate space in the tree and write the PTE */
|
||
|
ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
|
||
|
|
||
|
if (page) {
|
||
|
if (!ret && (pte_val(pte) & _PAGE_WRITE))
|
||
|
set_page_dirty_lock(page);
|
||
|
put_page(page);
|
||
|
}
|
||
|
|
||
|
if (ret == 0 || ret == -EAGAIN)
|
||
|
ret = RESUME_GUEST;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* Called with kvm->lock held */
|
||
|
int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
|
||
|
unsigned long gfn)
|
||
|
{
|
||
|
pte_t *ptep;
|
||
|
unsigned long gpa = gfn << PAGE_SHIFT;
|
||
|
unsigned int shift;
|
||
|
unsigned long old;
|
||
|
|
||
|
ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
|
||
|
if (ptep && pte_present(*ptep)) {
|
||
|
old = kvmppc_radix_update_pte(kvm, ptep, ~0UL, 0,
|
||
|
gpa, shift);
|
||
|
kvmppc_radix_tlbie_page(kvm, gpa, shift);
|
||
|
if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) {
|
||
|
unsigned long psize = PAGE_SIZE;
|
||
|
if (shift)
|
||
|
psize = 1ul << shift;
|
||
|
kvmppc_update_dirty_map(memslot, gfn, psize);
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Called with kvm->lock held */
|
||
|
int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
|
||
|
unsigned long gfn)
|
||
|
{
|
||
|
pte_t *ptep;
|
||
|
unsigned long gpa = gfn << PAGE_SHIFT;
|
||
|
unsigned int shift;
|
||
|
int ref = 0;
|
||
|
|
||
|
ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
|
||
|
if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
|
||
|
kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
|
||
|
gpa, shift);
|
||
|
/* XXX need to flush tlb here? */
|
||
|
ref = 1;
|
||
|
}
|
||
|
return ref;
|
||
|
}
|
||
|
|
||
|
/* Called with kvm->lock held */
|
||
|
int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
|
||
|
unsigned long gfn)
|
||
|
{
|
||
|
pte_t *ptep;
|
||
|
unsigned long gpa = gfn << PAGE_SHIFT;
|
||
|
unsigned int shift;
|
||
|
int ref = 0;
|
||
|
|
||
|
ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
|
||
|
if (ptep && pte_present(*ptep) && pte_young(*ptep))
|
||
|
ref = 1;
|
||
|
return ref;
|
||
|
}
|
||
|
|
||
|
/* Returns the number of PAGE_SIZE pages that are dirty */
|
||
|
static int kvm_radix_test_clear_dirty(struct kvm *kvm,
|
||
|
struct kvm_memory_slot *memslot, int pagenum)
|
||
|
{
|
||
|
unsigned long gfn = memslot->base_gfn + pagenum;
|
||
|
unsigned long gpa = gfn << PAGE_SHIFT;
|
||
|
pte_t *ptep;
|
||
|
unsigned int shift;
|
||
|
int ret = 0;
|
||
|
|
||
|
ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
|
||
|
if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) {
|
||
|
ret = 1;
|
||
|
if (shift)
|
||
|
ret = 1 << (shift - PAGE_SHIFT);
|
||
|
kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
|
||
|
gpa, shift);
|
||
|
kvmppc_radix_tlbie_page(kvm, gpa, shift);
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
|
||
|
struct kvm_memory_slot *memslot, unsigned long *map)
|
||
|
{
|
||
|
unsigned long i, j;
|
||
|
int npages;
|
||
|
|
||
|
for (i = 0; i < memslot->npages; i = j) {
|
||
|
npages = kvm_radix_test_clear_dirty(kvm, memslot, i);
|
||
|
|
||
|
/*
|
||
|
* Note that if npages > 0 then i must be a multiple of npages,
|
||
|
* since huge pages are only used to back the guest at guest
|
||
|
* real addresses that are a multiple of their size.
|
||
|
* Since we have at most one PTE covering any given guest
|
||
|
* real address, if npages > 1 we can skip to i + npages.
|
||
|
*/
|
||
|
j = i + 1;
|
||
|
if (npages) {
|
||
|
set_dirty_bits(map, i, npages);
|
||
|
j = i + npages;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
|
||
|
int psize, int *indexp)
|
||
|
{
|
||
|
if (!mmu_psize_defs[psize].shift)
|
||
|
return;
|
||
|
info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
|
||
|
(mmu_psize_defs[psize].ap << 29);
|
||
|
++(*indexp);
|
||
|
}
|
||
|
|
||
|
int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
if (!radix_enabled())
|
||
|
return -EINVAL;
|
||
|
memset(info, 0, sizeof(*info));
|
||
|
|
||
|
/* 4k page size */
|
||
|
info->geometries[0].page_shift = 12;
|
||
|
info->geometries[0].level_bits[0] = 9;
|
||
|
for (i = 1; i < 4; ++i)
|
||
|
info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
|
||
|
/* 64k page size */
|
||
|
info->geometries[1].page_shift = 16;
|
||
|
for (i = 0; i < 4; ++i)
|
||
|
info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];
|
||
|
|
||
|
i = 0;
|
||
|
add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
|
||
|
add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
|
||
|
add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
|
||
|
add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int kvmppc_init_vm_radix(struct kvm *kvm)
|
||
|
{
|
||
|
kvm->arch.pgtable = pgd_alloc(kvm->mm);
|
||
|
if (!kvm->arch.pgtable)
|
||
|
return -ENOMEM;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void pte_ctor(void *addr)
|
||
|
{
|
||
|
memset(addr, 0, RADIX_PTE_TABLE_SIZE);
|
||
|
}
|
||
|
|
||
|
static void pmd_ctor(void *addr)
|
||
|
{
|
||
|
memset(addr, 0, RADIX_PMD_TABLE_SIZE);
|
||
|
}
|
||
|
|
||
|
int kvmppc_radix_init(void)
|
||
|
{
|
||
|
unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE;
|
||
|
|
||
|
kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
|
||
|
if (!kvm_pte_cache)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
size = sizeof(void *) << RADIX_PMD_INDEX_SIZE;
|
||
|
|
||
|
kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor);
|
||
|
if (!kvm_pmd_cache) {
|
||
|
kmem_cache_destroy(kvm_pte_cache);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void kvmppc_radix_exit(void)
|
||
|
{
|
||
|
kmem_cache_destroy(kvm_pte_cache);
|
||
|
kmem_cache_destroy(kvm_pmd_cache);
|
||
|
}
|