503 lines
15 KiB
C
503 lines
15 KiB
C
|
/*
|
||
|
* PowerPC64 SLB support.
|
||
|
*
|
||
|
* Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
|
||
|
* Based on earlier code written by:
|
||
|
* Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
|
||
|
* Copyright (c) 2001 Dave Engebretsen
|
||
|
* Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
|
||
|
*
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License
|
||
|
* as published by the Free Software Foundation; either version
|
||
|
* 2 of the License, or (at your option) any later version.
|
||
|
*/
|
||
|
|
||
|
#include <asm/pgtable.h>
|
||
|
#include <asm/mmu.h>
|
||
|
#include <asm/mmu_context.h>
|
||
|
#include <asm/paca.h>
|
||
|
#include <asm/cputable.h>
|
||
|
#include <asm/cacheflush.h>
|
||
|
#include <asm/smp.h>
|
||
|
#include <linux/compiler.h>
|
||
|
#include <linux/context_tracking.h>
|
||
|
#include <linux/mm_types.h>
|
||
|
|
||
|
#include <asm/udbg.h>
|
||
|
#include <asm/code-patching.h>
|
||
|
|
||
|
enum slb_index {
|
||
|
LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */
|
||
|
VMALLOC_INDEX = 1, /* Kernel virtual map (0xd000000000000000) */
|
||
|
KSTACK_INDEX = 2, /* Kernel stack map */
|
||
|
};
|
||
|
|
||
|
extern void slb_allocate(unsigned long ea);
|
||
|
|
||
|
#define slb_esid_mask(ssize) \
|
||
|
(((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
|
||
|
|
||
|
static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
|
||
|
enum slb_index index)
|
||
|
{
|
||
|
return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
|
||
|
}
|
||
|
|
||
|
static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
|
||
|
unsigned long flags)
|
||
|
{
|
||
|
return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
|
||
|
((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
|
||
|
}
|
||
|
|
||
|
static inline void slb_shadow_update(unsigned long ea, int ssize,
|
||
|
unsigned long flags,
|
||
|
enum slb_index index)
|
||
|
{
|
||
|
struct slb_shadow *p = get_slb_shadow();
|
||
|
|
||
|
/*
|
||
|
* Clear the ESID first so the entry is not valid while we are
|
||
|
* updating it. No write barriers are needed here, provided
|
||
|
* we only update the current CPU's SLB shadow buffer.
|
||
|
*/
|
||
|
WRITE_ONCE(p->save_area[index].esid, 0);
|
||
|
WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
|
||
|
WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
|
||
|
}
|
||
|
|
||
|
static inline void slb_shadow_clear(enum slb_index index)
|
||
|
{
|
||
|
WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
|
||
|
}
|
||
|
|
||
|
static inline void create_shadowed_slbe(unsigned long ea, int ssize,
|
||
|
unsigned long flags,
|
||
|
enum slb_index index)
|
||
|
{
|
||
|
/*
|
||
|
* Updating the shadow buffer before writing the SLB ensures
|
||
|
* we don't get a stale entry here if we get preempted by PHYP
|
||
|
* between these two statements.
|
||
|
*/
|
||
|
slb_shadow_update(ea, ssize, flags, index);
|
||
|
|
||
|
asm volatile("slbmte %0,%1" :
|
||
|
: "r" (mk_vsid_data(ea, ssize, flags)),
|
||
|
"r" (mk_esid_data(ea, ssize, index))
|
||
|
: "memory" );
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Insert bolted entries into SLB (which may not be empty, so don't clear
|
||
|
* slb_cache_ptr).
|
||
|
*/
|
||
|
void __slb_restore_bolted_realmode(void)
|
||
|
{
|
||
|
struct slb_shadow *p = get_slb_shadow();
|
||
|
enum slb_index index;
|
||
|
|
||
|
/* No isync needed because realmode. */
|
||
|
for (index = 0; index < SLB_NUM_BOLTED; index++) {
|
||
|
asm volatile("slbmte %0,%1" :
|
||
|
: "r" (be64_to_cpu(p->save_area[index].vsid)),
|
||
|
"r" (be64_to_cpu(p->save_area[index].esid)));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Insert the bolted entries into an empty SLB.
|
||
|
* This is not the same as rebolt because the bolted segments are not
|
||
|
* changed, just loaded from the shadow area.
|
||
|
*/
|
||
|
void slb_restore_bolted_realmode(void)
|
||
|
{
|
||
|
__slb_restore_bolted_realmode();
|
||
|
get_paca()->slb_cache_ptr = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This flushes all SLB entries including 0, so it must be realmode.
|
||
|
*/
|
||
|
void slb_flush_all_realmode(void)
|
||
|
{
|
||
|
/*
|
||
|
* This flushes all SLB entries including 0, so it must be realmode.
|
||
|
*/
|
||
|
asm volatile("slbmte %0,%0; slbia" : : "r" (0));
|
||
|
}
|
||
|
|
||
|
static void __slb_flush_and_rebolt(void)
|
||
|
{
|
||
|
/* If you change this make sure you change SLB_NUM_BOLTED
|
||
|
* and PR KVM appropriately too. */
|
||
|
unsigned long linear_llp, vmalloc_llp, lflags, vflags;
|
||
|
unsigned long ksp_esid_data, ksp_vsid_data;
|
||
|
|
||
|
linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
|
||
|
vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
|
||
|
lflags = SLB_VSID_KERNEL | linear_llp;
|
||
|
vflags = SLB_VSID_KERNEL | vmalloc_llp;
|
||
|
|
||
|
ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, KSTACK_INDEX);
|
||
|
if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
|
||
|
ksp_esid_data &= ~SLB_ESID_V;
|
||
|
ksp_vsid_data = 0;
|
||
|
slb_shadow_clear(KSTACK_INDEX);
|
||
|
} else {
|
||
|
/* Update stack entry; others don't change */
|
||
|
slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, KSTACK_INDEX);
|
||
|
ksp_vsid_data =
|
||
|
be64_to_cpu(get_slb_shadow()->save_area[KSTACK_INDEX].vsid);
|
||
|
}
|
||
|
|
||
|
/* We need to do this all in asm, so we're sure we don't touch
|
||
|
* the stack between the slbia and rebolting it. */
|
||
|
asm volatile("isync\n"
|
||
|
"slbia\n"
|
||
|
/* Slot 1 - first VMALLOC segment */
|
||
|
"slbmte %0,%1\n"
|
||
|
/* Slot 2 - kernel stack */
|
||
|
"slbmte %2,%3\n"
|
||
|
"isync"
|
||
|
:: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
|
||
|
"r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, VMALLOC_INDEX)),
|
||
|
"r"(ksp_vsid_data),
|
||
|
"r"(ksp_esid_data)
|
||
|
: "memory");
|
||
|
}
|
||
|
|
||
|
void slb_flush_and_rebolt(void)
|
||
|
{
|
||
|
|
||
|
WARN_ON(!irqs_disabled());
|
||
|
|
||
|
/*
|
||
|
* We can't take a PMU exception in the following code, so hard
|
||
|
* disable interrupts.
|
||
|
*/
|
||
|
hard_irq_disable();
|
||
|
|
||
|
__slb_flush_and_rebolt();
|
||
|
get_paca()->slb_cache_ptr = 0;
|
||
|
}
|
||
|
|
||
|
void slb_vmalloc_update(void)
|
||
|
{
|
||
|
unsigned long vflags;
|
||
|
|
||
|
vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
|
||
|
slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
|
||
|
slb_flush_and_rebolt();
|
||
|
}
|
||
|
|
||
|
/* Helper function to compare esids. There are four cases to handle.
|
||
|
* 1. The system is not 1T segment size capable. Use the GET_ESID compare.
|
||
|
* 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
|
||
|
* 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match.
|
||
|
* 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
|
||
|
*/
|
||
|
static inline int esids_match(unsigned long addr1, unsigned long addr2)
|
||
|
{
|
||
|
int esid_1t_count;
|
||
|
|
||
|
/* System is not 1T segment size capable. */
|
||
|
if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
|
||
|
return (GET_ESID(addr1) == GET_ESID(addr2));
|
||
|
|
||
|
esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
|
||
|
((addr2 >> SID_SHIFT_1T) != 0));
|
||
|
|
||
|
/* both addresses are < 1T */
|
||
|
if (esid_1t_count == 0)
|
||
|
return (GET_ESID(addr1) == GET_ESID(addr2));
|
||
|
|
||
|
/* One address < 1T, the other > 1T. Not a match */
|
||
|
if (esid_1t_count == 1)
|
||
|
return 0;
|
||
|
|
||
|
/* Both addresses are > 1T. */
|
||
|
return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
|
||
|
}
|
||
|
|
||
|
/* Flush all user entries from the segment table of the current processor. */
|
||
|
void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
|
||
|
{
|
||
|
unsigned long offset;
|
||
|
unsigned long slbie_data = 0;
|
||
|
unsigned long pc = KSTK_EIP(tsk);
|
||
|
unsigned long stack = KSTK_ESP(tsk);
|
||
|
unsigned long exec_base;
|
||
|
|
||
|
/*
|
||
|
* We need interrupts hard-disabled here, not just soft-disabled,
|
||
|
* so that a PMU interrupt can't occur, which might try to access
|
||
|
* user memory (to get a stack trace) and possible cause an SLB miss
|
||
|
* which would update the slb_cache/slb_cache_ptr fields in the PACA.
|
||
|
*/
|
||
|
hard_irq_disable();
|
||
|
offset = get_paca()->slb_cache_ptr;
|
||
|
if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
|
||
|
offset <= SLB_CACHE_ENTRIES) {
|
||
|
int i;
|
||
|
asm volatile("isync" : : : "memory");
|
||
|
for (i = 0; i < offset; i++) {
|
||
|
slbie_data = (unsigned long)get_paca()->slb_cache[i]
|
||
|
<< SID_SHIFT; /* EA */
|
||
|
slbie_data |= user_segment_size(slbie_data)
|
||
|
<< SLBIE_SSIZE_SHIFT;
|
||
|
slbie_data |= SLBIE_C; /* C set for user addresses */
|
||
|
asm volatile("slbie %0" : : "r" (slbie_data));
|
||
|
}
|
||
|
asm volatile("isync" : : : "memory");
|
||
|
} else {
|
||
|
__slb_flush_and_rebolt();
|
||
|
}
|
||
|
|
||
|
/* Workaround POWER5 < DD2.1 issue */
|
||
|
if (offset == 1 || offset > SLB_CACHE_ENTRIES)
|
||
|
asm volatile("slbie %0" : : "r" (slbie_data));
|
||
|
|
||
|
get_paca()->slb_cache_ptr = 0;
|
||
|
copy_mm_to_paca(mm);
|
||
|
|
||
|
/*
|
||
|
* preload some userspace segments into the SLB.
|
||
|
* Almost all 32 and 64bit PowerPC executables are linked at
|
||
|
* 0x10000000 so it makes sense to preload this segment.
|
||
|
*/
|
||
|
exec_base = 0x10000000;
|
||
|
|
||
|
if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
|
||
|
is_kernel_addr(exec_base))
|
||
|
return;
|
||
|
|
||
|
slb_allocate(pc);
|
||
|
|
||
|
if (!esids_match(pc, stack))
|
||
|
slb_allocate(stack);
|
||
|
|
||
|
if (!esids_match(pc, exec_base) &&
|
||
|
!esids_match(stack, exec_base))
|
||
|
slb_allocate(exec_base);
|
||
|
}
|
||
|
|
||
|
static inline void patch_slb_encoding(unsigned int *insn_addr,
|
||
|
unsigned int immed)
|
||
|
{
|
||
|
|
||
|
/*
|
||
|
* This function patches either an li or a cmpldi instruction with
|
||
|
* a new immediate value. This relies on the fact that both li
|
||
|
* (which is actually addi) and cmpldi both take a 16-bit immediate
|
||
|
* value, and it is situated in the same location in the instruction,
|
||
|
* ie. bits 16-31 (Big endian bit order) or the lower 16 bits.
|
||
|
* The signedness of the immediate operand differs between the two
|
||
|
* instructions however this code is only ever patching a small value,
|
||
|
* much less than 1 << 15, so we can get away with it.
|
||
|
* To patch the value we read the existing instruction, clear the
|
||
|
* immediate value, and or in our new value, then write the instruction
|
||
|
* back.
|
||
|
*/
|
||
|
unsigned int insn = (*insn_addr & 0xffff0000) | immed;
|
||
|
patch_instruction(insn_addr, insn);
|
||
|
}
|
||
|
|
||
|
extern u32 slb_miss_kernel_load_linear[];
|
||
|
extern u32 slb_miss_kernel_load_io[];
|
||
|
extern u32 slb_compare_rr_to_size[];
|
||
|
extern u32 slb_miss_kernel_load_vmemmap[];
|
||
|
|
||
|
void slb_set_size(u16 size)
|
||
|
{
|
||
|
if (mmu_slb_size == size)
|
||
|
return;
|
||
|
|
||
|
mmu_slb_size = size;
|
||
|
patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
|
||
|
}
|
||
|
|
||
|
void slb_initialize(void)
|
||
|
{
|
||
|
unsigned long linear_llp, vmalloc_llp, io_llp;
|
||
|
unsigned long lflags, vflags;
|
||
|
static int slb_encoding_inited;
|
||
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
||
|
unsigned long vmemmap_llp;
|
||
|
#endif
|
||
|
|
||
|
/* Prepare our SLB miss handler based on our page size */
|
||
|
linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
|
||
|
io_llp = mmu_psize_defs[mmu_io_psize].sllp;
|
||
|
vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
|
||
|
get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
|
||
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
||
|
vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
|
||
|
#endif
|
||
|
if (!slb_encoding_inited) {
|
||
|
slb_encoding_inited = 1;
|
||
|
patch_slb_encoding(slb_miss_kernel_load_linear,
|
||
|
SLB_VSID_KERNEL | linear_llp);
|
||
|
patch_slb_encoding(slb_miss_kernel_load_io,
|
||
|
SLB_VSID_KERNEL | io_llp);
|
||
|
patch_slb_encoding(slb_compare_rr_to_size,
|
||
|
mmu_slb_size);
|
||
|
|
||
|
pr_devel("SLB: linear LLP = %04lx\n", linear_llp);
|
||
|
pr_devel("SLB: io LLP = %04lx\n", io_llp);
|
||
|
|
||
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
||
|
patch_slb_encoding(slb_miss_kernel_load_vmemmap,
|
||
|
SLB_VSID_KERNEL | vmemmap_llp);
|
||
|
pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
|
||
|
|
||
|
lflags = SLB_VSID_KERNEL | linear_llp;
|
||
|
vflags = SLB_VSID_KERNEL | vmalloc_llp;
|
||
|
|
||
|
/* Invalidate the entire SLB (even entry 0) & all the ERATS */
|
||
|
asm volatile("isync":::"memory");
|
||
|
asm volatile("slbmte %0,%0"::"r" (0) : "memory");
|
||
|
asm volatile("isync; slbia; isync":::"memory");
|
||
|
create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
|
||
|
create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
|
||
|
|
||
|
/* For the boot cpu, we're running on the stack in init_thread_union,
|
||
|
* which is in the first segment of the linear mapping, and also
|
||
|
* get_paca()->kstack hasn't been initialized yet.
|
||
|
* For secondary cpus, we need to bolt the kernel stack entry now.
|
||
|
*/
|
||
|
slb_shadow_clear(KSTACK_INDEX);
|
||
|
if (raw_smp_processor_id() != boot_cpuid &&
|
||
|
(get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
|
||
|
create_shadowed_slbe(get_paca()->kstack,
|
||
|
mmu_kernel_ssize, lflags, KSTACK_INDEX);
|
||
|
|
||
|
asm volatile("isync":::"memory");
|
||
|
}
|
||
|
|
||
|
static void insert_slb_entry(unsigned long vsid, unsigned long ea,
|
||
|
int bpsize, int ssize)
|
||
|
{
|
||
|
unsigned long flags, vsid_data, esid_data;
|
||
|
enum slb_index index;
|
||
|
int slb_cache_index;
|
||
|
|
||
|
/*
|
||
|
* We are irq disabled, hence should be safe to access PACA.
|
||
|
*/
|
||
|
VM_WARN_ON(!irqs_disabled());
|
||
|
|
||
|
/*
|
||
|
* We can't take a PMU exception in the following code, so hard
|
||
|
* disable interrupts.
|
||
|
*/
|
||
|
hard_irq_disable();
|
||
|
|
||
|
index = get_paca()->stab_rr;
|
||
|
|
||
|
/*
|
||
|
* simple round-robin replacement of slb starting at SLB_NUM_BOLTED.
|
||
|
*/
|
||
|
if (index < (mmu_slb_size - 1))
|
||
|
index++;
|
||
|
else
|
||
|
index = SLB_NUM_BOLTED;
|
||
|
|
||
|
get_paca()->stab_rr = index;
|
||
|
|
||
|
flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
|
||
|
vsid_data = (vsid << slb_vsid_shift(ssize)) | flags |
|
||
|
((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
|
||
|
esid_data = mk_esid_data(ea, ssize, index);
|
||
|
|
||
|
/*
|
||
|
* No need for an isync before or after this slbmte. The exception
|
||
|
* we enter with and the rfid we exit with are context synchronizing.
|
||
|
* Also we only handle user segments here.
|
||
|
*/
|
||
|
asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data)
|
||
|
: "memory");
|
||
|
|
||
|
/*
|
||
|
* Now update slb cache entries
|
||
|
*/
|
||
|
slb_cache_index = get_paca()->slb_cache_ptr;
|
||
|
if (slb_cache_index < SLB_CACHE_ENTRIES) {
|
||
|
/*
|
||
|
* We have space in slb cache for optimized switch_slb().
|
||
|
* Top 36 bits from esid_data as per ISA
|
||
|
*/
|
||
|
get_paca()->slb_cache[slb_cache_index++] = esid_data >> 28;
|
||
|
get_paca()->slb_cache_ptr++;
|
||
|
} else {
|
||
|
/*
|
||
|
* Our cache is full and the current cache content strictly
|
||
|
* doesn't indicate the active SLB conents. Bump the ptr
|
||
|
* so that switch_slb() will ignore the cache.
|
||
|
*/
|
||
|
get_paca()->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void handle_multi_context_slb_miss(int context_id, unsigned long ea)
|
||
|
{
|
||
|
struct mm_struct *mm = current->mm;
|
||
|
unsigned long vsid;
|
||
|
int bpsize;
|
||
|
|
||
|
/*
|
||
|
* We are always above 1TB, hence use high user segment size.
|
||
|
*/
|
||
|
vsid = get_vsid(context_id, ea, mmu_highuser_ssize);
|
||
|
bpsize = get_slice_psize(mm, ea);
|
||
|
insert_slb_entry(vsid, ea, bpsize, mmu_highuser_ssize);
|
||
|
}
|
||
|
|
||
|
void slb_miss_large_addr(struct pt_regs *regs)
|
||
|
{
|
||
|
enum ctx_state prev_state = exception_enter();
|
||
|
unsigned long ea = regs->dar;
|
||
|
int context;
|
||
|
|
||
|
if (REGION_ID(ea) != USER_REGION_ID)
|
||
|
goto slb_bad_addr;
|
||
|
|
||
|
/*
|
||
|
* Are we beyound what the page table layout supports ?
|
||
|
*/
|
||
|
if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
|
||
|
goto slb_bad_addr;
|
||
|
|
||
|
/* Lower address should have been handled by asm code */
|
||
|
if (ea < (1UL << MAX_EA_BITS_PER_CONTEXT))
|
||
|
goto slb_bad_addr;
|
||
|
|
||
|
/*
|
||
|
* consider this as bad access if we take a SLB miss
|
||
|
* on an address above addr limit.
|
||
|
*/
|
||
|
if (ea >= current->mm->context.slb_addr_limit)
|
||
|
goto slb_bad_addr;
|
||
|
|
||
|
context = get_ea_context(¤t->mm->context, ea);
|
||
|
if (!context)
|
||
|
goto slb_bad_addr;
|
||
|
|
||
|
handle_multi_context_slb_miss(context, ea);
|
||
|
exception_exit(prev_state);
|
||
|
return;
|
||
|
|
||
|
slb_bad_addr:
|
||
|
if (user_mode(regs))
|
||
|
_exception(SIGSEGV, regs, SEGV_BNDERR, ea);
|
||
|
else
|
||
|
bad_page_fault(regs, ea, SIGSEGV);
|
||
|
exception_exit(prev_state);
|
||
|
}
|